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1 Introduction

Let X be an irreducible non-degenerate projective variety of dimension n in PN

and let h and k be integers such that 0 ≤ h ≤ k ≤ N . Then Gh,k(X) is the closure
in G(h,N) of the set of h-dimensional linear subspaces contained in the span of
k + 1 different points of X and is called the h-Grassmannian of (k + 1)-secant k-
planes of X. We say that X is Gh,k-defective if the dimension of Gh,k(X) is smaller
then the expected dimension, which is the minimum between (h+1)(N −h) and
(k + 1)n + (k − h)(h + 1).

In case h = 0, the variety G0,k(X) is just the k-th secant variety Sk(X) of
X. A variety X is called k-defective if it is G0,k-defective. Such varieties are
intensively studied in [16].

In case h > 0, little is known. The most important reason for this is the lack
of a so-called Terracini lemma, which in case h = 0 gives a description for the
tangent space on Sk(X) in a general point. Nevertheless, for example in [4] is
shown that irreducible curves are not Gh,k-defective and in [5] there is given a
classification of surfaces with G1,2-defect. There is also a rough classification for
varieties having Gn−1,n-defect together with a fine classification for G2,3-defective
smooth threefolds (see [7]).

Beside the intrinsic importance of Gh,k-defective varieties, defective varieties
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are also important for some extrinsic reasons. For example, varieties with Gh,k-
defect have a strange behaviour under projections. Waring’s problem for forms
(see [2, 6, 9]) gives us another extrinsic reason for studying defective varieties.
This problem is in connection with the Gh,k-behaviour of Veronese embeddings
of projective spaces.

In this paper we will classify the smooth surfaces X in PN with Gk−1,k-defect
for k > 2.

Theorem 1.1. Let X ⊂ PN be a smooth non-degenerate surface and k > 2.
Then X is Gk−1,k-defective if and only if N = k + 3 and X is of minimal degree
k + 2.

We will also give a full classification of smooth threefolds X ⊂ PN with Gk−1,k-
defect for k > 3.

Theorem 1.2. Let X ⊂ PN be a smooth non-degenerate threefold and k > 3.
Then X is Gk−1,k-defective if and only if X is one of the following varieties:

1. X is a threefold of minimal degree k + 2 in Pk+4;

2. X is a threefold of minimal degree k + 3 in Pk+5;

3. X is the projection in Pk+4 of a threefold of minimal degree k + 3 in Pk+5;

4. k = 4 and X is the (linearly normal) embedding in P8 of the blowing-up of
P3 at a point.

5. k = 5 and X is the image of the 2-uple embedding of P3 in P9.

Compared with the classification of smooth G2,3-defective varieties with N ≥ 7
(see [7]), the first three cases are totally analogous.

Before proving Theorem 1.1 and Theorem 1.2 we will first give a rough cha-
racterization for Gk−1,k-defective n-dimensional varieties with k ≥ n. Here we
don’t require that X needs to be smooth.

Proposition 1.3. Let X be an n-dimensional variety in PN and let k ≥ n be an
integer. Then X is Gk−1,k-defective if and only if N ≥ n + k + 1 and one of the
following properties hold for k + 1 general points P0, . . . , Pk on X:

1. For each i ∈ {0, . . . , k}, there exists a line Li on X containing Pi such that
the linear span of the lines has dimension k + 1.

2. There exists a rational normal curve Γ of degree k + 1 on X containing
P0, . . . , Pk.
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We can see that both properties are enough for Gk−1,k-defectivity. In case n
is equal to 2 or 3, we will prove that the first property is the same as saying that
X is a cone (see Section 4). If X satisfies the second property, we will prove that
X has sectional genus at most n− 2 (see Section 5).

2 Some conventions and generalities

2.1. Conventions. We denote the N -dimensional projective space over the field
C of the complex numbers by PN . We write G(h,N) to denote the Grassmannian
of h-dimensional linear subspaces of PN .

An n-dimensional variety X in PN is an irreducible reduced n-dimensional
Zariski-closed subset of PN . We say that a variety X ⊂ PN is non-degenerate if
X is not contained in a hyperplane of PN .

Let X be a non-degenerate n-dimensional variety in PN . We say that a closed
subscheme Y ⊂ X is a m-dimensional section of X if Y is the scheme-theoretical
intersection of X with a linear subspace PN−n+m of PN such that all irreducible
components have dimension m. We will often use the notions of curve section,
surface section and hyperplane section in case m is equal to respectively 1, 2 and
n− 1.

The linear span 〈Y 〉 of a closed subscheme Y of PN is the intersection of all
hyperplanes H ⊂ PN containing Y as a closed subscheme. This linear span is
always a linear subspace of PN . If P0, . . . , Pr are different points of PN , we write
〈P0, . . . , Pr〉 to denote the linear span of the reduced subscheme of PN supported
by those points.

Let Y be a closed subscheme of PN and let P ∈ Y . We can take a hyper-
plane H ⊂ PN such that P 6∈ H and identify PN\H with the affine space AN

and Y \(Y ∩ H) with a closed subscheme of AN (containing P ). We can define
the Zariski-tangent space TP (Y \(Y ∩ H)) ⊂ AN by using the equations of the
subscheme Y \(Y ∩ H). Its closure in PN is called the embedded tangent space
TP (Y ) in PN of Y at P .

If D1 and D2 are divisors on a smooth surface S, we will write D1.D2 to de-
note the intersection number of those divisors. If D is an effective divisor on S,
then saying D is irreducible means D is integral (i.e. also reduced) by convention.

2.2. Definition of Gk−1,k(X). Let X ⊂ PN be a non-degenerate n-dimensional
variety and let k ≤ N be an integer. The set of points (P0, . . . , Pk) in Xk+1

with dim(〈P0, . . . , Pk〉) = k is non-empty and open; so we have a rational map
ω : Xk+1 99K G(k,N). An element of the image of ω is called a (k + 1)-secant
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k-plane of X. Consider the incidence diagram

I

G(k − 1, N) G(k,N)

..................................................................................................................................................................
...
............

α

..................................................................................................................................................................... .........
...

β

with I = {(A, B)|A ⊂ B} ⊂ G(k−1, N)×G(k, N). Now we define Gk−1,k(X) as

being α(β−1(im(ω))) (this is equal to the closure of the set of (k−1)-dimensional
subspaces of PN contained in some (k + 1)-secant k-plane of X). Since the fibers
of β are irreducible and k-dimensional, we find that the expected dimension of
Gk−1,k(X) is equal to

expdim(Gk−1,k(X)) = min{(k + 1)n + k, k(N − k + 1)}.

If dim(Gk−1,k(X)) is smaller then this expected dimension, we say that X has
Gk−1,k-defect.

It is easy to see that in case k ≥ n the expected dimension of Gk−1,k(X) is
equal to (k + 1)n + k if and only if N ≥ n + k + 1.

If dim(Gk−1,k(X)) = (k + 1)n + k − a and N ≥ n + k + 1, for a general
element H ∈ Gk−1,k(X) the set of (k + 1)-secant k-planes of X containing H has
dimension a.

2.3. Let X be a non-degenerate variety in PN and let k ≤ N be an integer.
From Proposition 1.1 in [5] it follows that Gk,k(X) := im(ω) is equal to G(k,N)
if N ≤ n + k. Hence, X is not Gk−1,k-defective if N ≤ n + k since in this case

Gk−1,k(X) := α(β−1(im(ω))) = G(k − 1, N). If k > n, this also follows from [9].

2.4. Let X ⊂ PN be a non-degenerate n-dimensional variety with N ≥ n + k + 1
for some integer k and let P0, . . . , Pk be general points on X. Then these k + 1
points are contained in a general curve section of X in some PN−n+1≥k+2. So
the uniform position lemma for curves (see [1] and [3, Proposition 2.6] for the
argument) implies that X∩〈P0, . . . , Pk〉 = {P0, . . . , Pk} as a scheme. This implies
that ω : Xk+1 99K G(k,N) is generically injective.

2.5. Polarized varieties. A polarized variety is a pair (V,S) such that V is an
abstract projective variety and S is an ample invertible sheaf on V .

2.5.1. Examples. If X ⊂ PN is a variety and OX(1) is the restriction to X
of the twisting sheaf of Serre OPN (1), the pair (X,OX(1)) is a polarized variety.
Another important example can be given by taking an abstract projective variety
V and a locally free sheaf E on V . Let P(E) be the projective bundle associated
to E and let OP(E)(1) be the associated tautological sheaf (see [12, p. 162]). If this
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sheaf is ample then (P(E),OP(E)(1)) is a polarized variety and is called a scroll on
V .

2.5.2. Sectional genus. For a polarized variety we can define the notion of
sectional genus (for a general definition, see [10]). If S is very ample on V and
V ⊂ PN is the embedding of V using the global sections of S, then the sectional
genus of (V,S) is defined as being the arithmetic genus of a general curve section
of V ⊂ PN .

The classification of smooth polarized varieties (V,S) of sectional genus at
most one is given in [10, Section 12]. We only consider the case where V = X ⊂
PN and S = OX(1) with n = dim(X) = 3 and N ≥ 8.

If the sectional genus is 0 we only have scrolls of vectorbundles on P1 as pos-
sibilities. Moreover, if X is embedded using the complete linear system then X
is of minimal degree, so deg(X) = N − 2. We can obtain all smooth threefolds
X ⊂ PN of minimal degree in this way.

If the sectional genus is equal to 1, the only possibilities are scrolls of vector-
bundles on elliptic curves and Del Pezzo varieties. In our situation a Del Pezzo
variety is one of the following possibilities (see [10, Section 8]):

i. deg(X) = 7; X is isomorphic to the blowing-up σ : BlQ(P3) → P3 at one
point Q andOX(1) ∼= σ∗(OP3(2))⊗OBlQ(P3)(−E) where E is the exceptional
divisor.

ii. deg(X) = 8 and (X,OX(1)) ∼= (P3,OP3(2)).

2.6. Theorems of Bertini. Let L be a linear system on a smooth projective
variety V without fixed components. Then, for a general element D ∈ L the sin-
gular locus Sing(D) is contained in the locus of fixed points of L on V and D is
irreducible unless L is composed with a pencil. For the proofs of this properties,
see [13, 17, 18].

A linear system L is composed by a pencil if and only if there exists a mor-
phism f : W → C with σ : W → V the blowing-up of V at the fixed points of
L and C a curve such that the following holds. There is a linear system L′ on C
with dim(L) = dim(L′) such that for all D ∈ L there exists a D′ ∈ L′ such that
D = σ(f−1(D′)). Using a Stein factorization and a desingularization for W , one
can see that we can assume that the general fibre of f is irreducible.

2.7. If D1 is an irreducible reduced divisor on a smooth projective variety V and
D2 is an effective divisor on V linear equivalent to D1, then D2 is connected. For
an argument, see Section 2.6 in [7].
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3 A rough characterization

Proof of Proposition 1.3: Let X ⊂ PN be an n-dimensional variety with
Gk−1,k-defect for some k ≥ n. From Sec. 2.3 it follows that N ≥ n + k + 1, hence
dim(Gk−1,k(X)) < (k + 1)n + k (Sec. 2.2).

Take H ∈ Gk−1,k(X) general and consider the closure in Xk+1 of the set of
points (P0, . . . , Pk) with Pi 6= Pj for all i 6= j and H ⊂ 〈P0, . . . , Pk〉. Let a be
its dimension and let ΩH,k be an a-dimensional component of that set. We know
that a ≥ 1. Take a general element (P0, . . . , Pk) of ΩH,k. Since we have chosen
H ∈ Gk−1,k(X) generally, (P0, . . . , Pk) is a general element of Xk+1. In particular,
〈P0, . . . , Pk〉 ∩ X = {P0, . . . , Pk} as a scheme. Now let (Q0, . . . , Qk) be another
general element of ΩH,k.

Claim 1. For each i ∈ {0, . . . , k} one has Qi 6∈ {P0, . . . , Pk}.

Proof Claim 1: analogous to the proof of Claim 3.1 in [7]. �

Write L = 〈P0, . . . , Pk〉 and M = 〈Q0, . . . , Qk〉. Since L 6= M , dim(L) =
dim(M) and H ⊂ L∩M ; one has H = L∩M and dim(〈L∪M〉) = k + 1. Write
Pk+1 = 〈L ∪M〉.

Claim 2. Pk+1 ∩X is not finite.

Proof Claim 2: Assume Pk+1 ∩X is finite.

Subclaim 2.1. A general linear subspace of PN of dimension N −n+1 containing
Pk+1 ∩X gives rise to an irreducible curve section of X smooth at P0, . . . , Pk.

Proof Subclaim 2.1: analogous to the proof of Subclaim 3.3 in [7]. �

Denote by Ψ′
0 the closure of the set of elements (P0, . . . , Pk; Q0, . . . , Qk) in

Xk+1 × Xk+1 such that dim(〈P0, . . . , Pk〉) = k, Pi 6= Pj and Qi 6= Qj for i 6= j,
{P0, . . . , Pk} 6= {Q0, . . . , Qk} and H ⊂ 〈Q0, . . . , Qk〉 for some (k− 1)-dimensional
linear subspace H of 〈P0, . . . , Pk〉.

Subclaim 2.2. There exists an irreducible component Ψ0 of Ψ′
0 of dimension

(k + 1)n + k + a dominating the first factor Xk+1.

Proof Subclaim 2.2: analogous to the proof of Subclaim 3.4 in [7]. �

Now consider the closure Ψ1 ⊂ Ψ0 × G(N − n + 1, N) of the set of pairs
(P0, . . . , Pk; Q0, . . . , Qk; G) with the dimension of 〈P0, . . . , Pk, Q0, . . . , Qk〉 equal
to k + 1 and 〈P0, . . . , Pk, Q0, . . . , Qk〉 ⊂ G. The dimension of a general fibre of
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the projection Ψ1 → Ψ0 is (N − n − k)(n − 1), hence dim(Ψ1) = (k + 1)n +
k + a + (N − n − k)(n − 1). This implies that a general non-empty fiber of
τ : Ψ1 → G(N − n + 1, N) has dimension at least (k + 1)n + k + a + (N − n −
k)(n− 1)− (N − n + 2)(n− 1) = 2k − n + 2 + a.

For G ∈ τ(Ψ1) general we have by Subclaim 2.1 that G ∩X is an irreducible
curve C ⊂ PN−n+1 spanning PN−n+1. So we find a subset S ⊂ C2k+2 of dimen-
sion 2k − n + 2 + a ≥ k + 3 such that for (P0, . . . , Pk, Q0, . . . , Qk) ∈ S the points
impose at most k + 2 conditions on hyperplanes. Since we can choose k + 3 of
those points general on C, we conclude that k + 3 general points of C do not
impose independent conditions on hyperplanes. Hence, N − n + 1 ≤ k + 1 and
so N ≤ n + k. This gives us a contradiction. �

Now we know that dim(Pk+1 ∩ X) ≥ 1. Since dim(L ∩ X) = 0 and L is a
hyperplane in Pk+1, we find dim(Pk+1∩X) = 1. Denote by Γ an irreducible curve
in Pk+1 ∩X.

Claim 3. Either Γ ∩ {P0, . . . , Pk} = {P0, . . . , Pk} or Γ ∩ {P0, . . . , Pk} is only one
point. In the second case Pk+1∩X contains a line Li with Li∩{P0, . . . , Pk} = {Pi}
for each i ∈ {0, . . . , k}.

Proof Claim 3: Assume that Γ ∩ {P0, . . . , Pk} = {P0, . . . , Pl} for some 0 ≤ l < k.
Let m be an integer such that l < m ≤ k. We will now prove using a mo-
nodromy argument that there exists another component Γ′ ⊂ Pk+1∩X such that
Γ′ ∩ {P0, . . . , Pk} = {P0, . . . , Pl−1, Pm}.

Let Θ1 ⊂ Xk+1×G(k−1, N) be the closure of the set of points ((P0, . . . , Pk), H)
such that Pi 6= Pj for i 6= j, dim (〈P0, . . . , Pk〉) = k and H ⊂ 〈P0, . . . , Pk〉.
Consider the projections p1,1 : Θ1 → Xk+1 and p1,2 : Θ1 → G(k − 1, N).
Since p1,1 is surjective with irreducible general fibers of dimension k, we see
that Θ1 also is irreducible and of dimension (k + 1)n + k. The fibers of p1,2

have dimension at least a. Denote Θ1 ×G(k−1,N) Θ1 by Θ2 and consider the
projections p2,i : Θ2 → Θ1 onto the i-th factor for i ∈ {1, 2}. Let ∆ be
the diagonal of Θ1 in Θ2. If ((P0, . . . , Pk), H) is a general element of Θ1 then
p2,2(p

−1
2,1((P0, . . . , Pk), H)) contains ΩH,k as an irreducible component; more pre-

cisely, ΩH,k corresponds to the irreducible component of p−1
2,1((P0, . . . , Pk), H) in-

tersecting ∆. It follows that ∆ is contained in a unique irreducible component
Θ of Θ2. If p1 : Θ → Θ1 denotes the restriction of the projection p2,1 to Θ, we
obtain p−1

1 ((P0, . . . , Pk), H) = ΩH,k. Consider Θ ⊂ Xk+1 × Xk+1 × G(k − 1, N)
and let Θ3 ⊂ Θ × X be the set of elements (((P0, . . . , Pk), (Q0, . . . , Qk), H), R)
with R ∈ 〈P0, . . . , Pk, Q0, . . . , Qk〉. By assumption, there is a curve Γ in the
fibre of p3 : Θ3 → Θ with Γ ∩ {P0, . . . , Pk} = {P0, . . . , Pl}. Let Θ4 be the
irreducible component of the Hilbert scheme parameterizing curves in fibres of
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the projection p3 containing the point that parameterizes Γ. Let q : Θ4 → Θ
be the natural morphism. Let Ξ ⊂ Θ4 × X be the universal curve and let
q′ : Θ4 × X → Θ4 be the projection. Consider the sections Si : Θ4 → Θ4 × X
with Si(z) = (z, Pi) if q(z) = ((P0, . . . , Pk), (Q0, . . . , Qk), H). For a general
point z of Θ4 we have Si(z) ∈ Ξ if and only if i ∈ {0, . . . , l}. By construc-
tion and assumption, Θ4 is irreducible and q is surjective. Let z′ ∈ Θ4 with
q(z′) = ((P0, . . . , Pl−1, Pl+1, Pl, . . . , Pk), (Q0, . . . , Qk), H). The point q(z′) be-
longs to Θ because ΩH,k is determined by H and {P0, . . . , Pk}, thus independent
of the order of the points P0, . . . , Pk. Hence, z′ ∈ Θ4 corresponds to a curve
Γ′ ⊂ Pk+1 ∩ X with P0, . . . , Pl−1, Pl+1 ∈ Γ′. So, we have proved the statement
above for m = l +1; analogous we can prove the statement for other values of m.

When we take l = 0 we immediately get the second part of the statement of
the Claim. If l > 0, P0 ∈ Γ∩Γ′ ⊂ Pk+1∩X hence dim(TP0(Pk+1∩X)) ≥ 2. Thus
we get a contradiction because dim(TP0(L∩X)) = 0. So we proved also the first
part of the statement of the Claim. �

If Γ ∩ {P0, . . . , Pk} = {P0, . . . , Pk}, we find Γ ∩ L = {P0, . . . , Pk} as a scheme
because X ∩ L = {P0, . . . , Pk} as a scheme and Γ ⊂ X. Hence deg(Γ) = k + 1 =
codimPk+1(Γ) + 1 and so Γ is a rational normal curve. In this case, we find that
k+1 general points on X are contained in a rational normal curve of degree k+1
on X. �

4 The first case of the characterization

Here we will study the first case occurring in the Proposition: for general points
P0, . . . , Pk ∈ X there exist lines Li on X containing Pi for each i ∈ {0, . . . , k}
such that dim〈L0, . . . , Lk〉 = k + 1. Remember that a generally chosen element
(P0, . . . , Pk, Q0, . . . , Qk, H) ∈ Θ determines L0, . . . , Lk uniquely. By monodromy
on Θ, a property that holds for some subset of {L0, . . . , Lk} holds for each subset
of the same cardinality.

Claim 4.1. If k lines of {L0, . . . , Lk} span a linear subspace of dimension k,
then X is a cone.

Proof: analogous to the proof of Claim 3.6 in [7]. �

Assume that X is not a cone. From Claim 4.1, we know dim(〈L1, . . . , Lk〉) 6= k,
hence 〈L1, . . . , Lk〉 = Pk+1. Notice that dim(〈Li, P1 . . . , Pk〉) = k for all i ∈
{1, . . . , k} because Li 6⊂ 〈P1, . . . , Pk〉.

Now, let 1 ≤ i < j ≤ k. If dim(〈Li, Lj, P1 . . . , Pk〉) = k, then it follows that
Lj ⊂ 〈Li, P1 . . . , Pk〉 and thus Ll ⊂ 〈Li, P1 . . . , Pk〉 for each l ∈ {1, . . . , k} by mo-
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nodromy. Hence, dim(〈L1, . . . , Lk〉) = k, a contradiction. So 〈Li, Lj, P1 . . . , Pk〉 =
Pk+1.

Now fix P1, . . . , Pk on X and let P0(t) be a 1-parameterfamily on X with
P0(0) = P0. Consider also a 1-parameterfamily H(t) ⊂ 〈P0(t), P1, . . . , Pk〉 of
linear subspaces of dimension k − 1 with H(0) = H and 1-parameterfamilies
Q0(t), . . . , Qk(t) on X with Qi(0) = Qi for each i and H(t) ⊂ 〈Q0(t), . . . , Qk(t)〉.
Those families imply the existence of 1-parameterfamilies L0(t), . . . , Lk(t) of lines
on X with Li(0) = Li for i ∈ {0, . . . , k}, Pi ∈ Li(t) for all i ∈ {1, . . . , k},
P0(t) ∈ L0(t) and dim(〈L0(t), . . . , Lk(t)〉) = k +1 for each value of the parameter
t. We may assume that P0(t) 6∈ Pk+1 for general values of t. If Li(t) = Li for
all i ∈ {1, . . . , k} and for a general value of t, then P0(t) ∈ 〈P0(t), P1, . . . , Pk〉 ⊂
〈L1(t), . . . , Lk(t)〉 = Pk+1, a contradiction. By monodromy we can assume that
Li(t) 6= Li for all i ∈ {0, . . . , k}.

So there is a family of lines on X through each general point of X.

Remark 4.2. If X is a surface, one can easily see that this situation cannot occur.

Proposition 4.3. Let X ⊂ PN (N ≥ k + 4, k ≥ 3) be a threefold such that for
k + 1 general points P0, . . . , Pk on X there exist lines L0, . . . , Lk on X such that
Pi ∈ Li for i ∈ {0, . . . , k} and dim(〈L0, . . . , Lk〉) = k + 1, then X is a cone.

Proof: Assume that X is not a cone. For a general point P on X there exists a 1-
dimensional family of lines on X through P . Hence, X contains a 3-dimensional
family of lines. By [14] or [15], X is embedded in PN as a P2-bundle over a
curve K. Let KP be the 2-dimensional component of the union of all lines on X
through P . We know that KP is a plane. Using a 1-parameterfamily P0(t) we
find 1-parameterfamilies L1(t) and L2(t) in respectively KP1 and KP2 . We have

〈P0(t), P1, . . . , Pk〉 ⊂ 〈L1(t), L2(t), P3, . . . , Pk〉 ⊂ 〈KP1 , KP2 , P3, . . . , Pk〉.

Since dim(〈KP1 , KP2 , P3, . . . , Pk〉) ≤ k + 3 and thus X 6⊂ 〈KP1 , KP2 , P3, . . . , Pk〉,
we can choose the parameterfamily P0(t) such that P0(t) 6∈ 〈KP1 , KP2 , P3, . . . , Pk〉
for general values of the parameter t. This gives us a contradiction and finishes
the proof. �

5 The second case of the characterization

Proposition 5.1. Let X ⊂ PN (N ≥ n + k + 1, k ≥ n) be an n-dimensional
variety such that for k + 1 general points P0, . . . , Pk on X there exists a rational
normal curve Γ on X of degree k + 1 containing P0, . . . , Pk. Then, the geometric
genus of a general curve section of X is at most n− 2.
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Proof: Denote the family of rational normal curves of degree k+1 on X by {Γ}.
By assumption, dim({Γ}) ≥ (k + 1)n− (k + 1) = (n− 1)(k + 1).

Because k ≤ N − n + 1, k + 1 general points on X are contained in a curve
section of X. So, taking k+1 general points P0, . . . , Pk on X can be done by first
taking a general curve section C ′ of X and then considering k + 1 general points
on C ′. Bertini’s theorems imply that C ′ is irreducible and smooth at P0, . . . , Pk.
Write C ′ = X ∩ G′

0 with G′
0 a linear subspace of PN of dimension N − n + 1.

Consider a general linear subspace H ⊂ L = 〈P0, . . . , Pk〉 of dimension k− 1 and
let (Q0, . . . , Qk) be a general element of ΩH,k. Hence, G′ = 〈G′

0 ∪ {Q0}〉 ⊂ PN is
a linear subspace of dimension N − n + 2. Consider S ′ = X ∩ G′. Since C ′ is a
irreducible curve and G′

0 is a hyperplane of G′, we find that S ′ is an irreducible
surface. Since C ′ is smooth at P0, . . . , Pk we see that S ′ is smooth at P0, . . . , Pk.

Let I ′ ⊂ {Γ} × G(N − n + 2, N) be the inclusion relation. The dimension
of a general fibre of I ′ → {Γ} is (N − n − k + 1)(n − 2). Hence, we obtain a
irreducible component I of I ′ containing (Γ, G′) of dimension greater than or equal
to (N−n−k+1)(n−2)+(k+1)(n−1), with Γ the rational normal curve contained
in X∩〈P0, . . . , Pk, Q0, . . . , Qk〉. Consider the projection ν : I → G(N−n+2, N).
The dimension of a general non-empty fibre of ν is at least

(N − n− k + 1)(n− 2) + (k + 1)(n− 1)− (N − n + 3)(n− 2) = k − n + 3.

If we consider the fibre above G′, we find that S ′ contains a subfamily of {Γ}
of dimension at least k − n + 3. Let S be the minimal resolution of singular-
ities of S ′. We become a family {γ} of rational curves on S of dimension at
least k − n + 3 by considering the strict transforms of the curves in {Γ} on S ′.
Denote the strict transforms on S of Γ and C ′ by resp. γ and C ′′. Any two
points of S can be connected by means of a rational curve in {γ}. This implies
h1(S,OS) = 0, so the family {γ} is contained in a linear system {γ} of dimen-
sion at least k − n + 3. This linear system induces a linear system |g| on the
normalization C of C ′′. Since S ′ is smooth at P0, . . . , Pk, we find that S and S ′

are isomorphic above neighborhoods of those points. Since dim(|C ′′ − γ|) ≥ 1
(C ′′ is a divisor corresponding to the morphism S → G′ ∼= PN−n+2 and γ
corresponds to Γ with dim(〈Γ〉) = k + 1), no curve of |γ| contains C ′′, hence
dim(|g|) ≥ k − n + 3. Since Γ ∩ C ′ = {P0, . . . , Pk} as a scheme, we find γ ∈ |γ|
gives rise to P0 + . . . + Pk ∈ |g|. Since P0, . . . , Pk are general points of C, we
see that |g| is non-special and dim(|g|) = deg(g) − g(C) = k + 1 − g(C). Thus,
k + 1− g(C) ≥ k − n + 3, so g(C) ≤ n− 2. �

6 Some examples

Proposition 6.1. Let X ⊂ PN be an n-dimensional smooth variety of minimal
degree. If k ≥ n and n + k + 1 < N ≤ 2n + k − 1 then X has Gk−1,k − defect.
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Proof: Notice that n ≥ 3 because n + k + 1 < 2n + k − 1.
Take k + 1 general points P0, . . . , Pk on X and choose a linear subspace

PN−k−1 ⊂ PN disjoint with 〈P0, . . . , Pk〉. Consider the projection of X on PN−k−1

with center 〈P0, . . . , Pk〉 and let Y be the closure of the image of that projection.
Then Y is also an n-dimensional variety of minimal degree.

From the classification of varieties of minimal degree (see [8]) follows that
X is a smooth rational normal scroll. In particular X has a bundle structure
π : X → P1 such that L(P ) := π−1(P ) ⊂ X ⊂ PN is a linear subspace
of dimension n − 1. For P ∈ P1 general L(P ) ∩ 〈P0, . . . , Pk〉 = ∅ because
X ∩ 〈P0, . . . , Pk〉 = {P0, . . . , Pk}. Hence, on Y the image of L(P ) is again a
linear subspace of dimension n − 1 of PN−k−1. So Y cannot be a cone over a
Veronese surface. If N = n + k + 2 it follows that Y is a quadric in Pn+1. This
quadric contains linear subspaces of dimension n−1, so Y is singular ([11, Chap-
ter 6, Section 1]). Let s be a general point of the singular locus of Y , which is a
linear subspace of Pn+1. The image of L(P ) on Y contains s, for P ∈ P1 general.
Let G = 〈P0, . . . , Pk, s〉 then dim(G) = k + 1 and 〈P0, . . . , Pk〉 is a hyperplane
in G. Since L(P ) ∩ G 6= ∅ for P ∈ P1 general, dim(X ∩ G) ≥ 1. Let Γ be a
curve in X ∩ G intersecting L(P ) for general P ∈ P1. Since 〈P0, . . . , Pk〉 is a
hyperplane in G and X ∩ 〈P0, . . . , Pk〉 = {P0, . . . , Pk}, we find two possibilities
by similar monodromy arguments as in the proof of Claim 3 of Section 3. If
Γ is a rational normal curve of degree k + 1 through P0, . . . , Pk; the proof is fi-
nished. The second possibility is that Γ is a line. Then there exist lines Γ0, . . . , Γk

on X such that Pi ∈ Γi for all i ∈ {0, . . . , k}. If we denote π(Pi) by P ′
i , then

Pi ∈ L(P ′
i ). The line Γ0 intersects L(P ′

1) at a point P ′′
1 different from P1. We have

〈P1, P
′′
1 〉 ∪ Γ1 ⊂ X ∩ G and 〈P1, P

′′
1 〉 6= Γ1 (Γ1 is not contained in L(P ′

1)). This
contradicts dim(TP1(X ∩G)) ≤ 1. Hence the second possibility cannot occur.

If n+k+2 < N ≤ 2n+k−1, it follows that Y is a scroll with dim(Sing(Y )) ≥
2n + k − 1−N ≥ 0. So we can finish this proposition by taking the same argu-
ments as in the case N = n + k + 2. �

Remark 6.2. If n = 3 this proposition says that minimal threefold X ⊂ Pk+5 is
Gk−1,k-defective for k ≥ 3. Let X̃ ⊂ Pk+4 be the image of X ⊂ Pk+5 under the
projection with center P ∈ Pk+5\X. The curve Γ of the proof of the proposition
above gives rise to a rational normal curve Γ̃ ⊂ X̃ of degree k+1 containing k+1
general points on X̃. So, X̃ is also Gk−1,k-defective.

Proposition 6.3. Let X ⊂ Pn+k+1 be an n-dimensional smooth variety of min-
imal degree k + 2, not being the Veronese surface in P5. If k ≥ n then X has
Gk−1,k-defect.

Proof: Consider a general surface section S ⊂ Pk+3 of X. Then S is smooth and
of minimal degree k + 2. Since S is not the Veronese surface (X is smooth), it is
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a smooth rational normal scroll surface.
We will use some results on smooth rational normal scroll surfaces. We know

that they are isomorphic to a Hirzebruch surface Fr = P(O ⊕ OP1(r)) for some
r ∈ N. If r ≥ 1, those surfaces contain a curve B with negative self-intersection
B2 = −r and have a 1-dimensional linear system of curves F with F 2 = 0 and
F.B = 1. In case r = 0, F0 = P1 × P1 and we can take B = P1 × {0} (B2 = 0)
and F = {p} × P1 for p ∈ P1.

Let b (respectively f) be the element of Pic(Fr) corresponding to the curve
B (respectively F ). Write h = b + r f . It is well-known that Pic(Fr) = Zh⊕Zf .
For each l > 0, the linear system |h + l f | is very ample on Fr. For l ≥ 0, one
has dim(|h + l f |) = r + 2l + 1 and (h + l f)2 = r + 2l. Hence for l ≥ 1 the linear
system |h + l f | gives rise to a surface S ⊂ Pr+2l+1 of minimal degree. Those
surfaces are the smooth rational normal scroll surfaces.

Let Γ be an element of |h+(l−1) f | for l ≥ 1. We have dim(|(h+ l f)−Γ|) =
dim(|f |) = 1 hence dim(〈Γ〉) = r + 2l − 1 for Γ ⊂ S ⊂ Pr+2l+1. On the other
hand deg(Γ) = (h + (l − 1) f).(h + l f) = r + 2l − 1, hence Γ ⊂ S ⊂ Pr+2l+1 is a
rational normal curve of degree r +2l− 1. Since dim(|h+(l− 1) f |) = r +2l− 1,
any r + 2l − 1 general points on S contain such a curve.

Now take X as above and take k + 1 general points P0, . . . , Pk on X. The
points P0, . . . , Pk can be considered as k + 1 general points on a general surface
section S ⊂ Pk+3 of X. Since S is a smooth rational normal scroll surface, the
points P0, . . . , Pk are contained in a rational normal curve Γ ⊂ S ⊂ Pk+3 of degree
k + 1. This implies that X is Gk−1,k-defective. �

Proposition 6.4. Let X be the 2-uple embedding of P3 in P9. Then X is G4,5-
defective.

Proof: Denote the 2-uple embedding P3 → X ⊂ P9 by ν2. Let P0, . . . , P5 be six
general points on X and denote their inverse images in P3 under ν2 by Q0, . . . , Q5.
These points are contained in a rational normal curve Γ̃ ⊂ P3 of degree 3 (see
[11, p. 530]). The image of Γ̃ under ν2 is a rational normal curve Γ of degree 6
in P9 through P0, . . . , P5 that is contained in X since Γ̃ is cut out by quadrics in
P3 (see again [11, p. 530]), so X is G4,5-defective. �

Proposition 6.5. Let X be the blowing-up of P3 in a point Q linearly normal
embedded in P8. Then X is G3,4-defective.

Proof: Let P0, . . . , P4 be five general points of X. We may assume that non of
those points is contained in the exceptional divisor E ⊂ X. We can consider X
as a subset of P3×P2 ⊂ P11 (with P8 ⊂ P11). Let p : X → P3 be the projection to
the first factor and let Q0, . . . , Q4 be the images under p of respectively P0, . . . , P4.
Hence there exists a rational normal curve Γ̃ in P3 containing Q, Q0, . . . , Q4. The
inverse image of Γ̃ under p contains a rational normal curve Γ in X of degree 5
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containing P0, . . . , P4, so X is G3,4-defective. �

7 What for smooth surfaces?

Proof of Theorem 1.1: We have already proved that smooth surfaces X ⊂ Pk+3

of minimal degree are Gk−1,k-defective (see Prop. 6.3).
So let X be a smooth Gk−1,k-defective surface in PN . Now we can use Propo-

sition 1.3. It follows that N ≥ k+3 and (since X is smooth) that for k+1 general
points of X there exists a rational normal curve of degree k + 1 on X through
those points. Take k + 1 general points P0, . . . , Pk on X. One can assume that
P0, . . . , Pk are general points on a general (smooth) curve section C of X. Write
Γ ⊂ X to denote the rational normal curve of degree k + 1 through P0, . . . , Pk.
Since dim(〈C〉) = N − 1 ≥ k + 2, we find dim(|C − Γ|) ≥ 1. Let C ′ be a general
element of |C − Γ|. The linear system |C ′| = |C − Γ| has no fixed component
because Γ is the only curve in X ∩ 〈Γ〉 and X ∩ 〈Γ〉 is smooth in a general point
of Γ. Either C ′ is irreducible or it is the sum of irreducible curves in a pencil on
X. So, if C ′ would contain a curve Γ, then C ′ ∼ (α − 1)Γ for some α ≥ 2 and
so C ∼ αΓ. So from Γ.C = k + 1 it would follow that α(Γ.Γ) = k + 1. But this
would contradict α ≥ 2, k > 2 and Γ.Γ ≥ k (dim|Γ| ≥ k + 1). Since Γ ∪ C ′ is
connected, we get Γ.C ′ ≥ 1. Hence Γ.Γ + Γ.C ′ = Γ.C = k + 1 implies Γ.Γ = k
and Γ.C ′ = 1. Since dim|Γ| ≥ k + 1 ≥ 2 we find |Γ − C ′| 6= ∅. So we can write
Γ ∼ β.C ′ + C ′′ for some β ≥ 1 and C ′′ ≥ 0 with |C ′′ − C ′| = ∅.

If C ′′ = 0, then β(C ′.C ′) = Γ.C ′ = 1 implies β = 1 and C ′.C ′ = 1. Since
β2(C ′.C ′) = Γ.Γ = k, this gives us a contradiction with k > 2, so C ′′ 6= 0. Since
C ′ ∪ C ′′ is connected, we find C ′.C ′′ ≥ 1. From 1 = Γ.C ′ = β(C ′.C ′) + C ′.C ′′ it
follows that C ′.C ′ = 0 and C ′.C ′′ = 1 because C ′.C ′ ≥ 0 (|C ′| is 1-dimensional
and has no fixed components). Thus,

deg(X) = C.C = (Γ + C ′).(Γ + C ′) = Γ.Γ + 2(Γ.C ′) + C ′.C ′ = k + 2.

Since codim(X) + 1 = N − 1 ≥ k + 2 it follows that N = k + 3 and that X is of
minimal degree. �

8 What for smooth threefolds?

Proof of Theorem 1.2: We have already proved that the threefolds of the
statement are Gk−1,k-defective (see Sec. 6), so we only have to prove that there are
no other threefolds with Gk−1,k-defect. Let X ⊂ PN be a smooth non-degenerate
threefold with Gk−1,k-defect. From Proposition 1.3 and Section 4, it follows that
N ≥ n+k +1 and that any k +1 general points on X are contained in a rational
normal curve of degree k + 1 on X. Now fix k + 1 general points P0, . . . , Pk on
X. We may assume that P0, . . . , Pk are contained in a general curve section C ′
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of X. Using the notations of the proof of Proposition 5.1, since X is smooth
and dim(X) = 3 we have C = C ′ = X ∩ G′

0 for some linear subspace G′
0 ⊂ PN

of dimension N − 2 and S ′ = X ∩ G′ for some hyperplane G′ ⊂ PN containing
G′

0. There is a 1-dimensional family of hyperplanes of PN containing G′
0 and we

distinguish two possibilities:

(a) The hyperplane G′ is a general element in this family; i.e. the projection
morphism ν in the proof of Proposition 5.1 is surjective. In this case S ′ is
smooth since X is smooth and S ′ is a general surface section of X (Sec.
2.6). The surface S ′ contains a subfamily of {Γ} of dimension at least k.

(b) The hyperplane G′ is a special element in this family; i.e. the projection
morphism ν in the proof of Proposition 5.1 is not surjective. In this case
S ′ contains a subfamily of {Γ} of dimension at least k + 1. In particular
the linear system |g| on C has degree k + 1 and dimension at least k + 1.
Hence S ′ has sectional genus 0, but S ′ does not need to be smooth.

Case (a).

Write L to denote the linear system defining S ⊂ PN−1≥k+3. If L(−Γ) is de-
fined as being {D ∈ L |D−Γ ≥ 0}, then dim(L(−Γ)) ≥ 1 since dim(〈Γ〉) = k+1.
Notice that L − Γ = {D − Γ |D ∈ L(−Γ)} does not have fixed components be-
cause Γ is the only curve in X ∩ 〈Γ〉 and X ∩ 〈Γ〉 smooth in a general point of Γ.
Let C ′ be a general element of L − Γ, then Γ.(Γ + C ′) = k + 1. Since Γ ∪ C ′ is
connected we have Γ.C ′ ≥ 1. On the other hand, since S ′ contains a subfamily of
{Γ} of dimension at least k we find Γ.Γ ≥ k − 1. So we obtain two possibilities:
Γ.C ′ = 1 and Γ.Γ = k or Γ.C ′ = 2 and Γ.Γ = k − 1.

Case Γ.C ′ = 2 and Γ.Γ = k − 1.

First assume that L − Γ is composed with a pencil, so there is a morphism
f : S̃ → T with T a curve and S̃ a blowing-up of S at the fixed points of L − Γ
such that C ′ = f−1(c1) + f−1(c2) for c1 + c2 moving in a linear system on T .
Indeed, C ′ cannot be contained in a fibre of f and each fibre of f intersects Γ
otherwise Γ.C ′ would be 0. Since Γ dominates T , we find T ∼= P1. So the fibres
of f form a linear system on S. Thus C ′ ∈ |2C0| for a irreducible curve C0

with dim|C0| = 1 and Γ.C0 = 1. Because dim|Γ| ≥ k, there are curves in |Γ|
that contain C0. Suppose that Γ ∼ αC0 + C ′′ for some α ≥ 1 and C ′′ ≥ 0 with
|C ′′−C0| = ∅. If C ′′ = 0, it would follow Γ ∼ αC0, hence α2(C0.C0) = Γ.Γ = k−1
and 2α(C0.C0) = Γ.C ′ = 2, a contradiction (with k > 3).

So C ′′ 6= 0. Since αC0 +C ′′ is connected (Sec. 2.7) and C0 irreducible, we find
C0.C

′′ ≥ 1. We know that 2 = Γ.C ′ = α(C0.C
′)+C ′′.C ′ = 2α(C0.C0)+2(C ′′.C0).

Hence C0.C0 = 0 and C ′′.C0 = 1, since C0.C0 ≥ 0 (dim|C0| = 1 and |C0| has no
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fixed components). This implies that C ′.C ′ = 0 and so

deg(X) = deg(S) = C.C = (Γ + C ′).(Γ + C ′) = k + 3.

Hence N ∈ {k+4, k+5}, because codim(X)+1 = N−2 ≥ k+2. Since g(C) ≤ 1
and C ∼ Γ + C ′

0 + C ′′
0 for C ′

0 and C ′′
0 general on S, we find pa(Γ + C ′

0 + C ′′
0 ) ≤ 1

and since g(C ′
0) = g(C ′′

0 ) it follows g(C) = pa(Γ + C ′
0 + C ′′

0 ) = 0. So the sectional
genus of X is 0. Now it follows from Theorema 12.1 in [10] that the polarized
variety (X, L) has ∆-genus equal to 0. From the classification theory of polar-
ized varieties (Section 2.5.2) it follows that (X, L) = (P(E),OP(E)(1)). A linearly
normal embedding of (X, L) gives rise to a threefold X̄ ⊂ Pk+5 of minimal degree
k + 3. So X = X̄ or X is the projection of X̄ in Pk+4 with center P ∈ Pk+5\X̄.
This gives rise to possibilities 2 and 3.

Assume now that L − Γ is not composed with a pencil. Hence in general C ′

is irreducible (Sec. 2.6). Since Γ.C ′ = 2 we have

g(C) = pa(Γ + C ′) = 1 +
1

2
(Γ + C ′).(Γ + C ′ + K) = pa(C

′) + pa(Γ) + 1 ≤ 1.

Since g(Γ) = 0, we find C ′ ∼= P1 and X has sectional genus equal to 1. From
dim|Γ| ≥ k, it follows |Γ−C ′| 6= ∅. Now write Γ ∼ αC ′ + C ′′ for some α ≥ 1 and
C ′′ ≥ 0 with |C ′′ − C ′| = ∅.

If C ′′ = 0, we have Γ ∼ αC ′ and so

k − 1 = Γ.Γ = α2(C ′.C ′) = α(Γ.C ′) = 2α.

Hence α = k−1
2

and so C ′.C ′ = 2
α

= 4
k−1

. Since k > 3 it follows k = 5, α =
2, Γ.Γ = 4, C ′.C ′ = 1 and Γ.C ′ = 2; so deg(X) = C.C = 9(C ′.C ′) = 9.
From the classification of polarized varieties (X, L) with sectional genus 1 (Sec.
2.5.2) follows that X has to be a scroll over an elliptic curve. This gives us a
contradiction because k+1 general points on X are contained in a rational normal
curve on X.

So we find C ′′ 6= 0. We have Γ.C ′ ≥ 0 and Γ.C ′′ ≥ 0 since Γ has no fixed
component. On the other hand, C ′.C ′ ≥ 0 since dim(|C ′|) ≥ 1 and C ′ has no
fixed component. We also have

k − 1 = Γ.Γ = α(Γ.C ′) + Γ.C ′′ = 2α + Γ.C ′′

and
deg(X) = C.C = (Γ + C ′).(Γ + C ′) = k + 3 + C ′.C ′.

First consider the case k = 4. Then 2α+Γ.C ′′ = 3 and so α = 1 and Γ.C ′′ = 1.
Since 2 = Γ.C ′ = C ′.C ′ + C ′′.C ′ and C ′.C ′′ ≥ 1 (C ′ ∪C ′′ connected) we have two
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possibilities: C ′.C ′ = 0 and C ′′.C ′ = 2 or C ′.C ′ = 1 = C ′′.C ′.
Consider the first possibility. It follows deg(X) = C.C = 7 and C ′′.C ′′ = −1

(since Γ.Γ = 3). So (X, L) is a smooth 3-dimensional variety with sectional
genus 1 of degree 7. From the classification of polarized varieties with sectional
genus 1 (see Sec. 2.5.2) follows that (X, L) ∼= (BlQ(P3), σ∗(OP3(2)) − E) with
σ : BlQ(P3) → P3 the blowing-up of P3 at Q and E the exceptional divisor. This
gives rise to a linearly normal embedding X̄ ⊂ P8 of BlQ(P3) and hence case 4 of
the Theorem.

Now consider the second possibility. We find deg(X) = C.C = 8 and
C ′′.C ′′ = 0 (since Γ.Γ = 3). So we obtain a 3-dimensional smooth variety with
sectional genus 1 of degree 8, thus (X,L) ∼= (P3,OP3(2)) using the classification
of polarized varieties with sectional genus 1 (see Sec. 2.5.2). This implies that S
needs to be a smooth quadric in P3 embedded by |2C ′ + C ′′| = |C| = |OS(2, 2)|.
This gives us a contradiction since C ′.C ′ = 1 = C ′′.C ′ and C ′′.C ′′ = 0.

Now let k = 5, thus 2α + Γ.C ′′ = 4. Hence we again have two possibilities:
α = 2 and Γ.C ′′ = 0 or α = 1 and Γ.C ′′ = 2.

We start with the first possibility. Since Γ ∼ 2C ′ + C ′′, we have 2 = Γ.C ′ =
2(C ′.C ′) + C ′.C ′′, hence C ′.C ′ = 0 and C ′.C ′′ = 2. It follows that deg(X) =
C.C = 8 and C ′′.C ′′ = −4. From Section 2.5.2 we see that (X, L) ∼= (P3,OP3(2)).

Now we take a look at the second possibility. Since Γ ∼ C ′ + C ′′, we
have 2 = Γ.C ′ = C ′.C ′ + C ′.C ′′. Notice that C ′.C ′ ≤ 0 since there are no 3-
dimensional smooth Del Pezzo varieties X̄ with deg(X̄) > 8. It follows C ′.C ′ = 0,
C ′.C ′′ = 2, deg(X) = C.C = 8 and C ′′.C ′′ = 0. From Section 2.5.2 we see that
(X, L) ∼= (P3,OP3(2)).

So, in both cases we end up with (X,L) ∼= (P3,OP3(2)). This gives rise to the
2-uple embedding of P3 in P9, which is case 5 of the Theorem.

If k > 5 it follows deg(X) = k + 3 + C ′.C ′ > 8 since C ′.C ′ ≥ 0. This immedi-
ately gives us a contradiction since there are no 3-dimensional smooth Del Pezzo
varieties X̄ with deg(X̄) > 8 (see Sec. 2.5.2).

Case Γ.C ′ = 1 and Γ.Γ = k.

In particular, since |C ′| has no fixed components, |C ′| cannot be composed
by a pencil and it follows that in general C ′ is irreducible (Bertini’s theorem,
see Sec. 2.6). Since dim|Γ| ≥ k and Γ.C ′ = 1, we can write Γ ∼ αC ′ + C ′′ for
some α ≥ 1 and C ′′ ≥ 0 with |C ′′ − C ′| = ∅. If C ′′ = 0 it follows Γ ∼ αC ′ and
thus α2(C ′.C ′) = Γ.Γ = k and α(C ′.C ′) = Γ.C ′ = 1, a contradiction with k > 3.
Hence C ′′ 6= 0. We have

α(C ′.C ′) + C ′.C ′′ = (αC ′ + C ′′).C ′ = Γ.C ′ = 1.
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Since C ′.C ′ ≥ 0 and C ′.C ′′ ≥ 1 we obtain C ′.C ′ = 0 and so deg(X) = C.C = k+2.
Because codim(X) + 1 = N − 2 ≥ k + 2 we find that X is a smooth threefold
in Pk+4 of minimal degree k + 2. From Proposition 6.3, it follows that such a
threefold X has Gk−1,k-defect. This gives rise to case 1 of the Theorem.

Case (b).

Because C is a smooth hyperplane section of S ′, S ′ is smooth along C, hence
Sing(S ′) ∩ C = ∅. It follows that Sing(S ′) is a finite set and so S ′ is irreducible.

Claim. If s ∈ Sing(S ′) and Γ is a general curve in the set of curves {Γ} in S ′,
then s 6∈ 〈Γ〉.

Proof Claim: First we are going to prove that s 6∈ Γ. Assume s ∈ Γ. Since
Sing(S ′) is finite, s ∈ Γ for all curves Γ on S ′. So a general curve Γ on S ′

is completely determined by k + 1 points P0, . . . , Pk on C as being the only
1-dimensional component of X ∩ 〈P0, . . . , Pk, s〉. The uniqueness follows from
X ∩ 〈P0, . . . , Pk〉 = {P0, . . . , Pk} as a scheme. Now take k + 2 general points
P0, . . . , Pk−1, Q, Q′ on C and let Γ (respectively Γ′) be the curve in the fa-
mily corresponding with P0, . . . , Pk−1, Q (respectively P0, . . . , Pk−1, Q

′). Because
dim(〈P0, . . . , Pk−1, Q, Q′〉) = k + 1, we can consider a deformation of C on S ′

to another curve C ′ containing P0, . . . , Pk−1, Q, Q′. Since Γ and Γ′ are contained
in 〈C ′ ∪ {s}〉, the surface S ′ is deformed into S ′′ = X ∩ 〈C ′ ∪ {s}〉. Because
Γ ∩ Γ′ is finite it follows s ∈ Sing(S ′′). So for a general hyperplane PN−1 ⊂ PN

with 〈P0, . . . , Pk−1, Q, Q′, s〉 ⊂ PN−1 we find Ts(X) ⊂ PN−1, hence Ts(X) ⊂
〈P0, . . . , Pk−1, Q, Q′, s〉. Since s 6∈ C = X ∩ 〈C〉 and 〈P0, . . . , Pk−1, Q, Q′〉 ⊂ 〈C〉,
we have dim(T) = n− 1 = 2 with T = Ts(X) ∩ 〈P0, . . . , Pk−1, Q, Q′〉. If s ∈ 〈C〉
then s ∈ C = 〈C〉 ∩X and thus s 6∈ Sing(S ′), a contradiction. So we have

T = Ts(X) ∩ 〈P0, . . . , Pk−1, Q, Q′〉 ⊂ Ts(X) ∩ 〈C〉 ( Ts(X),

hence T = Ts(X) ∩ 〈C〉 since dim(T) = 2. This implies

T = Ts(X) ∩ 〈C〉 ⊂ 〈P0, . . . , Pk−1, Q, Q′〉 ⊂ 〈C〉.

Since P0, . . . , Pk−1, Q, Q′ are generally chosen on C and k + 1 < N − 2, we may
assume that those points are contained in a general hyperplane of 〈C〉 (not con-
taining T), a contradiction.

If s ∈ 〈Γ〉\Γ then s is one of the finitely many points in 〈Γ〉 ∩X not on Γ. So
a general curve Γ is again completely determined by k + 1 points P0, . . . , Pk on
C. Take a deformation of C on X to another curve C ′ containing P0, . . . , Pk.
Since Γ is contained in 〈C ′ ∪ {s}〉 and s ∈ 〈Γ〉, the surface S ′ deforms to
S ′′ = 〈C ′∪{s}〉∩X with s ∈ Sing(S ′′). As before we find Ts(X) ⊂ 〈P0, . . . , Pk, s〉
and thus dim(Ts(X)∩〈P0, . . . , Pk〉) ≥ 2 for general points P0, . . . , Pk on C. Since
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s 6∈ 〈P0, . . . , Pk〉 ⊂ 〈C〉 (otherwise s ∈ C = X ∩ 〈C〉 and so s 6∈ Sing(S ′)) we
obtain T := Ts(X) ∩ 〈C〉 = Ts(X) ∩ 〈P0, . . . , Pk〉 and dim(T) = 2. On the other
hand, we may assume that P0, . . . , Pk are contained in a general hyperplane of
〈C〉 since k < N − 2. So we get a contradiction. �

Now take a minimal resolution of singularities χ : S → S ′. General curves
C and Γ can be considered as curves on S and Γ is contained in a linear system
on S of dimension at least k + 1. Since Γ.C = k + 1 and |Γ − C| = ∅ the linear
system of curves Γ is complete and induces a gk+1

k+1 on C, so C is rational. We
have dim(|C−Γ|) ≥ 1, since dim(〈C〉) = N−2 ≥ k+2 and dim(〈Γ〉) = k+1. Let
C ′ be a general element of |C−Γ|. The linear system |C ′| = |C−Γ| has no fixed
component since Γ is the only curve contained in X ∩〈Γ〉 and Sing(S ′)∩〈Γ〉 = ∅.
So C ′ is irreducible or it is the sum of irreducible curves in a pencil. Hence, if C ′

would contain a curve Γ, then C ′ ∼ (α− 1)Γ and C ∼ αΓ for some α ≥ 2. This
would imply that k + 1 = Γ.C = α(Γ.Γ), but Γ.Γ ≥ k since dim(|Γ|) ≥ k + 1,
a contradiction. So C ′ is irreducible. Since Γ ∪ C ′ is connected, Γ.C ′ ≥ 1.
From k + 1 = Γ.C = Γ.Γ + Γ.C ′ then follows Γ.Γ = k and Γ.C ′ = 1. Since
dim(|Γ|) ≥ k + 1 this also implies |Γ− C ′| 6= ∅.

We can write Γ ∼ βC ′ + C ′′ for some β ≥ 1 and C ′′ ≥ 0 with |C ′′ − C ′| = ∅.
If C ′′ = 0 then Γ ∼ βC ′, hence β(C ′.C ′) = Γ.C ′ = 1 and so β = 1 and C ′.C ′ = 1.
This would imply k = Γ.Γ = β2(C ′.C ′) = 1, a contradiction. So C ′′ 6= 0. We
know C ′.C ′ ≥ 0 (|C ′| has dimension at least 1) and C ′.C ′′ ≥ 1 (C ′∪C ′′ connected),
so β(C ′.C ′) + C ′.C ′′ = Γ.C ′ = 1 implies C ′.C ′ = 0 and C ′.C ′′ = 1. Hence

deg(X) = C.C = (Γ + C ′).(Γ + C ′) = k + 2.

Since codim(X) + 1 = N − 2 ≥ k + 2 this implies N = k + 4 and X is a smooth
threefold in PN with minimal degree k + 2. This case corresponds to case 1 of
the Theorem. �
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