On Gy_; x-defectivity of smooth surfaces
and threefolds

Filip Cools *

April 20, 2005

Abstract.— In this paper, we prove a rough characterization for Gj_i i-defective n-
dimensional non-degenerate varieties X C PN if k > n. In the case of smooth surfaces or

threefolds, we give a fine classification.
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1 Introduction

Let X be an irreducible non-degenerate projective variety of dimension n in PV
and let h and k be integers such that 0 < h < k < N. Then G}, (X)) is the closure
in G(h, N) of the set of h-dimensional linear subspaces contained in the span of
k + 1 different points of X and is called the h-Grassmannian of (k + 1)-secant k-
planes of X. We say that X is G}, j-defective if the dimension of G}, (X)) is smaller
then the expected dimension, which is the minimum between (h+1)(N — h) and
(k+1)n+ (k—h)(h+1).

In case h = 0, the variety Gox(X) is just the k-th secant variety Si(X) of
X. A variety X is called k-defective if it is Gy j-defective. Such varieties are
intensively studied in [16].

In case h > 0, little is known. The most important reason for this is the lack
of a so-called Terracini lemma, which in case h = 0 gives a description for the
tangent space on Sk(X) in a general point. Nevertheless, for example in [4] is
shown that irreducible curves are not G ;-defective and in [5] there is given a
classification of surfaces with G o-defect. There is also a rough classification for
varieties having G,,_; ,-defect together with a fine classification for G'p 3-defective
smooth threefolds (see [7]).

Beside the intrinsic importance of G, y-defective varieties, defective varieties
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are also important for some extrinsic reasons. For example, varieties with G, -
defect have a strange behaviour under projections. Waring’s problem for forms
(see [2, 6, 9]) gives us another extrinsic reason for studying defective varieties.
This problem is in connection with the G, z-behaviour of Veronese embeddings
of projective spaces.

In this paper we will classify the smooth surfaces X in PV with Gj,_ j-defect
for k > 2.

Theorem 1.1. Let X C PV be a smooth non-degenerate surface and k > 2.
Then X is Gy_1 p-defective if and only if N = k + 3 and X is of minimal degree
k4 2.

We will also give a full classification of smooth threefolds X PV with G 1k~
defect for k£ > 3.

Theorem 1.2. Let X C PV be a smooth non-degenerate threefold and k > 3.
Then X is Gi_1 p-defective if and only if X is one of the following varieties:

1. X is a threefold of minimal degree k + 2 in PF+4;
2. X is a threefold of minimal degree k + 3 in PF*5;
3. X is the projection in P*** of a threefold of minimal degree k + 3 in PF+5;

4. k=4 and X is the (linearly normal) embedding in P® of the blowing-up of
P3 at a point.

5. k=5 and X is the image of the 2-uple embedding of P? in PY.

Compared with the classification of smooth G 3-defective varieties with N > 7
(see [7]), the first three cases are totally analogous.

Before proving Theorem 1.1 and Theorem 1.2 we will first give a rough cha-
racterization for Gj_; y-defective n-dimensional varieties with & > n. Here we
don’t require that X needs to be smooth.

Proposition 1.3. Let X be an n-dimensional variety in PN and let k > n be an
integer. Then X 1s Gy_1 -defective if and only if N > n +k + 1 and one of the
following properties hold for k + 1 general points Py, ..., Py on X:

1. For each i € {0,...,k}, there ezists a line L; on X containing P; such that
the linear span of the lines has dimension k + 1.

2. There exists a rational normal curve I' of degree k + 1 on X containing
Py, ..., Py



We can see that both properties are enough for Gj_; y-defectivity. In case n
is equal to 2 or 3, we will prove that the first property is the same as saying that
X is a cone (see Section 4). If X satisfies the second property, we will prove that
X has sectional genus at most n — 2 (see Section 5).

2 Some conventions and generalities

2.1. Conventions. We denote the N-dimensional projective space over the field
C of the complex numbers by PY. We write G(h, N) to denote the Grassmannian
of h-dimensional linear subspaces of PV,

An n-dimensional variety X in PV is an irreducible reduced n-dimensional
Zariski-closed subset of PY. We say that a variety X C PV is non-degenerate if
X is not contained in a hyperplane of PV.

Let X be a non-degenerate n-dimensional variety in PY. We say that a closed
subscheme Y C X is a m-dimensional section of X if Y is the scheme-theoretical
intersection of X with a linear subspace PV ="+ of PV such that all irreducible
components have dimension m. We will often use the notions of curve section,
surface section and hyperplane section in case m is equal to respectively 1, 2 and
n— 1.

The linear span (Y) of a closed subscheme Y of PV is the intersection of all
hyperplanes H C PV containing Y as a closed subscheme. This linear span is
always a linear subspace of PV. If Py, ..., P, are different points of PV, we write
(Py, ..., P) to denote the linear span of the reduced subscheme of P¥ supported
by those points.

Let Y be a closed subscheme of PV and let P € Y. We can take a hyper-
plane H C PV such that P ¢ H and identify PN\ H with the affine space AV
and Y\ (Y N H) with a closed subscheme of A" (containing P). We can define
the Zariski-tangent space Tp(Y\(Y N H)) C A" by using the equations of the
subscheme Y\ (Y N H). Its closure in PV is called the embedded tangent space
Tp(Y) in PV of Y at P,

If Dy and D, are divisors on a smooth surface S, we will write D;.D5 to de-
note the intersection number of those divisors. If D is an effective divisor on .S,
then saying D is irreducible means D is integral (i.e. also reduced) by convention.

2.2. Definition of Gy 1 x(X). Let X C PV be a non-degenerate n-dimensional
variety and let & < N be an integer. The set of points (P, ..., P;) in X**+!
with dim((Fy, ..., Px)) = k is non-empty and open; so we have a rational map
w: Xk -5 G(k,N). An element of the image of w is called a (k + 1)-secant



k-plane of X. Consider the incidence diagram

I

G(k—1,N) G(k, N)

with I = {(A,B)|AC B} C G(k—1,N) x G(k, N). Now we define G_1 x(X) as
being a(3~!(im(w))) (this is equal to the closure of the set of (k— 1)-dimensional
subspaces of PV contained in some (k + 1)-secant k-plane of X). Since the fibers
of ( are irreducible and k-dimensional, we find that the expected dimension of
Gr-1,(X) is equal to

expdim(Gy—1 (X)) = min{(k + D)n + k, k(N —k+ 1)}.

If dim(Gj_1%(X)) is smaller then this expected dimension, we say that X has
Gj—1 k-defect.

It is easy to see that in case k > n the expected dimension of Gy_1x(X) is
equal to (k+ 1)n + k if and only if N > n+k + 1.

If dim(Gr_1x(X)) = (k+1)n+k—aand N > n+ k+ 1, for a general
element H € Gj_1,(X) the set of (k+ 1)-secant k-planes of X containing H has
dimension a.

2.3. Let X be a non-degenerate variety in PY and let k& < N be an integer.
From Proposition 1.1 in [5] it follows that Gy x(X) := im(w) is equal to G(k, N)
if N <n+ k. Hence, X is not Gj_; p-defective if N < n + k since in this case
Gr11(X) == a(f(im(w))) = G(k — 1, N). If k > n, this also follows from [9].

2.4. Let X C PV be a non-degenerate n-dimensional variety with N >n +k+1
for some integer k and let Fy,..., P. be general points on X. Then these k£ + 1
points are contained in a general curve section of X in some PN-nF12k+2 Qo
the uniform position lemma for curves (see [1] and [3, Proposition 2.6] for the
argument) implies that XN (Fy, ..., Py) = {,. .., Py} as a scheme. This implies
that w : X** ——s G(k, N) is generically injective.

2.5. Polarized varieties. A polarized variety is a pair (V,S) such that V' is an
abstract projective variety and S is an ample invertible sheaf on V.

2.5.1. Examples. If X C PV is a variety and Ox(1) is the restriction to X
of the twisting sheaf of Serre Opn (1), the pair (X, Ox(1)) is a polarized variety.
Another important example can be given by taking an abstract projective variety
V' and a locally free sheaf € on V. Let P(€) be the projective bundle associated
to £ and let Op(g)(1) be the associated tautological sheaf (see [12, p. 162]). If this
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sheaf is ample then (P(£), Opg)(1)) is a polarized variety and is called a scroll on
V.

2.5.2. Sectional genus. For a polarized variety we can define the notion of
sectional genus (for a general definition, see [10]). If S is very ample on V and
V C P¥ is the embedding of V' using the global sections of S, then the sectional
genus of (V| S) is defined as being the arithmetic genus of a general curve section
of V.C PV,

The classification of smooth polarized varieties (V,S) of sectional genus at
most one is given in [10, Section 12]. We only consider the case where V = X C
PN and S = Ox(1) with n = dim(X) = 3 and N > 8.

If the sectional genus is 0 we only have scrolls of vectorbundles on P! as pos-
sibilities. Moreover, if X is embedded using the complete linear system then X
is of minimal degree, so deg(X) = N — 2. We can obtain all smooth threefolds
X C PV of minimal degree in this way.

If the sectional genus is equal to 1, the only possibilities are scrolls of vector-
bundles on elliptic curves and Del Pezzo varieties. In our situation a Del Pezzo
variety is one of the following possibilities (see [10, Section 8]):

1. deg(X) = 7; X is isomorphic to the blowing-up o : Blg(P?) — P? at one
point Q and Ox (1) = 0*(Ops(2)) @ Opy, s) (— ) where E is the exceptional
divisor.

ii. deg(X) = 8 and (X, Ox(1)) = (P* O (2)).

2.6. Theorems of Bertini. Let £ be a linear system on a smooth projective
variety V' without fixed components. Then, for a general element D € L the sin-
gular locus Sing(D) is contained in the locus of fixed points of £ on V and D is
irreducible unless £ is composed with a pencil. For the proofs of this properties,
see [13, 17, 18].

A linear system L is composed by a pencil if and only if there exists a mor-
phism f: W — C with ¢ : W — V the blowing-up of V' at the fixed points of
L and C' a curve such that the following holds. There is a linear system £’ on C
with dim(£) = dim(£’) such that for all D € L there exists a D" € £’ such that
D =o(f~}(D")). Using a Stein factorization and a desingularization for W, one
can see that we can assume that the general fibre of f is irreducible.

2.7. If D, is an irreducible reduced divisor on a smooth projective variety V' and
D, is an effective divisor on V' linear equivalent to Dy, then Dy is connected. For
an argument, see Section 2.6 in [7].



3 A rough characterization

Proof of Proposition 1.3: Let X C PV be an n-dimensional variety with
Gr—1 ,-defect for some k > n. From Sec. 2.3 it follows that N > n+k + 1, hence
dim(Gr-1%(X)) < (K +1)n + & (Sec. 2.2).

Take H € Gj_14(X) general and consider the closure in X**! of the set of
points (Fo, ..., Py) with P, # P; for all i # j and H C (Fy,..., P;). Let a be
its dimension and let {25 ; be an a-dimensional component of that set. We know
that @ > 1. Take a general element (1, ..., P;) of Q. Since we have chosen
H € Gy_1x(X) generally, (F, ..., P) is a general element of X**1. In particular,
(Py,...,PyyN X ={Py,..., P} as a scheme. Now let (Qo,...,Qx) be another
general element of (.

Claim 1. For each i € {0,...,k} one has Q; € { P, ..., P}
Proof Claim 1: analogous to the proof of Claim 3.1 in [7]. O

Write L = (FPy,...,Py) and M = (Qo,...,Qy). Since L # M, dim(L) =
dim(M) and H C LN M; one has H = LN M and dim((LU M)) = k+ 1. Write
PEL = (LU M).
Claim 2. P¥*1' N X is not finite.

Proof Claim 2: Assume P*t! N X is finite.

Subclaim 2.1. A general linear subspace of PV of dimension N —n+ 1 containing
PN X gives rise to an irreducible curve section of X smooth at P, ..., Pj.

Proof Subclaim 2.1: analogous to the proof of Subclaim 3.3 in [7]. O

Denote by Wy the closure of the set of elements (P, ..., Py; Qo,...,Qk) in
Xkl X such that dim((Py, ..., Py)) = k, P, # P; and Q; # Q; for i # j,
{Po, ..., P} #{Qo,...,Qr} and H C (Qy, ..., Qy) for some (k— 1)-dimensional
linear subspace H of (P, ..., Py).

Subclaim 2.2.  There exists an irreducible component Vo of Vi of dimension
(k+ 1)n + k + a dominating the first factor X*+1.

Proof Subclaim 2.2: analogous to the proof of Subclaim 3.4 in [7]. O
Now consider the closure ¥; C ¥g x G(N —n + 1, N) of the set of pairs

(Po, .-, Pr; Qo, - .., Qx; G) with the dimension of (P, ..., Py, Qo,...,Qk) equal
to k+ 1 and (P, ..., Py, Qo,...,Qk) C G. The dimension of a general fibre of



the projection ¥; — Wy is (N —n — k)(n — 1), hence dim(¥;) = (k + 1)n +
k+a+ (N —n—k)(n—1). This implies that a general non-empty fiber of
7:V; — G(N —n+1,N) has dimension at least (k+1)n+k+a+ (N —n —
EYn—1)—(N—-n+2)(n—1)=2k—n+2+a.

For G € 7(¥;) general we have by Subclaim 2.1 that G N X is an irreducible
curve C' C PN="*+! gspanning PV~"*!. So we find a subset S C C%*2 of dimen-
sion 2k —n+ 2+ a > k + 3 such that for (F,..., Py, Qo,-..,Qk) € S the points
impose at most k£ + 2 conditions on hyperplanes. Since we can choose k + 3 of
those points general on C', we conclude that k + 3 general points of C' do not
impose independent conditions on hyperplanes. Hence, N —n+1 < k+ 1 and
so N < n—+ k. This gives us a contradiction. [

Now we know that dim(P*™ N X) > 1. Since dim(L N X) = 0 and L is a
hyperplane in P! we find dim(P**'NX) = 1. Denote by I an irreducible curve
in Pk 0 X,

Claim 3. Either I'N{Fy,..., B} ={FPo,..., P} orI'N{Fy,..., P} is only one
point. In the second case P*"'NX contains a line L; with LiN{ Py, ..., P} = {P;}
for each i € {0,... k}.

Proof Claim 3: Assume that ' N {FP,..., P} = {P,..., P} for some 0 <[ < k.
Let m be an integer such that [ < m < k. We will now prove using a mo-
nodromy argument that there exists another component IV C P**' 1 X such that
'nd{Py, ..., P} ={Py,...,P1, Py}

Let ©; C Xk xG(k—1, N) be the closure of the set of points ((P, ..., P), H)
such that P, # P; for ¢ # j, dim ((F,...,P)) = k and H C (Fy,..., FPy).
Consider the projections p;; : ©; — X*1 and pi, : ©; — G(k — 1,N).
Since p;; is surjective with irreducible general fibers of dimension k, we see
that ©; also is irreducible and of dimension (k + 1)n + k. The fibers of p;
have dimension at least a. Denote ©; Xgp—1,n) ©1 by ©2 and consider the
projections po; : ©2 — ©; onto the i-th factor for i € {1,2}. Let A be
the diagonal of ©1 in O,. If ((F,..., ), H) is a general element of ©; then
P2.2(py, 1((Py, ..., Py), H)) contains 2, as an irreducible component; more pre-
cisely, Q. corresponds to the irreducible component of p, (P, ..., P), H) in-
tersecting A. It follows that A is contained in a unique irreducible component
© of ©,. If p; : © — O denotes the restriction of the projection py; to ©, we
obtain p;'((Py, ..., Py), H) = Qpy. Consider © C X+ x Xk x G(k — 1, N)
and let ©3 C © x X be the set of elements (((Fy,..., Px), (Qo,...,Qk), H), R)
with R € (Fy,..., Py, Qo,...,Qk). By assumption, there is a curve I' in the
fibre of P3 @3 — O with I' N {Po,...,Pk} = {Pg,...,.Pl}. Let @4 be the

irreducible component of the Hilbert scheme parameterizing curves in fibres of



the projection ps containing the point that parameterizes I'. Let ¢ : ©4 — ©
be the natural morphism. Let = C ©4 x X be the universal curve and let
q : ©, x X — Oy be the projection. Consider the sections S; : ©, — O, x X
with Si(2) = (2, B) if ¢(z2) = (Po,..., Px),(Qo,...,Qr), H). For a general
point z of ©4 we have S;(z) € E if and only if i € {0,...,l}. By construc-
tion and assumption, ©, is irreducible and ¢ is surjective. Let z/ € ©, with
qz") = (Po,...,P1,Py1, P, ..., Py),(Qo,...,Qx), H). The point ¢(z') be-
longs to © because Q. is determined by H and {F, ..., P}, thus independent
of the order of the points Py, ..., P,. Hence, 2/ € ©, corresponds to a curve
I' Cc PP*'N X with Py,...,P_1,P4; € I". So, we have proved the statement
above for m = [+ 1; analogous we can prove the statement for other values of m.

When we take | = 0 we immediately get the second part of the statement of
the Claim. If [ > 0, Py € NI C PN X hence dim(Tp, (P* N X)) > 2. Thus
we get a contradiction because dim(Tp, (LN X)) = 0. So we proved also the first
part of the statement of the Claim. [J

Urn{k,...,P}=4F,...,P},wefind 'NL={P,..., P} as a scheme
because X N L = {P,..., P;} as a scheme and I' C X. Hence deg(I") =k + 1 =
codimpr+1(I') + 1 and so I' is a rational normal curve. In this case, we find that

k41 general points on X are contained in a rational normal curve of degree k+ 1
on X. H

4 The first case of the characterization

Here we will study the first case occurring in the Proposition: for general points
Py, ..., P, € X there exist lines L; on X containing P; for each i € {0,...,k}
such that dim(Ly,..., Lx) = k+ 1. Remember that a generally chosen element
(Po, ..., Pr,Qo,...,Qr, H) € O determines Ly, ..., L uniquely. By monodromy
on ©, a property that holds for some subset of { Ly, ..., L} holds for each subset
of the same cardinality.

Claim 4.1. If k lines of {Lq,..., Ly} span a linear subspace of dimension k,
then X is a cone.

Proof: analogous to the proof of Claim 3.6 in [7]. O

Assume that X is not a cone. From Claim 4.1, we know dim((L, ..., L)) # k,
hence (Li,...,Ly) = P* ! Notice that dim((L;, P,...,P.)) = k for all i €
{1,...,k} because L; ¢ (Py,..., Py).

Now, let 1 <i < j <k. If dim((L;, Lj, P, ..., P;)) = k, then it follows that
L; C(L;,P ..., P;) and thus L, C (L;, P, ..., Py) for each | € {1,...,k} by mo-



nodromy. Hence, dim((Ly, ..., Lg)) = k, a contradiction. So (L;, L;j, Py ..., P) =
PF+L

Now fix Pi,..., P, on X and let Py(t) be a l-parameterfamily on X with
Py(0) = Fy. Consider also a l-parameterfamily H(t) C (Py(t), P, ..., Py) of
linear subspaces of dimension k& — 1 with H(0) = H and l-parameterfamilies
Qo(t),...,Qk(t) on X with Q;(0) = Q; for each i and H(t) C (Qo(t),...,Qx(t)).
Those families imply the existence of 1-parameterfamilies Lo(t), ..., Lx(t) of lines
on X with L;(0) = L; for i € {0,...,k}, P, € Li(t) for all © € {1,...,k},
Py(t) € Lo(t) and dim({Ly(t), ..., Lk(t))) = k+ 1 for each value of the parameter
t. We may assume that Py(t) &€ P*™ for general values of ¢. If L;(t) = L; for
all i € {1,...,k} and for a general value of ¢, then Py(t) € (Py(t), P1,...,Px) C
(Li(t),...,Ly(t)) = P*1 a contradiction. By monodromy we can assume that
Lz<t> 7£ Lz for all 7 € {0, “ ey ]{?}

So there is a family of lines on X through each general point of X.

Remark 4.2. If X is a surface, one can easily see that this situation cannot occur.

Proposition 4.3. Let X C PV (N > k+ 4,k > 3) be a threefold such that for
k + 1 general points Py, ..., P, on X there exist lines Ly, ..., L, on X such that
P e L; fori €{0,...,k} and dim((Lo,..., L)) =k + 1, then X is a cone.

Proof: Assume that X is not a cone. For a general point P on X there exists a 1-
dimensional family of lines on X through P. Hence, X contains a 3-dimensional
family of lines. By [14] or [15], X is embedded in PV as a P2-bundle over a
curve K. Let Kp be the 2-dimensional component of the union of all lines on X
through P. We know that Kp is a plane. Using a 1-parameterfamily Py(t) we
find 1-parameterfamilies L;(t) and Lo(t) in respectively Kp, and Kp,. We have

(Py(t), Py, ..., Py) C(Li(t), La(t), Ps, ..., Py) C (Kp,, Kp,, Ps, ..., ).

Since dim((Kp,, Kp,, P3,..., Py)) < k+ 3 and thus X ¢ (Kp, Kp,, P3,..., Py),
we can choose the parameterfamily Py(t) such that Py(t) & (Kp,, Kp,, Ps, ..., Py)
for general values of the parameter t. This gives us a contradiction and finishes
the proof. B

5 The second case of the characterization

Proposition 5.1. Let X C PV (N > n+k+ 1,k > n) be an n-dimensional
variety such that for k 4+ 1 general points Py, ..., P, on X there exists a rational
normal curve I' on X of degree k+ 1 containing Py, ..., P.. Then, the geometric
genus of a general curve section of X is at most n — 2.



Proof: Denote the family of rational normal curves of degree k41 on X by {I'}.
By assumption, dim({I'}) > (k+1)n—(k+1) = (n—1)(k+1).

Because k < N —n + 1, k 4+ 1 general points on X are contained in a curve
section of X. So, taking k+ 1 general points P, ..., P, on X can be done by first
taking a general curve section C” of X and then considering k£ + 1 general points
on C'. Bertini’s theorems imply that C” is irreducible and smooth at F, ..., Pj.
Write ' = X N Gf with G} a linear subspace of PV of dimension N — n + 1.
Consider a general linear subspace H C L = (F, ..., P;) of dimension k£ — 1 and
let (Qo, - .., Qk) be a general element of Qp ;. Hence, G' = (G{ U{Qo}) C PV is
a linear subspace of dimension N — n + 2. Consider S’ = X N G’. Since (' is a
irreducible curve and Gy, is a hyperplane of G’, we find that S’ is an irreducible
surface. Since C' is smooth at Py, ..., P, we see that S’ is smooth at P, ..., Pj.

Let I’ C {T'} x G(N —n + 2,N) be the inclusion relation. The dimension
of a general fibre of I’ — {T'} is (N —n — k + 1)(n — 2). Hence, we obtain a
irreducible component [ of I’ containing (I', G’) of dimension greater than or equal
to (N—n—k+1)(n—2)+(k+1)(n—1), with I" the rational normal curve contained
in XN(Fy,..., P Qo,...,Qk). Consider the projection v : I — G(N —n+2, N).
The dimension of a general non-empty fibre of v is at least

(N-—n—k+1)(n—2)+(k+1)(n—1)—(N—n+3)(n—2)=k—n+3.

If we consider the fibre above G’, we find that S’ contains a subfamily of {I'}
of dimension at least & — n + 3. Let S be the minimal resolution of singular-
ities of S’. We become a family {7} of rational curves on S of dimension at
least kK —n + 3 by considering the strict transforms of the curves in {I'} on S’
Denote the strict transforms on S of I' and C” by resp. ~ and C”. Any two
points of S can be connected by means of a rational curve in {v}. This implies
h'(S,0g) = 0, so the family {y} is contained in a linear system {7y} of dimen-
sion at least &k — n + 3. This linear system induces a linear system |g| on the
normalization C' of C”. Since S’ is smooth at Py, ..., Py, we find that S and S’
are isomorphic above neighborhoods of those points. Since dim(|C” —~v]) > 1
(C" is a divisor corresponding to the morphism S — G’ = PN="2 and ~
corresponds to I' with dim((I')) = k + 1), no curve of |y| contains C”, hence
dim(|g|) > k—n+3. Since 'NC" = {F,..., P} as a scheme, we find v € |7|
gives rise to Py + ...+ P, € |g|. Since P, ..., P, are general points of C, we
see that |g| is non-special and dim(|g|) = deg(g) — g(C) = k + 1 — g(C). Thus,
k+1—-9g(C)>k—n+3,50¢9(C)<n—-2. 1

6 Some examples

Proposition 6.1. Let X C PV be an n-dimensional smooth variety of minimal
degree. If k>n andn+k+1< N <2n+k —1 then X has Gy_1 — defect.
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Proof: Notice that n > 3 because n +k+1 < 2n+ k — 1.

Take k + 1 general points Fp,..., P, on X and choose a linear subspace
PN-F=1 c PN disjoint with (P, ..., P). Consider the projection of X on PN k-1
with center (P, ..., Py) and let Y be the closure of the image of that projection.
Then Y is also an n-dimensional variety of minimal degree.

From the classification of varieties of minimal degree (see [8]) follows that
X is a smooth rational normal scroll. In particular X has a bundle structure
m : X — P! such that L(P) := 77 %P) C X C PV is a linear subspace
of dimension n — 1. For P € P! general L(P) N (FPy,...,P,) = 0 because
XN{(Py,....,P) = {P,...,P:}. Hence, on Y the image of L(P) is again a
linear subspace of dimension n — 1 of PY=*~1. So Y cannot be a cone over a
Veronese surface. If N = n + k + 2 it follows that Y is a quadric in P**!. This
quadric contains linear subspaces of dimension n—1, so Y is singular ([11, Chap-
ter 6, Section 1]). Let s be a general point of the singular locus of Y, which is a
linear subspace of P"*1. The image of L(P) on Y contains s, for P € P! general.
Let G = (P, ..., P, s) then dim(G) = k+ 1 and (P, ..., P) is a hyperplane
in G. Since L(P)NG # () for P € P! general, dim(X NG) > 1. Let I be a
curve in X N G intersecting L(P) for general P € P'. Since (Py,..., F) is a
hyperplane in G and X N (R, ..., P) = {F,..., P}, we find two possibilities
by similar monodromy arguments as in the proof of Claim 3 of Section 3. If
I' is a rational normal curve of degree k + 1 through F,, ..., Py; the proof is fi-
nished. The second possibility is that I' is a line. Then there exist lines Iy, ..., 'k
on X such that P, € T'; for all i € {0,...,k}. If we denote 7(P;) by P/, then
P, € L(P!). The line I'y intersects L(P]) at a point Py’ different from P;. We have
(P, PYul'y C XNG and (P, Py # 'y (I'; is not contained in L(P])). This
contradicts dim(Tp, (X NG)) < 1. Hence the second possibility cannot occur.

Ifn+k+2 < N <2n+k—1, it follows that Y is a scroll with dim(Sing(Y")) >
2n+k —1— N > 0. So we can finish this proposition by taking the same argu-
ments as in the case N =n+k+2. B

Remark 6.2. If n = 3 this proposition says that minimal threefold X C P**+? is
G_1 p-defective for k > 3. Let X C P*+* be the image of X C P**5 under the
projection with center P € P¥™5\ X. The curve I' of the proof of the proposition
above gives rise to a rational normal curve I' C X of degree k+1 containing k+ 1
general points on X. So, X is also Gj—1 ,-defective.

Proposition 6.3. Let X C P"™**! be an n-dimensional smooth variety of min-
imal degree k + 2, not being the Veronese surface in P°. If k > n then X has
G—1 x-defect.

Proof: Consider a general surface section S C P**3 of X. Then S is smooth and
of minimal degree k 4 2. Since S is not the Veronese surface (X is smooth), it is
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a smooth rational normal scroll surface.

We will use some results on smooth rational normal scroll surfaces. We know
that they are isomorphic to a Hirzebruch surface F, = P(O @ Op:(r)) for some
r € N. If r > 1, those surfaces contain a curve B with negative self-intersection
B? = —r and have a 1-dimensional linear system of curves I’ with F? = 0 and
F.B=1. Incaser =0, Fy = P! x P! and we can take B = P! x {0} (B* = 0)
and F' = {p} x P! for p € PL.

Let b (respectively f) be the element of Pic(F,) corresponding to the curve
B (respectively F). Write h = b+ f. It is well-known that Pic(F,) = Zh S Zf.
For each [ > 0, the linear system |h + [ f| is very ample on F,. For [ > 0, one
has dim(|h +1 f]) =7 +20+ 1 and (h+1 f)* = r + 2l. Hence for [ > 1 the linear
system |h + [ f| gives rise to a surface S C P""2*1 of minimal degree. Those
surfaces are the smooth rational normal scroll surfaces.

Let I" be an element of |h+ (I —1) f| for [ > 1. We have dim(|(h+1 f)—T|) =
dim(|f]) = 1 hence dim((I")) = r + 2l — 1 for ' € S C P"*2*1. On the other
hand deg(T') = (h+ (I — 1) f).(h+1f)=r+2l —1, hence ' C S C P+l is a
rational normal curve of degree r +2[ — 1. Since dim(|h+ (I —1) f]) =r+ 20 —1,
any r + 2l — 1 general points on S contain such a curve.

Now take X as above and take k + 1 general points Fp,..., P, on X. The

points Py, ..., P, can be considered as k + 1 general points on a general surface
section S C P¥*3 of X. Since S is a smooth rational normal scroll surface, the
points P, ..., P, are contained in a rational normal curve I' C S C P*¥+3 of degree

k + 1. This implies that X is Gj_; y-defective. B

Proposition 6.4. Let X be the 2-uple embedding of P> in P?. Then X is Gy5-
defective.

Proof: Denote the 2-uple embedding P? — X C P? by 5. Let Py, ..., Ps be six
general points on X and denote their inverse images in P> under v, by Qo, . .., Qs.
These points are contained in a rational normal curve T' C P? of degree 3 (see
[11, p. 530]). The image of I under 1, is a rational normal curve T' of degree 6
in P through P, ..., Ps that is contained in X since [ is cut out by quadrics in
P? (see again [11, p. 530]), so X is Gy5-defective. B

Proposition 6.5. Let X be the blowing-up of P? in a point Q linearly normal
embedded in P®. Then X is G 4-defective.

Proof: Let P, ..., Py be five general points of X. We may assume that non of
those points is contained in the exceptional divisor £ C X. We can consider X
as a subset of P? x P? C P! (with P® C PM). Let p : X — P2 be the projection to
the first factor and let @)y, . . ., Q4 be the images under p of respectively F, ..., P;.
Hence there exists a rational normal curve I in P? containing Q, Qo, . .., Q4. The
inverse image of I’ under p contains a rational normal curve I' in X of degree 5
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containing F, ..., Py, so X is G5 4-defective. B

7 What for smooth surfaces?

Proof of Theorem 1.1: We have already proved that smooth surfaces X C P¢+3
of minimal degree are Gj_ g-defective (see Prop. 6.3).

So let X be a smooth Gj_; j-defective surface in PV . Now we can use Propo-
sition 1.3. It follows that N > k+3 and (since X is smooth) that for k+1 general
points of X there exists a rational normal curve of degree £ + 1 on X through
those points. Take k + 1 general points Fp,..., P, on X. One can assume that
Py, ..., P are general points on a general (smooth) curve section C' of X. Write
I' € X to denote the rational normal curve of degree k + 1 through F, ..., P;.
Since dim((C)) = N — 1 > k + 2, we find dim(|C' — ') > 1. Let C’ be a general
element of |C' —I'|. The linear system |C’| = |C' — I'| has no fixed component
because I is the only curve in X N (I") and X N (') is smooth in a general point
of I'. Either C’ is irreducible or it is the sum of irreducible curves in a pencil on
X. So, if ¢" would contain a curve I', then C" ~ (o — 1)I" for some a > 2 and
so C ~ al'. So from I'.C' = k + 1 it would follow that o(I'.I') = k + 1. But this
would contradict @ > 2, k > 2 and I'.T' > k (dim|I'| > k£ + 1). Since ' U " is
connected, we get .C" > 1. Hence 'I' + I'.C" =T'.C = k + 1 implies I'T = k
and I'.C" = 1. Since dim|I'| > k4 1 > 2 we find [I' — C’| # 0. So we can write
'~ 3.C"+ " for some 3> 1and C” > 0 with |C” — C'| = 0.

If C” =0, then 5(C".C") = T.C" = 1 implies # = 1 and C'".C" = 1. Since
B%(C".C") =T.T = k, this gives us a contradiction with k > 2, so C” # (. Since
C" U C" is connected, we find C'.C" > 1. From 1 =T.C" = 5(C".C") + C".C" it
follows that C'.C" = 0 and C".C"” = 1 because C".C" > 0 (|C’| is 1-dimensional
and has no fixed components). Thus,

deg(X)=CC=T+C)(T+C)=TTI+2.C"Y+C".C"=k+2.

Since codim(X)+ 1= N —1 > k+ 2 it follows that N = k 4 3 and that X is of
minimal degree. l

8 What for smooth threefolds?

Proof of Theorem 1.2: We have already proved that the threefolds of the
statement are Gy, p-defective (see Sec. 6), so we only have to prove that there are
no other threefolds with Gj_; y-defect. Let X C PV be a smooth non-degenerate
threefold with G_; y-defect. From Proposition 1.3 and Section 4, it follows that
N > n+k+1 and that any k+ 1 general points on X are contained in a rational
normal curve of degree k + 1 on X. Now fix k + 1 general points Py, ..., P, on
X. We may assume that Py, ..., P, are contained in a general curve section C’
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of X. Using the notations of the proof of Proposition 5.1, since X is smooth
and dim(X) = 3 we have C' = ' = X N G}, for some linear subspace G C PV
of dimension N — 2 and S’ = X N G’ for some hyperplane G’ C PV containing
G}. There is a 1-dimensional family of hyperplanes of PV containing G and we
distinguish two possibilities:

(a) The hyperplane G’ is a general element in this family; i.e. the projection
morphism v in the proof of Proposition 5.1 is surjective. In this case S’ is
smooth since X is smooth and S’ is a general surface section of X (Sec.
2.6). The surface S” contains a subfamily of {I'} of dimension at least k.

(b) The hyperplane G’ is a special element in this family; i.e. the projection
morphism v in the proof of Proposition 5.1 is not surjective. In this case
S" contains a subfamily of {I'} of dimension at least k + 1. In particular
the linear system |g| on C' has degree k + 1 and dimension at least k + 1.
Hence S’ has sectional genus 0, but S’ does not need to be smooth.

Case (a).

Write £ to denote the linear system defining S ¢ PN=12k+3 If £(—T) is de-
fined as being {D € L| D—T > 0}, then dim(£(—I")) > 1 since dim((I')) = k+1.
Notice that L —T'={D —T'| D € L(—TI")} does not have fixed components be-
cause [ is the only curve in X N(I") and X N (I") smooth in a general point of I'.
Let C” be a general element of £ —T", then I'.(I' + C") = k + 1. Since ' U C" is
connected we have I'.C" > 1. On the other hand, since S’ contains a subfamily of
{T'} of dimension at least k we find I'.'I' > k£ — 1. So we obtain two possibilities:
rd’=1landl'’'=korNC"=2and I'T' =k — 1.

CaseI'C'=2and ' T =k —1.

First assume that £ — I is composed with a pencil, so there is a morphism
f:S — T with T a curve and S a blowing-up of S at the fixed points of £ — T
such that C" = f~'(¢;) + f~'(e2) for ¢; 4+ ¢ moving in a linear system on 7.
Indeed, C” cannot be contained in a fibre of f and each fibre of f intersects I'
otherwise I'.C" would be 0. Since I' dominates 7', we find 7' = P!, So the fibres
of f form a linear system on S. Thus C’ € |2Cy| for a irreducible curve Cy
with dim|Cy| = 1 and I'.Cy = 1. Because dim|I'| > k, there are curves in |I|
that contain Cy. Suppose that I' ~ aCy + C” for some o« > 1 and C” > 0 with
|C" —Cy| = 0. If C”" = 0, it would follow ' ~ aCj, hence a?(Cy.Cy) =T'.T' = k—1
and 2a(Cy.Cy) =T'.C" = 2, a contradiction (with & > 3).

So C” # 0. Since aCy+ C" is connected (Sec. 2.7) and Cj irreducible, we find
Co.C" > 1. We know that 2 = I'.C" = a(Cy.C") 4+ C".C" = 2a(Cy.Cy) +2(C".Cy).
Hence Cy.Cyp = 0 and C".Cy = 1, since Cy.Cy > 0 (dim|Cy| = 1 and |Cp| has no
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fixed components). This implies that C'.C" = 0 and so
deg(X) =deg(S)=C.C=T+C).(T+C)=k+3.

Hence N € {k+4,k+5}, because codim(X)+1=N—-2 > k+2. Since g(C) <1
and C ~ I'+ Cf + C{f for Cj and C{ general on S, we find p,(I' + C) + C) < 1
and since g(C}) = g(CY) it follows ¢g(C) = p(I'+ C{+ Cf) = 0. So the sectional
genus of X is 0. Now it follows from Theorema 12.1 in [10] that the polarized
variety (X, L) has A-genus equal to 0. From the classification theory of polar-
ized varieties (Section 2.5.2) it follows that (X, L) = (P(£), Ope)(1)). A linearly
normal embedding of (X, L) gives rise to a threefold X C P**5 of minimal degree
k+3. So X = X or X is the projection of X in P*** with center P € P¥5\ X,
This gives rise to possibilities 2 and 3.

Assume now that £ — I" is not composed with a pencil. Hence in general C’
is irreducible (Sec. 2.6). Since I'.C" = 2 we have

9(C) =po(l' +C") =1+ % T+ CNAL+C" + K) = pa(C") +pa(T) +1 < 1.

Since ¢g(I') = 0, we find C" = P! and X has sectional genus equal to 1. From
dim|T| > k, it follows |T' — C'| # 0. Now write [' ~ aC’ + C"” for some o > 1 and
C" > 0 with |C” — C'| = 0.

If C" =0, we have I' ~ aC” and so

k—1=TIT=ad*C.C")=al.C) = 2a.

Hence a = % and so C'.C" = % = ﬁ. Since k > 3 it follows &k = 5, a =
2, ' =4, C'C" = 1 and I'.C" = 2; so deg(X) = C.C = 9(C".C") = 9.
From the classification of polarized varieties (X, L) with sectional genus 1 (Sec.
2.5.2) follows that X has to be a scroll over an elliptic curve. This gives us a
contradiction because k+1 general points on X are contained in a rational normal
curve on X.

So we find C” # 0. We have I'.C" > 0 and I'.C"” > 0 since I" has no fixed
component. On the other hand, C'.C" > 0 since dim(|C’|) > 1 and C” has no

fixed component. We also have
k—1=TT=al.C)+T.C"=2a+T.C"

and
deg(X)=C.C=T+C"N(T+C)=k+3+C.C"

First consider the case k = 4. Then 2a+I'.C" =3 andsoa =1 and I".C" = 1.
Since 2 =T.C" =C".C" + C".C" and C".C" > 1 (C"UC"” connected) we have two
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possibilities: C".C" =0 and C".C"' =2o0or C'.C' =1=C".C".

Consider the first possibility. It follows deg(X) = C.C =7 and C".C" = —1
(since I'I' = 3). So (X, L) is a smooth 3-dimensional variety with sectional
genus 1 of degree 7. From the classification of polarized varieties with sectional
genus 1 (see Sec. 2.5.2) follows that (X, L) = (Blg(P?),c*(Ops(2)) — E) with
o : Blg(P?) — P? the blowing-up of P at ) and F the exceptional divisor. This
gives rise to a linearly normal embedding X C P® of Blg(PP?) and hence case 4 of
the Theorem.

Now consider the second possibility. We find deg(X) = C.C = 8 and
C".C" =0 (since I'.T" = 3). So we obtain a 3-dimensional smooth variety with
sectional genus 1 of degree 8, thus (X, L) = (P?, Ops(2)) using the classification
of polarized varieties with sectional genus 1 (see Sec. 2.5.2). This implies that S
needs to be a smooth quadric in P? embedded by [2C" + C”| = |C] = |05(2, 2)|.
This gives us a contradiction since C'.C" =1 = C".C" and C”.C" = 0.

Now let & = 5, thus 2a + I'.C"” = 4. Hence we again have two possibilities:
a=2and'C"=0ora=1and IC" = 2.

We start with the first possibility. Since I' ~ 2C" + C”, we have 2 = I'.C" =
2(C".C") 4+ C'.C", hence C".C" = 0 and C".C" = 2. It follows that deg(X) =
C.C =8 and C".C" = —4. From Section 2.5.2 we see that (X, L) = (P3, Ops(2)).

Now we take a look at the second possibility. Since I' ~ C" + C”, we
have 2 = I".C' = C'.C" + C".C". Notice that C'.C" < 0 since there are no 3-
dimensional smooth Del Pezzo varieties X with deg(X) > 8. It follows C'.C" = 0,
C'.C" =2, deg(X) = C.C =8 and C".C" = 0. From Section 2.5.2 we see that
(X, L) = (P3, Ops(2)).

So, in both cases we end up with (X, L) = (P3, Ops(2)). This gives rise to the
2-uple embedding of P? in P?, which is case 5 of the Theorem.

If k> 5 it follows deg(X) = k+ 3+ C".C" > 8 since C'.C" > 0. This immedi-
ately gives us a contradiction since there are no 3-dimensional smooth Del Pezzo
varieties X with deg(X) > 8 (see Sec. 2.5.2).

CaseI'C'=1and I'T =k.

In particular, since |C’| has no fixed components, |C’| cannot be composed
by a pencil and it follows that in general C” is irreducible (Bertini’s theorem,
see Sec. 2.6). Since dim|['| > k and I".C" = 1, we can write I' ~ aC" + C” for
some a > 1 and C” > 0 with |C” — C'| = 0. If C” = 0 it follows I' ~ aC" and
thus o?(C".C") =T'.T' = k and o(C".C") = T.C" = 1, a contradiction with &k > 3.
Hence C” # 0. We have

a(C'.C"Y + C.C" = (aC' + C").C' =T.C" = 1.
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Since C'.C" > 0 and C".C" > 1 we obtain C".C" = 0 and so deg(X) = C.C' = k+2.
Because codim(X) +1 =N —2 > k + 2 we find that X is a smooth threefold
in P¥** of minimal degree k 4+ 2. From Proposition 6.3, it follows that such a
threefold X has Gj_; j-defect. This gives rise to case 1 of the Theorem.

Case (b).

Because C' is a smooth hyperplane section of S’, S’ is smooth along C, hence
Sing(S") N C = 0. Tt follows that Sing(S’) is a finite set and so S is irreducible.

Claim. If s € Sing(S’) and I' is a general curve in the set of curves {I'} in ',
then s & (I').

Proof Claim: First we are going to prove that s € I'. Assume s € I'. Since
Sing(S’) is finite, s € T for all curves I" on S’. So a general curve I' on 5’
is completely determined by k + 1 points Fp,..., P, on C as being the only
1-dimensional component of X N (Fy,..., Pk, s). The uniqueness follows from
X N{(Py,...,P) = {Fo,..., P} as a scheme. Now take k + 2 general points
Py,...,P_1,Q,Q" on C and let I' (respectively I') be the curve in the fa-
mily corresponding with Py, ..., Py_1,Q (respectively P,..., P,_1,Q’). Because
dim((Fp, ..., Pr_1,Q,Q")) = k + 1, we can consider a deformation of C' on S’
to another curve C’ containing P, ..., P._1,Q,Q’. Since I' and I are contained
in (C" U {s}), the surface S" is deformed into S” = X N (C" U {s}). Because
[ NI is finite it follows s € Sing(S”). So for a general hyperplane P¥-1 c PV
with (P, ..., Pr_1,Q,Q",s) C PV1 we find T,(X) C PN¥~! hence Ty (X) C
(Poy.., Pro1,Q,Q',s). Since s € C = X N(C) and (Fy,...,P1,Q,Q") C (C),
we have dim(T) =n — 1 =2 with T = Ty(X) N (Fo, ..., Pr_1,Q,Q"). If s € (C)
then s € C'= (C) N X and thus s ¢ Sing(S’), a contradiction. So we have

T = TS(X) N <P07 s 7Pk—17Q7Q,> C TS(X) N <C> g ']TS(X>a
hence T = Ty (X) N (C) since dim(T) = 2. This implies
T=Ty(X)N(C) C(Py,...,P1,Q,Q") C (C).

Since Py, ..., P,_1,Q, Q" are generally chosen on C and k + 1 < N — 2, we may
assume that those points are contained in a general hyperplane of (C') (not con-
taining T), a contradiction.

If s € (I)\I" then s is one of the finitely many points in (I') 1 X not on I". So
a general curve I' is again completely determined by k + 1 points Fy, ..., P, on
C. Take a deformation of C' on X to another curve C’ containing FP,..., Pj.
Since I' is contained in (C’" U {s}) and s € (I'), the surface S’ deforms to
S" = (C'"U{s})NX with s € Sing(S”). As before we find Ts(X) C (F,. .., Py, s)
and thus dim(Ts(X)N(Fp, ..., P)) > 2 for general points Fy, ..., P, on C. Since
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s & (Py,...,Py) C (C) (otherwise s € C' = X N (C) and so s ¢ Sing(S’)) we
obtain T := Ty (X) N (C) = Ts(X) N (Fy,..., L) and dim(T) = 2. On the other
hand, we may assume that F,,..., P, are contained in a general hyperplane of
(C) since k < N — 2. So we get a contradiction. [J

Now take a minimal resolution of singularities x : S — S’. General curves
C and I' can be considered as curves on S and I' is contained in a linear system
on S of dimension at least k + 1. Since I.C' =k + 1 and |I' — C| = ) the linear
system of curves I' is complete and induces a g’,jﬂ on C, so C is rational. We
have dim(|C' —T'|) > 1, since dim((C)) = N—2 > k+2 and dim((I')) = k+1. Let
C" be a general element of |C'—I'|. The linear system |C’| = |C'—I'| has no fixed
component since I" is the only curve contained in X N (") and Sing(S") N (") = ().
So C" is irreducible or it is the sum of irreducible curves in a pencil. Hence, if C”
would contain a curve I', then C' ~ (o — 1)I" and C' ~ al for some a > 2. This
would imply that k£ +1 =I'.C = o(I".I"), but I'.I' > k since dim(|T"|) > k + 1,
a contradiction. So C” is irreducible. Since I' U C’ is connected, I'.C" > 1.
From k 4+ 1 = T.C = I'I' + I".C"" then follows I'I' = k£ and I'.C" = 1. Since
dim(|T'|) > &k + 1 this also implies |T" — C"| # 0.

We can write I' ~ SC" + C” for some § > 1 and C” > 0 with |C” — C'| = 0.
If C" =0then I' ~ GC’, hence 5(C'.C") =T.C" =1and so f=1and C'.C" = 1.
This would imply & = I'.T' = $%(C".C") = 1, a contradiction. So C” # 0. We
know C".C" > 0 (|C’| has dimension at least 1) and C’".C" > 1 (C"UC” connected),
so B(C".C") 4+ C".C" =T.C" = 1 implies C".C" =0 and C".C" = 1. Hence

deg(X)=C.C =T +C).T+C)=k+2.

Since codim(X)+ 1= N — 2 > k + 2 this implies N = k + 4 and X is a smooth
threefold in PV with minimal degree k + 2. This case corresponds to case 1 of
the Theorem. W
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