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1 Introduction

Let X be a non-degenerate irreducible variety in PV of dimension n and let
0 < h < k be integers. Then we denote by Gy x(X) the closure of the set of
h-dimensional linear subspaces H of PV that are contained in the span of k + 1
independent points of X. We call G}, (X) the h-Grassmannian of (k + 1)-secant
k-planes of X. The subvariety G}, ,(X) of G(h, N) has an expected dimension,
equal to

min{(k + 1)n+ (k—h)(h+1),(h+1)(N —h)}.

This is an upper bound of the dimension of Gy, x(X). Now we say that X is G, -
defective if the dimension of G}, (X)) is smaller than the expected dimension. In
this case we call the difference of both dimensions the G}, ;-defect of X.

If h = 0, the variety G}, ,(X) is just the kth secant variety Si(X) of X and
in this case the terminology G/, x-defectivity is usually replaced by k-defectivity.
This case is for example studied in [14].

In case h > 0, things are much more complicated, mainly because of the lack
of a Terracini Lemma. Nevertheless, there are some results. For example in [4]
is shown that irreducible curves are not Gj g-defective, in [5] is proved a clas-
sification of surfaces with G s-defect and in [7] one can find a classification of
Gj—1 ,-defective surfaces and threefolds in case k£ > n.

One of the applications of the study of G}, y-defective varieties is found in
the study of the Waring problem for forms (see [2, 6, 11]). Here one is mainly
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interested in the case where X is a Veronese embedding of projective spaces.
Another extrinsic reason of studying Gy, i-defective varieties is their strange
behaviour under projections (especially varieties with high Gj_1 x-defect).

In this paper we will prove that the Gj_; j-defect of a n-dimensional variety
is at most n — 1 if &k > n. This can be seen as an extension of Zak’s result
(case k = 1) giving a bound on the dimension of the secant varieties (see [14]).
Moreover we characterize varieties X" with a certain Gj_; g-defect a > 0, again
in the case k > n.

Theorem 1.1. Let X" (n > 2) be a non-degenerate variety in PV with N >
n+k+1 for an integer k > n and suppose that Gy_1x(X) = (k+1)n+k —a
with a > 0. Then a < n—1 and one of the following two properties hold for k+1
general points Py, ..., P, on X:

1. For eachi € {0,...,k}, there exists a linear subspace L; of dimension a on
X containing P; and so that dim(Ly, ..., L) = k + a.

2. There exists a variety T of minimal degree k + 1 on X that contains the
points Py, ..., Py. In this case there exists an (a — 1)-dimensional family of
rational normal curves I' of degree k + 1 on X containing Py, ..., Py.

Furthermore, if X satisfies one of the two properties, X is Gy_1 j-defective with
defect at least a.

Using the above Theorem, we will be able to classify the two most extremal
cases (Gg_1 -defect equal to n — 2 or n — 1) if X" is smooth and k& > n. Since
the case n < 3 has been handled in [4, 7, 8], we will focus on the case n > 4.

Theorem 1.2. Let X" C PV be a smooth non-degenerate Gy_1 j.-defective variety
with defect a > n — 2 for an integer k > n. Then X is one of the following
varieties:

1. X" is a rational normal scroll of (minimal) degree k + 2 in PR (g =
n—1);

2. n > 3 and X" is a rational normal scroll of (minimal) degree k + 3 in
Pprtkt+2 (a —n — 2)’

3. n > 3 and X" is the projection in P"***1 of a n-dimensional rational
normal scroll of (minimal) degree k + 3 in PP 2 (a = n — 2);

4. n =k =23 and X3 is a hyperplane section of the Segre-embedding of P? x P
inP® (a=1);



5. n =3, k=4 and X3 is a (linearly normal) embedding of the blowing-up of
P3 in a point in P® (a = 1);

6. n =23,k =>5 and X3 is the image of the 2-Veronese-embedding of P3 in P
(a=1).

2 Some conventions, definitions and generalities

2.1. Conventions. We write PV to denote the N-dimensional projective space
over the field C. A variety X C P is an irreducible reduced Zariski-closed sub-
set of PV and we say that X is non-degenerate in PV if X is not contained in a
hyperplane of PV.

Let X C PV be a non-degenerate variety of dimension n. Then we call a closed
subscheme Y C X a m-dimensional section of X if Y is the scheme-theoretical
intersection of X with a linear subspace PN~"*™ C PV such that all components
have dimension m.

If X C PV is a variety and P = (Py,...,P,) is a point of X", we write (P) to
denote the linear span (P, ..., P,) C PV,

2.2. Definition of Gy_1x(X) and some results. Let X C PV be a non-
degenerate n-dimensional variety and £ < NN an integer. We can consider the
rational map w : X¥*1 ——s G(k, N) that maps a point P = (P, ..., P;) in X**+!
to the span (P) if P, # P; for all i # j and dim((P)) = k. Such a span is called
a (k + 1)-secant k-plane of X. Now consider the incidence diagram

I

G(k—1,N) G(k,N)<- A s

with I = {(H,G)|H c G} C G(k — 1, N) x G(k, N) and projection maps a and
B. Now we define Gy_14(X) as (87 (im(w))). So Gi_1x(X) is equal to the
closure of the set of (k — 1)-dimensional subspaces H of PY contained in some
(k + 1)-secant k-plane G of X.

From [5, Prop. 1.1] it follows that the dimension of Gy x(X) := im(w) C
G(k,N) is equal to min{(k + 1)(N — k), (k + 1)n}. Since the fibers of [ are
k-dimensional, we have that the dimension of Gy_; (X)) is smaller or equal than
(k+1)n+k. Hence we define the expected dimension of Gy_1 4(X) C G(k—1,N)
as

expdim(Gy—1 (X)) = min{(k + D)n + k, k(N —k+ 1)}.

If dim(Gg_1,(X)) is smaller than this expected dimension, we say that X has
Gj—1 ,-defect.



In case k > n the expected dimension of Gy_1 x(X) is equal to(k+1)n+k
if and only if N > n+ k+ 1. If dim(Gr_1x(X)) = (k+ 1)n 4+ k — a and
N > n+k+1, for a general element H € Gj_;(X) the set of (k4 1)-secant
k-planes of X containing H has dimension a.

Remark. If N < n+k, im(w) is equal to G(k, N) . Hence, in this case X is not
Gr_1-defective if N < n + k since Gy_14(X) := a(f7(im(w))) = G(k — 1, N).

2.3. Let X C P be a non-degenerate n-dimensional variety with N >n +k+1
for some integer k and let Py, ..., P, be general points on X. Since these
k + 1 points are contained in a general curve section of X, the uniform posi-
tion lemma for curves (see [1] and [3, Proposition 2.6] for the argument) implies

that X N (P, ..., Px) ={F,..., P} as a scheme.

2.4. Polarized varieties. A polarized variety is a pair (V,§) such that V' is an
abstract projective variety and S is an ample invertible sheaf on V.

For polarized varieties, the notion of sectional genus (for a general definition,
see [12]) exists. If S is very ample on V and X C P¥ is the embedding of V using
the global sections of S, then the sectional genus of (V| S) is defined as being the
arithmetic genus of a general curve section of X C PV,

The classification of smooth polarized varieties (V,S) of sectional genus at
most one is given in [12, Section 12]. We only consider the case where V = X" C
PY and § = Ox(1) withn >4 and N > 9.

Since n > 4, if the sectional genus is 0 (see [12, Section 5]), X is a scroll of
a vector bundle on P!. Moreover, if X is embedded using the complete linear
system then X is a rational normal scroll of (minimal) degree N —n+ 1. We can
obtain all smooth rational normal scrolls X"=4 C P in this way.

If the sectional genus is equal to 1, X has to be a scroll of a vector bundle on
a elliptic curve, since there are no Del Pezzo varieties in the considered case (see
[12, Section 8]).

3 A characterization

Proof of Theorem 1.1.:
Let X C PV2n+++1 be a non-degenerate n-dimensional variety with Gp—1 ,-defect
equal to a > 0 for some k£ > n.

Take H € Gy_14(X) general and consider the closure in X**! of the set
of points (P, ..., P;) with P, # P; for all i # j and H C (Fp,...,P;). The
dimension of this set is equal to a. Let 0y be an a-dimensional component
of that set. Take a general element P = (F,..., ;) of Qp . Since we have
chosen H € Gy 14(X) generally, (P,..., ) is a general element of X**+!,
In particular, (Py,...,P.) N X = {Py,..., P} as a scheme. Now let Q) =



(Q(()l), . ,QS)), QW = (Q(()a), - ,Ql(f)) be other general elements of Q7 ;.. De-
note Wy = Uf:opi<QH,k) and (P,QW, ..., Q") by M, for each b € {1,...,a},
with p; the (i + 1)th projection map from X**! to X.

Claim. dim M, =k +a and dim(X N M,) = a.

Proof of the Claim:
We will proof by induction on b the following subclaim: dim M, = k£ + b and
dim(X N M,) = b for each b € {0,...,a}. The Claim will then follow directly
from the subclaim by taking b equal to a.

For b equal to 0, the subclaim follows from Section 2.3. Now let b be an
integer so that 0 < b < a. We know that

dim M, = dim M, ; 4+ dim(Q®) — dim(M,_; N (Q®))
< (k+b—-1D+k—(k—1)=k+b

since H C My_1 N (Q(b)>. Suppose that dim M, < k + b, thus M, = M,_; and
dim M, = k+b—1 < k+a. Since we have chosen Q) generically, we may assume
that W, C M,. Hence dim Wy, < b—1 < a because Wy, C XNM, = XN My
and dim(X N M,_;) = b — 1. So the map py : Qur — ¥y is not generically
finite. Let P = po(P’) be a general element in the image of the map. Then
dim(X N (P")) = dim(X N (P}, H)) > 1, hence H N X # (). This gives us a
contradiction since H is a general element of Gj_1 5 (X).

Now we are going to show that dim(X N M,) = b. Take a general hyper-
plane 7 of M, through H but not through (P), so 7 N (P, Q%) is a hyperplane
of (P,QW) for each i € {1,...,b}. Then it follows from [7, Prop. 1.3] that
there exists a point R € X**! such that H C (R®) c (P,QW) for each i.
Since (P, R®¥) = (P,QW), the span (RM,... R®) is equal to 7. By induction
(RW ..., RY are also general in Q) we have dim(X N(RW, ... R®)) =b—1,
so dim(X NM,) =b. O

The Claim immediately implies that a < n. Let T be an a-dimensional com-
ponent of X N M,.

Claim. Fither YN {Fy,..., P} ={Fo,..., Pc} or YN{P,..., P} is only one
point. In the second case X N M, contains an a-dimensional linear subspace L;

with Ly " { Py, ..., Py} ={P} for eachi € {0,... k}.

Proof of the Claim:
Analogous to the proof of [7, Prop. 1.3, Claim 3]. O

EYN{F,...,B} ={F,..., P}, wefind YN(P) = {Fy,..., P} as ascheme
because XN(P) = {Fy, ..., P} as ascheme and T C X. Hence deg(T) = k+1 =
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codimyy, (T) + 1 and so T is of minimal degree. In this case, we find that k£ + 1
general points on X are contained in an a-dimensional variety of minimal degree
k+1.

It is easy to see that both properties give rise Gj_; p-defectivity with defect
at least a. W

4 The first case of the characterization

Let X™ C PV be a non-degenerate irreducible variety with N > n + k + 1 for
an integer k > n such that for £ 4+ 1 general points Fp,..., P, on X there exist
a-dimensional (a > 0) linear subspaces L, ..., Ly C X of PV with P, € L; for
each i and dim(Ly, ..., Lx) = k + a. Note that by a monodromy argument, each
property that holds for a subset of {Ly, ..., L;} also holds for another subset
with the same cardinality.

Suppose that dim(Ly, ..., Lx_1) < k+ a — 1. Then one can easily prove by
induction that dim(Lg,...,L;—1) < k+a —1—2(k —1). For | = 1 we have
a<k+a—1—2(k—1)andsok < 1, a contradiction.

Now suppose that dim(Ly, ..., Lx_1) = k+a — 1. Then it is easy to prove by
induction that dim(Ly, ..., L;) = a+1, in particular we have dim(Lg, L;) = a+1
and so dim(Ly N Ly) = a — 1. By monodromy we have dim(L; N L;) = a — 1 for
all i # j. Hence the Linear Lemma (see [5]) implies that M := LoN---N Ly is of
dimension @ — 1. Note that P, ¢ M since otherwise (P, ..., Py) C M and so k <
a—1 < n—1, a contradiction. Consider T' C X x X**! with (S, (Fy,...,P)) €T
if and only if there exist a-dimensional subspaces Ly, ..., Ly C X with S, P, € L;
for all . We know that dim7 > (k + 1)n + a — 1 and so there exists a point
S € X so that the fibre above S is at least nk + a — 1-dimensional. Let 7" be a
component of that fibre and let X; be its image under the i-th projection map to
X (i €{0,...,k}). If X; # X for each i, then nk+a—1 < dim7” < (k+1)(n—1),
soa <n—k <0, a contradiction. Hence there exists an ¢ so that X; = X and
thus X is a cone with center S.

If a > 1, let PY~! be a hyperplane of PV not through S. Then for k + 1 ge-

neral points P, ..., P, on X’ := X NPY~1 there exist (a — 1)-dimensional linear
subspaces Ly, ..., L on X’ with P/ € L] such that dim(Lj,...,L}) =k+a—1
and dim(Lg, ..., L, ;) = k +a — 2. With the same arguments as above, we see

that X' is again a cone. So, by induction, we find that X is a cone with center a
linear subspace of dimension a — 1.

Assume that dim(Lg, ..., Lx1) > k+a—1,s0 (Lo, ..., Lx_1) = (Lo, ..., Lg).
Take i € {1,...,k} and consider (L;, P, ..., P). Clearly, the dimension of this



set is smaller than k+a since P; € L;. Suppose that dim(L;, P; ..., Py) < k+a—1,
then dim(L; N (Py,..., Py)) > 1 but XN(P,..., P) ={P,..., P} as a scheme,
a contradiction. So we have that dim(L;, Py ..., Py) =k +a— 1.

Now, let 1 < i < j < n. If dim(L;,L;,P,...,FP;) < k+ a we have L; C
(Li, Py ..., Py) and by monodromy (Lo, ..., Ly) C (L;,P,...,P), a contradic-
tion. Hence dim(L;, Lj, Py ..., Py) = k+aand (L;,L;, Py..., P;) = (Lo, ..., Lg).
Now fix Pj,..., P, on X and consider a l-parameter family Py(t) on X with
Py(0) = PBy. Consider also a l-parameter family H(t) C (FPy(t), Pi,..., P.) of
linear subspaces of dimension k — 1 with H(0) = H and l-parameter families

ng)(t) on X with QZQ)(O) = Ql@ for each i € {0,...,k} and each j € {1,...,a}

with H(t) C ( (()j)(t),..., ,(j)(t)) for each j. These families imply the exis-
tence of 1-parameter families Lg(t),. .., Lg(t) of a-dimensional subspaces with

LI(O) = Lz for all i, .PZ S Ll(t> for all ¢ € {].,...,k}, Po(t) S Lo(t) and
dim(Lo(t), ..., Li(t)) = k + a for every general value of the parameter t.

We may assume that in general Py(t) & (Lo,...,Ly). If Li(t) = L; for each i
and for a general value of ¢, then Fy(t) € (Lo(t),..., Li(t)) = (Lo,..., L), a
contradiction. Thus by monodromy we may assume that L;(t) # L; for a general
value of t. So there exists a family of a-dimensional subspaces on X through
a general point of X. Consider ¥ = {({,P)|P € ¢ ¢ X} C G(1,N) x X.
Above a general point P of X there is at least an a-dimensional family of lines,
so dim(X) > n + a. Since a general not-empty fibre of p : ¥ — G(1,N) is 1-
dimensional, we have dim(p(X)) > n+a — 1. If a > n — 2 we find by using
[13] that a = n — 2 and X is a scroll in P"!, so X is embedded in PV as a
P"~Lbundle over a curve K. Let Kp be the (n — 1)-dimensional component of
the union of all lines on X through a (general) point P € X. We know that Kp
is a (n — 1)-dimensional linear subspace of P¥. Using a 1-parameter family Py(t)
on X we find 1-parameter families L;(t) and Lo(t) in respectively Kp, and Kp,.
We have

(Py(t), Py, ..., Py) C (Li(t), La(t), Ps, ..., Py) C (Kp,, Kp,, Ps, ..., ).

Since
dim(<Kp1,Kp2,P3,...,Pk>) < k+a+2=k+n

and thus X ¢ (Kp,, Kp,, P3,..., P;), we can choose the parameter family Pp(t)
such that Py(t) & (Kp,, Kp,, Ps, ..., P;) for general values of the parameter t, a
contradiction.

5 The second case of the characterization

Proposition 5.1. Let X" C PN2""**1 (K > n) be a non-degenerate variety
so that for each k + 1 general points Py, ..., P, on X there exists an (a — 1)-
dimensional family of rational normal curves I' of degree k + 1 on X through
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Py,..., P, (a > 0). Then the genus of a general curve section of X is at most
n—a—1.

Proof:

Let {I'} be the family of rational normal curves I' on X of degree k + 1. By
assumption, we have dim{I'} > n(k+1) — (k+1) + (a — 1). Now take a general
curve section C' = X NGy (G} is a linear subspace of dimension N —n+1 > k+2)
and take k + 1 general points P, ..., P, on C (these points are also general on
X). From Bertini’s theorems it follows that C” is irreducible and smooth at
Py, ..., P;. Consider a (k— 1)-dimensional linear subspace H of (F,..., P;) and
take (Qo,...,Qk) € Qui. Hence, G' = (G, Qo) is a (N — n + 2)-dimensional
linear subspace of PV which defines an irreducible surface section S’ = X NG’ of
X that is smooth in Fy, ..., P;.

Consider the inclusion relation I’ C {I'} x G(N —n + 2, N). The dimension
of a general fibre of I’ — {I'} is (N —n — k + 1)(n — 2). Hence, we obtain
a irreducible component I of I’ containing (I', G’) of dimension greater than or
equal to (N —n—k+1)(n—2)+ (k+1)(n —1) + (a — 1), with I" the rational
normal curve contained in X N (P, ..., Py, Qo, ..., Q). Consider the projection
v:I— G(N —n+ 2, N). The dimension of a general non-empty fibre of v is at
least

(N—n—k+1)(n—=2)+(k+1)(n—1)+(a—1)—(N—n+3)(n—2) = k—n+a+2.

If we consider the fibre above G’, we find that S’ = X N G’ contains a subfamily
of {I'} of dimension at least & —n + a + 2. Let S be the minimal resolution of
singularities of S’. We become a family {7} of rational curves on S of dimension
at least k —n+a+ 2 by considering the strict transforms of the curves in {I'} on
S’. Denote the strict transforms on S of I' and C’ by resp. v and C”. Any two
points of S can be connected by means of a rational curve in {v}. This implies
h'(S,Og) = 0, so the family {~} is contained in a linear system {~} of dimension
at least k —n + a + 2. This linear system induces a linear system |g| on the
normalization C' of C”. Since S’ is smooth at Py, ..., Py, we find that S and S’
are isomorphic above neighborhoods of those points. Since dim(]|C” —~|) > 1
(C" is a divisor corresponding to the morphism S — G’ = PVY="*2 and « cor-
responds to I' with dim((I')) = %k + 1), no curve of |y| contains C”, hence
dim(lg|) > k—n+a+2. Since I'NC" = {R,..., P} as a scheme, we find
v € |v| gives rise to Py + ...+ Py € |g|. Since F,..., P, are general points of
C, we see that |g| is non-special and dim(|g|) = deg(g) — g(C) = k+ 1 — g(C).
Thus, k+1—-g(C)>k—n+a+2,50g(C)<n—a—1. 1



6 Examples

Example 6.1. Let X" C PV be a n-dimensional smooth rational normal scroll.
IfE>nandn+k+1<N<2n+k—1, X s Gy_1 -defective with defect at
least 2n + k — N.

Proof:

Take k + 1 general points Fy, ..., P, on X.

Assume first that N = n + k + 1. Denote the family of rational normal
curves of degree k+1 on X through F,..., P, by {I'} and the inclusion relation
{(G,T)|T c G} C G(k+3,n+k+1)x{I'} by I. From the proof of [7, Prop. 6.3]
it follows that for a general surface section S C P**3 of X containing P, ..., P,
there exists a rational normal curve I' C S of degree k41 through F, ..., P;. So
we know that dim / > dim{G € G(k+3,n+k+1)|P,...,P, € G} =3(n—2).
Since a general fibre of the (surjective) projection map I — {I'} has dimension
2(n —2), we know that dim{I'} > n — 2. So X is Gj_; j-defective with defect at
least n — 1.

Suppose now that N > n + k + 1. Consider a linear subspace PN =#=1 c PV
disjoint with (P,..., Py). Let Y be the closure of the image of the projection
map X — PN*71 From the proof of [7, Prop. 6.1] it follows that a general
point in the singular locus of Y gives rise to a rational normal curve I' on X of
degree k + 1 through F,..., Py, hence X has Gjy_yg-defect dp_1£(X) at least
dim(Sing(Y)) + 1. In case N = n + k + 2 the variety Y is a quadric in P"*!
that contains linear subspaces of dimension n — 1. From [10, Chap. 6, Sec. 1] it
follows that the rang of the quadric is at most 4 and so Sing(Y") is at least (n—3)-
dimensional, hence X has Gj_; j-defect at least n —2. f N >n+k+2,YVisa
scroll with dim(Sing(Y)) > 2n+k—1—N > 0,80 041 4(X) > 2n+k—N>1. R

Remark 6.2. If we take N = n 4+ k + 2, we see that a smooth n-dimensional
rational normal scroll X C PV is Gj—1 -defective with defect at least n —2. One
can see that the image of X under a projection with center a point in P \ X
will also have Gj_1 j-defect at least n — 2.

7 A fine classification

The case of curves, surfaces and threefolds has been handled in [7] (kK > n and
n € {2,3}), 5] (n=k=2),[8] (n=%k=3)or [4 (n =1). So we have only
to prove Theorem 1.2. in case n > 4. From Section 4 follows that there are
no smooth varieties that satisfy condition 1 of Theorem 1.1, so we only have to
consider condition 2. The proof will also imply that only in the case that X is
rational normal scroll of (minimal) degree in P"™**1 the G}_; y-defect is equal to
n— 1.



Theorem 7.1. Let X"=* C PN27+k+1 be g smooth non-degenerate variety with
a = 0p—1%(X) > n—2 that satisfies condition 2 of the characterization for k > n.
Then X is one of the following varieties:

1. X™ is a rational normal scroll of (minimal) degree k + 2 in P"TA+L;
2. X™ is a rational normal scroll of (minimal) degree k + 3 in PHk+2;

3. X" is the projection in P! of a n-dimensional rational normal scroll of
(minimal) degree k + 3 in PTHF2,

Proof:
Suppose that X"=4 C PN2n+h+l gatisfies the conditions of the Theorem. Let
Py, ..., P, be k + 1 general points of X, contained in a general curve section

C =X C Gy (Gy is a linear subspace of dimension N —n + 1) of X. Note that
C' is smooth and that there exists a family of rational normal curves of degree
k+1 on X through Fy,..., P, of dimension a —1>n—3. Let H C (P,..., P)
be a k — 1-dimensional linear subspace, (Qo, ..., Q%) € Qux a general point and
S =X C G with G = (Gg, Qo) (S’ is an irreducible surface section of X that
is smooth in the points Py, ..., P;). There is a (n — 2)-dimensional family of
(N — n + 2)-dimensional linear subspaces of PV containing Gy, so we have two
possibilities (we use the notations of the proof of Prop. 5.1):

(a) G’ is a general element in this family; i.e. the projection morphism v is
surjective. In this case S’ is smooth since X is smooth and S’ is a gen-
eral surface section of X. The surface S’ contains a subfamily of {I'} of
dimension at least k.

(b) G’ is a special element in this family; i.e. the projection morphism v is
not surjective. In this case S’ contains a subfamily of {I'} of dimension at
least k + 1. In particular the linear system |g| on C' has degree k + 1 and
dimension at least k£ + 1. Hence S’ has sectional genus 0, but S’ does not
need to be smooth.

Case (a).

Let £ be the linear system defining S C PY~12¥3 and write £(—T) to denote
{DeL|D-T >0}. Since dim((I')) = k + 1, we have dim(£L(—TI")) > 1. Notice
that L—T ={D —T'|D € L(-T')} does not have fixed components because I is
the only curve in X N (I") and X N (I") smooth in a general point of I". Let C’ be
a general element of £ —T", then I'.(I' + C") = k + 1. Since I' U C" is connected
we have I'.C" > 1. On the other hand, since S’ contains a subfamily of {I'} of
dimension at least k& we find I'.T' > k—1. So we obtain two possibilities: I.C" =1
and''=kor[.C"=2and '.T =k — 1.
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CaseI'C"=2and I'I' =k — 1.
If £—T is composed by a pencil, we can prove using exactly the same arguments
as in the proof of [7, Th. 1.2, p. 216] that X™ is minimal of degree k + 3 in
P t++2 or a projection of such a variety in P""**! from a point. By [9], the only
n-dimensional varieties with minimal degree k+ 3 for some k > n > 4 are rational
normal scrolls, so we get the cases 2 and 3 of the Theorem.

Assume now that £ — I' is not composed by a pencil, hence in general C’ is
irreducible. Since I'.C" = 2, we have

9(C)=p(T+C) =1+ % T+C).(T+C +K)=pa(C') + pa(T) +1 < 1.

Since ¢g(I') = pa(I') = 0, we find g(C") = p(C") = 0 and g(C) = 1, so X has
sectional genus 1. From Section 2.4 it follows that X has to be a scroll over an
elliptic curve. This gives us a contradiction since k 4 1 general points of X are
contained in a rational normal curve of degree k + 1.

Case I'C"=2and I'I' =k — 1.
Because |C’| has no fixed components, |C’| is not composed by a pencil and so
(" is in general irreducible. Since dim|I'| > k and I'.C" = 1, it follows that
I — C’| # 0 and we can write I' ~ aC’ + C” for some o > 1 and C” > 0 with
|IC" —C'| = 0. If C" = 0 we have ' ~ aC" and thus o?*(C".C") = T'.T' = k and
a(C'.C") =T.C" = 1, which is in contradiction with & > n > 4, hence C” # 0.
We have

a(C.CY+C'.C" = (aC'+C").C"=T.C" = 1.
Since C".C" > 0 (dim(|C’|) > 1) and C".C" > 1 (C" U C” is connected) we obtain
C".C" = 0 and so deg(X) = C.C = k+2. Because codim(X)+1 = N—n+1 > k+2
we find that X" is a smooth variety in P"*¥*1 of minimal degree k 4 2. Using
9], we find that X is a rational normal scroll (Case 1 of the Theorem).

Case (b).

Since C' is a smooth hyperplane section of S’, S” is smooth along C' and thus
Sing(S") NC = 0. So Sing(S’) is finite and S’ is irreducible.

Claim. If s € Sing(S") and T' C S’ is a general curve in {I'}, then s & (T').

Proof Claim: First we are going to prove that s ¢ I'. Assume s € I'. Since
Sing(S’) is finite, s € T for all curves I" on S’. So a general curve I" on '
is completely determined by k£ + 1 points Fp,..., P, on C as being the only
1-dimensional component of X N (F,..., P, s). The uniqueness follows from
XN(P,...,P) = {Fo,..., P} as a scheme. Now take k + 2 general points
Py,...,P—1,Q,Q" on C and let I' (respectively I") be the curve in the fa-
mily corresponding with Fy, ..., Py_1,Q (respectively Py, ..., P,_1,Q’). Because
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dim((Pp, ..., Pr_1,Q, Q")) = k + 1, we can consider a deformation of C' on S’ to
another curve C’ containing P, ..., P._1,Q, Q. Since I" and I are contained in
(C"U{s}), the surface S’ is deformed into S” = X N (C" U {s}). Because I' N T”
is finite it follows s € Sing(S”). So for a general linear subspace PY—"+2 ¢ PV
with (P, ..., Pr1,Q,Q’,s) C PN7"2 we find dim(T,(X) NPY"2) > 2. so we
may assume that

T =Ty (X) C(Py,..., P1,Q,Q,s) = T(X) c PV

with P¥=2 = (5"} = (C U {s}). Denote Ty (X) C (Py,...,P1,Q,Q") by T.
Since s ¢ C = X N(C) and (P, ..., Pr-1,Q,Q") C (C) & (C U{s}), we have
T =Ts(X)N(C) and so

T:TS(X)Q<C> - <P07"'7Pk—17Q7Q/> - <O>

Since By, ..., Py_1,Q, Q" are generally chosen on C' and k+1 < N —n + 1, we
may assume that those points are contained in a general hyperplane of (C) (not
containing T), a contradiction.

If s € (I)\I" then s is one of the finitely many points in (I') N X not on I'. So
a general curve I' is again completely determined by k + 1 points Fp, ..., P, on
C. Take a deformation of C' on X to another curve C’ containing F,..., Pj.
Since I' is contained in (C’" U {s}) and s € (I'), the surface S’ deforms to
S" = (C'"U{s})NX with s € Sing(S”). As before we find Ts(X) C (F,. .., Py, s)
and thus dim(T(X)N(Fy, ..., Px)) > 2 for general points P, ..., P, on C. Since
s & (Py,...,Px) C (C) (otherwise s € C' = X N (C) and so s ¢ Sing(9’)) we
obtain T := T(X) N (Fy,..., P) = Ts(X)N(C). But we may again assume that
Py, ..., P, are contained in a general hyperplane of (C') since k < N —n+ 1. So
we get a contradiction. []

By using the same arguments as in the proof of [7, Theorem 1.2, p. 218-219] we
can prove that in this case X is of minimal degree k + 2 in P***+1. Hence X is
a rational normal scroll by [9]. W
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