On high $G_{k-1,k}$ -defective varieties

Filip Cools *

August 11, 2006

Abstract.—We give a rough characterization for n-dimensional varieties with $G_{k-1,k}$ defect equal to a > 0 if $k \ge n$. Then we apply this in the case that $a \ge n-2$ to become a fine
classification.

MSC.— [14N15], [14J40], [14M15]

1 Introduction

Let X be a non-degenerate irreducible variety in \mathbb{P}^N of dimension n and let $0 \leq h \leq k$ be integers. Then we denote by $G_{h,k}(X)$ the closure of the set of h-dimensional linear subspaces H of \mathbb{P}^N that are contained in the span of k + 1 independent points of X. We call $G_{h,k}(X)$ the h-Grassmannian of (k + 1)-secant k-planes of X. The subvariety $G_{h,k}(X)$ of $\mathbb{G}(h, N)$ has an expected dimension, equal to

$$\min\{(k+1)n + (k-h)(h+1), (h+1)(N-h)\}.$$

This is an upper bound of the dimension of $G_{h,k}(X)$. Now we say that X is $G_{h,k}$ -defective if the dimension of $G_{h,k}(X)$ is smaller than the expected dimension. In this case we call the difference of both dimensions the $G_{h,k}$ -defect of X.

If h = 0, the variety $G_{h,k}(X)$ is just the kth secant variety $S_k(X)$ of X and in this case the terminology $G_{h,k}$ -defectivity is usually replaced by k-defectivity. This case is for example studied in [14].

In case h > 0, things are much more complicated, mainly because of the lack of a Terracini Lemma. Nevertheless, there are some results. For example in [4] is shown that irreducible curves are not $G_{h,k}$ -defective, in [5] is proved a classification of surfaces with $G_{1,2}$ -defect and in [7] one can find a classification of $G_{k-1,k}$ -defective surfaces and threefolds in case k > n.

One of the applications of the study of $G_{h,k}$ -defective varieties is found in the study of the Waring problem for forms (see [2, 6, 11]). Here one is mainly

^{*}K.U.Leuven, Department of Mathematics, Celestijnenlaan 200B, B-3001 Leuven, Belgium, email: Filip.Cools@wis.kuleuven.ac.be

interested in the case where X is a Veronese embedding of projective spaces.

Another extrinsic reason of studying $G_{h,k}$ -defective varieties is their strange behaviour under projections (especially varieties with high $G_{k-1,k}$ -defect).

In this paper we will prove that the $G_{k-1,k}$ -defect of a *n*-dimensional variety is at most n-1 if $k \geq n$. This can be seen as an extension of Zak's result (case k = 1) giving a bound on the dimension of the secant varieties (see [14]). Moreover we characterize varieties X^n with a certain $G_{k-1,k}$ -defect a > 0, again in the case $k \geq n$.

Theorem 1.1. Let X^n $(n \ge 2)$ be a non-degenerate variety in \mathbb{P}^N with $N \ge n + k + 1$ for an integer $k \ge n$ and suppose that $G_{k-1,k}(X) = (k+1)n + k - a$ with a > 0. Then $a \le n-1$ and one of the following two properties hold for k+1 general points P_0, \ldots, P_k on X:

- 1. For each $i \in \{0, ..., k\}$, there exists a linear subspace L_i of dimension a on X containing P_i and so that dim $\langle L_0, ..., L_k \rangle = k + a$.
- 2. There exists a variety Υ^a of minimal degree k + 1 on X that contains the points P_0, \ldots, P_k . In this case there exists an (a-1)-dimensional family of rational normal curves Γ of degree k + 1 on X containing P_0, \ldots, P_k .

Furthermore, if X satisfies one of the two properties, X is $G_{k-1,k}$ -defective with defect at least a.

Using the above Theorem, we will be able to classify the two most extremal cases $(G_{k-1,k}$ -defect equal to n-2 or n-1) if X^n is smooth and $k \ge n$. Since the case $n \le 3$ has been handled in [4, 7, 8], we will focus on the case $n \ge 4$.

Theorem 1.2. Let $X^n \subset \mathbb{P}^N$ be a smooth non-degenerate $G_{k-1,k}$ -defective variety with defect $a \geq n-2$ for an integer $k \geq n$. Then X is one of the following varieties:

- 1. X^n is a rational normal scroll of (minimal) degree k + 2 in \mathbb{P}^{n+k+1} (a = n-1);
- 2. $n \geq 3$ and X^n is a rational normal scroll of (minimal) degree k+3 in \mathbb{P}^{n+k+2} (a = n-2);
- 3. $n \geq 3$ and X^n is the projection in \mathbb{P}^{n+k+1} of a n-dimensional rational normal scroll of (minimal) degree k+3 in \mathbb{P}^{n+k+2} (a=n-2);
- n = k = 3 and X³ is a hyperplane section of the Segre-embedding of P² × P² in P⁸ (a = 1);

- 5. n = 3, k = 4 and X^3 is a (linearly normal) embedding of the blowing-up of \mathbb{P}^3 in a point in \mathbb{P}^8 (a = 1);
- 6. n = 3, k = 5 and X^3 is the image of the 2-Veronese-embedding of \mathbb{P}^3 in \mathbb{P}^9 (a = 1).

2 Some conventions, definitions and generalities

2.1. Conventions. We write \mathbb{P}^N to denote the *N*-dimensional projective space over the field \mathbb{C} . A variety $X \subset \mathbb{P}^N$ is an irreducible reduced Zariski-closed subset of \mathbb{P}^N and we say that X is non-degenerate in \mathbb{P}^N if X is not contained in a hyperplane of \mathbb{P}^N .

Let $X \subset \mathbb{P}^N$ be a non-degenerate variety of dimension n. Then we call a closed subscheme $Y \subset X$ a *m*-dimensional section of X if Y is the scheme-theoretical intersection of X with a linear subspace $\mathbb{P}^{N-n+m} \subset \mathbb{P}^N$ such that all components have dimension m.

If $X \subset \mathbb{P}^N$ is a variety and $P = (P_1, \ldots, P_r)$ is a point of X^r , we write $\langle P \rangle$ to denote the linear span $\langle P_1, \ldots, P_r \rangle \subset \mathbb{P}^N$.

2.2. Definition of \mathbf{G}_{\mathbf{k}-\mathbf{1},\mathbf{k}}(\mathbf{X}) and some results. Let $X \subset \mathbb{P}^N$ be a nondegenerate *n*-dimensional variety and $k \leq N$ an integer. We can consider the rational map $\omega : X^{k+1} \dashrightarrow \mathbb{G}(k, N)$ that maps a point $P = (P_0, \ldots, P_k)$ in X^{k+1} to the span $\langle P \rangle$ if $P_i \neq P_j$ for all $i \neq j$ and $\dim(\langle P \rangle) = k$. Such a span is called a (k + 1)-secant k-plane of X. Now consider the incidence diagram

with $I = \{(H,G) | H \subset G\} \subset \mathbb{G}(k-1,N) \times \mathbb{G}(k,N)$ and projection maps α and β . Now we define $G_{k-1,k}(X)$ as $\alpha(\beta^{-1}(\operatorname{im}(\omega)))$. So $G_{k-1,k}(X)$ is equal to the closure of the set of (k-1)-dimensional subspaces H of \mathbb{P}^N contained in some (k+1)-secant k-plane G of X.

From [5, Prop. 1.1] it follows that the dimension of $G_{k,k}(X) := \overline{\operatorname{im}(\omega)} \subset \mathbb{G}(k, N)$ is equal to $\min\{(k+1)(N-k), (k+1)n\}$. Since the fibers of β are k-dimensional, we have that the dimension of $G_{k-1,k}(X)$ is smaller or equal than (k+1)n+k. Hence we define the expected dimension of $G_{k-1,k}(X) \subset \mathbb{G}(k-1, N)$ as

 $\exp\dim(G_{k-1,k}(X)) = \min\{(k+1)n + k, k(N-k+1)\}.$

If dim $(G_{k-1,k}(X))$ is smaller than this expected dimension, we say that X has $G_{k-1,k}$ -defect.

In case $k \ge n$ the expected dimension of $G_{k-1,k}(X)$ is equal to (k+1)n+kif and only if $N \ge n+k+1$. If $\dim(G_{k-1,k}(X)) = (k+1)n+k-a$ and $N \ge n+k+1$, for a general element $H \in G_{k-1,k}(X)$ the set of (k+1)-secant *k*-planes of X containing H has dimension a.

Remark. If $N \le n+k$, $\operatorname{im}(\omega)$ is equal to $\mathbb{G}(k, N)$. Hence, in this case X is not $G_{k-1,k}$ -defective if $N \le n+k$ since $G_{k-1,k}(X) := \alpha(\beta^{-1}(\operatorname{im}(\omega))) = \mathbb{G}(k-1, N)$.

2.3. Let $X \subset \mathbb{P}^N$ be a non-degenerate *n*-dimensional variety with $N \ge n + k + 1$ for some integer k and let P_0, \ldots, P_k be general points on X. Since these k + 1 points are contained in a general curve section of X, the uniform position lemma for curves (see [1] and [3, Proposition 2.6] for the argument) implies that $X \cap \langle P_0, \ldots, P_k \rangle = \{P_0, \ldots, P_k\}$ as a scheme.

2.4. Polarized varieties. A polarized variety is a pair (V, \mathcal{S}) such that V is an abstract projective variety and \mathcal{S} is an ample invertible sheaf on V.

For polarized varieties, the notion of sectional genus (for a general definition, see [12]) exists. If S is very ample on V and $X \subset \mathbb{P}^N$ is the embedding of V using the global sections of S, then the sectional genus of (V, S) is defined as being the arithmetic genus of a general curve section of $X \subset \mathbb{P}^N$.

The classification of smooth polarized varieties (V, \mathcal{S}) of sectional genus at most one is given in [12, Section 12]. We only consider the case where $V = X^n \subset$ \mathbb{P}^N and $\mathcal{S} = \mathcal{O}_X(1)$ with $n \geq 4$ and $N \geq 9$.

Since $n \ge 4$, if the sectional genus is 0 (see [12, Section 5]), X is a scroll of a vector bundle on \mathbb{P}^1 . Moreover, if X is embedded using the complete linear system then X is a rational normal scroll of (minimal) degree N - n + 1. We can obtain all smooth rational normal scrolls $X^{n \ge 4} \subset \mathbb{P}^N$ in this way.

If the sectional genus is equal to 1, X has to be a scroll of a vector bundle on a elliptic curve, since there are no Del Pezzo varieties in the considered case (see [12, Section 8]).

3 A characterization

Proof of Theorem 1.1.:

Let $X \subset \mathbb{P}^{N \ge n+k+1}$ be a non-degenerate *n*-dimensional variety with $G_{k-1,k}$ -defect equal to a > 0 for some $k \ge n$.

Take $H \in G_{k-1,k}(X)$ general and consider the closure in X^{k+1} of the set of points (P_0, \ldots, P_k) with $P_i \neq P_j$ for all $i \neq j$ and $H \subset \langle P_0, \ldots, P_k \rangle$. The dimension of this set is equal to a. Let $\Omega_{H,k}$ be an a-dimensional component of that set. Take a general element $P = (P_0, \ldots, P_k)$ of $\Omega_{H,k}$. Since we have chosen $H \in G_{k-1,k}(X)$ generally, (P_0, \ldots, P_k) is a general element of X^{k+1} . In particular, $\langle P_0, \ldots, P_k \rangle \cap X = \{P_0, \ldots, P_k\}$ as a scheme. Now let $Q^{(1)} =$ $(Q_0^{(1)}, \ldots, Q_k^{(1)}), \ldots, Q^{(a)} = (Q_0^{(a)}, \ldots, Q_k^{(a)})$ be other general elements of $\Omega_{H,k}$. Denote $\Psi_{H,k} = \bigcup_{i=0}^k p_i(\Omega_{H,k})$ and $\langle P, Q^{(1)}, \ldots, Q^{(b)} \rangle$ by M_b for each $b \in \{1, \ldots, a\}$, with p_i the (i+1)th projection map from X^{k+1} to X.

Claim. dim $M_a = k + a$ and dim $(X \cap M_a) = a$.

Proof of the Claim:

We will proof by induction on b the following subclaim: dim $M_b = k + b$ and dim $(X \cap M_b) = b$ for each $b \in \{0, \ldots, a\}$. The Claim will then follow directly from the subclaim by taking b equal to a.

For b equal to 0, the subclaim follows from Section 2.3. Now let b be an integer so that $0 < b \le a$. We know that

$$\dim M_b = \dim M_{b-1} + \dim \langle Q^{(b)} \rangle - \dim (M_{b-1} \cap \langle Q^{(b)} \rangle)$$

$$\leq (k+b-1) + k - (k-1) = k+b$$

since $H \subset M_{b-1} \cap \langle Q^{(b)} \rangle$. Suppose that dim $M_b < k + b$, thus $M_b = M_{b-1}$ and dim $M_b = k + b - 1 < k + a$. Since we have chosen $Q^{(b)}$ generically, we may assume that $\Psi_{H,k} \subset M_b$. Hence dim $\Psi_{H,k} \leq b - 1 < a$ because $\Psi_{H,k} \subset X \cap M_b = X \cap M_{b-1}$ and dim $(X \cap M_{b-1}) = b - 1$. So the map $p_0 : \Omega_{H,k} \to \Psi_{H,k}$ is not generically finite. Let $P'_0 = p_0(P')$ be a general element in the image of the map. Then dim $(X \cap \langle P' \rangle) = \dim(X \cap \langle P'_0, H \rangle) \geq 1$, hence $H \cap X \neq \emptyset$. This gives us a contradiction since H is a general element of $G_{k-1,k}(X)$.

Now we are going to show that $\dim(X \cap M_b) = b$. Take a general hyperplane π of M_b through H but not through $\langle P \rangle$, so $\pi \cap \langle P, Q^{(i)} \rangle$ is a hyperplane of $\langle P, Q^{(i)} \rangle$ for each $i \in \{1, \ldots, b\}$. Then it follows from [7, Prop. 1.3] that there exists a point $R^{(i)} \in X^{k+1}$ such that $H \subset \langle R^{(i)} \rangle \subset \langle P, Q^{(i)} \rangle$ for each i. Since $\langle P, R^{(i)} \rangle = \langle P, Q^{(i)} \rangle$, the span $\langle R^{(1)}, \ldots, R^{(b)} \rangle$ is equal to π . By induction $(R^{(1)}, \ldots, R^{(b)}$ are also general in $\Omega_{H,k}$) we have $\dim(X \cap \langle R^{(1)}, \ldots, R^{(b)} \rangle) = b - 1$, so $\dim(X \cap M_b) = b$. \Box

The Claim immediately implies that a < n. Let Υ be an *a*-dimensional component of $X \cap M_a$.

Claim. Either $\Upsilon \cap \{P_0, \ldots, P_k\} = \{P_0, \ldots, P_k\}$ or $\Upsilon \cap \{P_0, \ldots, P_k\}$ is only one point. In the second case $X \cap M_a$ contains an a-dimensional linear subspace L_i with $L_i \cap \{P_0, \ldots, P_k\} = \{P_i\}$ for each $i \in \{0, \ldots, k\}$.

Proof of the Claim:

Analogous to the proof of [7, Prop. 1.3, Claim 3]. \Box

If $\Upsilon \cap \{P_0, \ldots, P_k\} = \{P_0, \ldots, P_k\}$, we find $\Upsilon \cap \langle P \rangle = \{P_0, \ldots, P_k\}$ as a scheme because $X \cap \langle P \rangle = \{P_0, \ldots, P_k\}$ as a scheme and $\Upsilon \subset X$. Hence $\deg(\Upsilon) = k+1 =$

 $\operatorname{codim}_{M_a}(\Upsilon) + 1$ and so Υ is of minimal degree. In this case, we find that k + 1 general points on X are contained in an *a*-dimensional variety of minimal degree k + 1.

It is easy to see that both properties give rise $G_{k-1,k}$ -defectivity with defect at least a.

4 The first case of the characterization

Let $X^n \subset \mathbb{P}^N$ be a non-degenerate irreducible variety with $N \ge n + k + 1$ for an integer $k \ge n$ such that for k + 1 general points P_0, \ldots, P_k on X there exist *a*-dimensional (a > 0) linear subspaces $L_0, \ldots, L_k \subset X$ of \mathbb{P}^N with $P_i \in L_i$ for each *i* and dim $\langle L_0, \ldots, L_k \rangle = k + a$. Note that by a monodromy argument, each property that holds for a subset of $\{L_0, \ldots, L_k\}$ also holds for another subset with the same cardinality.

Suppose that $\dim \langle L_0, \ldots, L_{k-1} \rangle < k + a - 1$. Then one can easily prove by induction that $\dim \langle L_0, \ldots, L_{l-1} \rangle < k + a - 1 - 2(k - l)$. For l = 1 we have a < k + a - 1 - 2(k - 1) and so k < 1, a contradiction.

Now suppose that $\dim \langle L_0, \ldots, L_{k-1} \rangle = k + a - 1$. Then it is easy to prove by induction that $\dim \langle L_0, \ldots, L_i \rangle = a + i$, in particular we have $\dim \langle L_0, L_1 \rangle = a + 1$ and so $\dim (L_0 \cap L_1) = a - 1$. By monodromy we have $\dim (L_i \cap L_j) = a - 1$ for all $i \neq j$. Hence the Linear Lemma (see [5]) implies that $M := L_0 \cap \cdots \cap L_k$ is of dimension a - 1. Note that $P_i \notin M$ since otherwise $\langle P_0, \ldots, P_k \rangle \subset M$ and so $k \leq a - 1 \leq n - 1$, a contradiction. Consider $T \subset X \times X^{k+1}$ with $(S, (P_0, \ldots, P_k)) \in T$ if and only if there exist a-dimensional subspaces $L_0, \ldots, L_k \subset X$ with $S, P_i \in L_i$ for all i. We know that $\dim T \geq (k + 1)n + a - 1$ and so there exists a point $S \in X$ so that the fibre above S is at least nk + a - 1-dimensional. Let T' be a component of that fibre and let X_i be its image under the i-th projection map to X ($i \in \{0, \ldots, k\}$). If $X_i \neq X$ for each i, then $nk + a - 1 \leq \dim T' \leq (k+1)(n-1)$, so $a \leq n - k \leq 0$, a contradiction. Hence there exists an i so that $X_i = X$ and thus X is a cone with center S.

If a > 1, let \mathbb{P}^{N-1} be a hyperplane of \mathbb{P}^N not through S. Then for k + 1 general points P'_0, \ldots, P'_k on $X' := X \cap \mathbb{P}^{N-1}$, there exist (a-1)-dimensional linear subspaces L'_0, \ldots, L'_k on X' with $P'_i \in L'_i$ such that $\dim \langle L'_0, \ldots, L'_k \rangle = k + a - 1$ and $\dim \langle L'_0, \ldots, L'_{k-1} \rangle = k + a - 2$. With the same arguments as above, we see that X' is again a cone. So, by induction, we find that X is a cone with center a linear subspace of dimension a - 1.

Assume that dim $\langle L_0, \ldots, L_{k-1} \rangle > k+a-1$, so $\langle L_0, \ldots, L_{k-1} \rangle = \langle L_0, \ldots, L_k \rangle$. Take $i \in \{1, \ldots, k\}$ and consider $\langle L_i, P_1, \ldots, P_k \rangle$. Clearly, the dimension of this set is smaller than k+a since $P_i \in L_i$. Suppose that $\dim \langle L_i, P_1, \ldots, P_k \rangle < k+a-1$, then $\dim(L_i \cap \langle P_1, \ldots, P_k \rangle) \ge 1$ but $X \cap \langle P_1, \ldots, P_k \rangle = \{P_1, \ldots, P_k\}$ as a scheme, a contradiction. So we have that $\dim \langle L_i, P_1, \ldots, P_k \rangle = k + a - 1$.

Now, let $1 \leq i \leq j \leq n$. If $\dim \langle L_i, L_j, P_1 \dots, P_k \rangle < k + a$ we have $L_j \subset \langle L_i, P_1 \dots, P_k \rangle$ and by monodromy $\langle L_0, \dots, L_k \rangle \subset \langle L_i, P_1 \dots, P_k \rangle$, a contradiction. Hence $\dim \langle L_i, L_j, P_1 \dots, P_k \rangle = k + a$ and $\langle L_i, L_j, P_1 \dots, P_k \rangle = \langle L_0, \dots, L_k \rangle$. Now fix P_1, \dots, P_k on X and consider a 1-parameter family $P_0(t)$ on X with $P_0(0) = P_0$. Consider also a 1-parameter family $H(t) \subset \langle P_0(t), P_1, \dots, P_k \rangle$ of linear subspaces of dimension k - 1 with H(0) = H and 1-parameter families $Q_i^{(j)}(t)$ on X with $Q_i^{(j)}(0) = Q_i^{(j)}$ for each $i \in \{0, \dots, k\}$ and each $j \in \{1, \dots, a\}$ with $H(t) \subset \langle Q_0^{(j)}(t), \dots, Q_k^{(j)}(t) \rangle$ for each j. These families imply the existence of 1-parameter families $L_0(t), \dots, L_k(t)$ of a-dimensional subspaces with $L_i(0) = L_i$ for all $i, P_i \in L_i(t)$ for all $i \in \{1, \dots, k\}, P_0(t) \in L_0(t)$ and $\dim \langle L_0(t), \dots, L_k(t) \rangle = k + a$ for every general value of the parameter t.

We may assume that in general $P_0(t) \notin \langle L_0, \ldots, L_k \rangle$. If $L_i(t) = L_i$ for each iand for a general value of t, then $P_0(t) \in \langle L_0(t), \ldots, L_k(t) \rangle = \langle L_0, \ldots, L_k \rangle$, a contradiction. Thus by monodromy we may assume that $L_i(t) \neq L_i$ for a general value of t. So there exists a family of a-dimensional subspaces on X through a general point of X. Consider $\Sigma = \{(\ell, P) | P \in \ell \subset X\} \subset \mathbb{G}(1, N) \times X$. Above a general point P of X there is at least an a-dimensional family of lines, so $\dim(\Sigma) \geq n + a$. Since a general not-empty fibre of $p: \Sigma \to \mathbb{G}(1, N)$ is 1dimensional, we have $\dim(p(\Sigma)) \geq n + a - 1$. If $a \geq n - 2$ we find by using [13] that a = n - 2 and X is a scroll in \mathbb{P}^{n-1} , so X is embedded in \mathbb{P}^N as a \mathbb{P}^{n-1} -bundle over a curve K. Let K_P be the (n-1)-dimensional component of the union of all lines on X through a (general) point $P \in X$. We know that K_P is a (n-1)-dimensional linear subspace of \mathbb{P}^N . Using a 1-parameter family $P_0(t)$ on X we find 1-parameter families $L_1(t)$ and $L_2(t)$ in respectively K_{P_1} and K_{P_2} .

$$\langle P_0(t), P_1, \ldots, P_k \rangle \subset \langle L_1(t), L_2(t), P_3, \ldots, P_k \rangle \subset \langle K_{P_1}, K_{P_2}, P_3, \ldots, P_k \rangle.$$

Since

$$\dim(\langle K_{P_1}, K_{P_2}, P_3, \dots, P_k \rangle) \le k + a + 2 = k + n$$

and thus $X \not\subset \langle K_{P_1}, K_{P_2}, P_3, \ldots, P_k \rangle$, we can choose the parameter family $P_0(t)$ such that $P_0(t) \not\in \langle K_{P_1}, K_{P_2}, P_3, \ldots, P_k \rangle$ for general values of the parameter t, a contradiction.

5 The second case of the characterization

Proposition 5.1. Let $X^n \subset \mathbb{P}^{N \geq n+k+1}$ $(k \geq n)$ be a non-degenerate variety so that for each k + 1 general points P_0, \ldots, P_k on X there exists an (a - 1)dimensional family of rational normal curves Γ of degree k + 1 on X through P_0, \ldots, P_k (a > 0). Then the genus of a general curve section of X is at most n - a - 1.

Proof:

Let $\{\Gamma\}$ be the family of rational normal curves Γ on X of degree k + 1. By assumption, we have dim $\{\Gamma\} \ge n(k+1) - (k+1) + (a-1)$. Now take a general curve section $C' = X \cap G'_0$ (G'_0 is a linear subspace of dimension $N - n + 1 \ge k + 2$) and take k + 1 general points P_0, \ldots, P_k on C' (these points are also general on X). From Bertini's theorems it follows that C' is irreducible and smooth at P_0, \ldots, P_k . Consider a (k-1)-dimensional linear subspace H of $\langle P_0, \ldots, P_k \rangle$ and take $(Q_0, \ldots, Q_k) \in \Omega_{H,k}$. Hence, $G' = \langle G'_0, Q_0 \rangle$ is a (N - n + 2)-dimensional linear subspace of \mathbb{P}^N which defines an irreducible surface section $S' = X \cap G'$ of X that is smooth in P_0, \ldots, P_k .

Consider the inclusion relation $I' \subset {\Gamma} \times \mathbb{G}(N - n + 2, N)$. The dimension of a general fibre of $I' \to {\Gamma}$ is (N - n - k + 1)(n - 2). Hence, we obtain a irreducible component I of I' containing (Γ, G') of dimension greater than or equal to (N - n - k + 1)(n - 2) + (k + 1)(n - 1) + (a - 1), with Γ the rational normal curve contained in $X \cap \langle P_0, \ldots, P_k, Q_0, \ldots, Q_k \rangle$. Consider the projection $\nu : I \to \mathbb{G}(N - n + 2, N)$. The dimension of a general non-empty fibre of ν is at least

$$(N-n-k+1)(n-2) + (k+1)(n-1) + (a-1) - (N-n+3)(n-2) = k-n+a+2.$$

If we consider the fibre above G', we find that $S' = X \cap G'$ contains a subfamily of $\{\Gamma\}$ of dimension at least k - n + a + 2. Let S be the minimal resolution of singularities of S'. We become a family $\{\gamma\}$ of rational curves on S of dimension at least k - n + a + 2 by considering the strict transforms of the curves in $\{\Gamma\}$ on S'. Denote the strict transforms on S of Γ and C' by resp. γ and C''. Any two points of S can be connected by means of a rational curve in $\{\gamma\}$. This implies $h^1(S, \mathcal{O}_S) = 0$, so the family $\{\gamma\}$ is contained in a linear system $\{\gamma\}$ of dimension at least k - n + a + 2. This linear system induces a linear system |q| on the normalization C of C''. Since S' is smooth at P_0, \ldots, P_k , we find that S and S' are isomorphic above neighborhoods of those points. Since $\dim(|C'' - \gamma|) \geq 1$ (C'') is a divisor corresponding to the morphism $S \to G' \cong \mathbb{P}^{N-n+2}$ and γ corresponds to Γ with dim $(\langle \Gamma \rangle) = k + 1$, no curve of $|\gamma|$ contains C'', hence $\dim(|g|) \geq k - n + a + 2$. Since $\Gamma \cap C' = \{P_0, \ldots, P_k\}$ as a scheme, we find $\gamma \in |\gamma|$ gives rise to $P_0 + \ldots + P_k \in |g|$. Since P_0, \ldots, P_k are general points of C, we see that |g| is non-special and $\dim(|g|) = \deg(g) - g(C) = k + 1 - g(C)$. Thus, $k + 1 - g(C) \ge k - n + a + 2$, so $g(C) \le n - a - 1$.

6 Examples

Example 6.1. Let $X^n \subset \mathbb{P}^N$ be a n-dimensional smooth rational normal scroll. If $k \ge n$ and $n + k + 1 \le N \le 2n + k - 1$, X is $G_{k-1,k}$ -defective with defect at least 2n + k - N.

Proof:

Take k + 1 general points P_0, \ldots, P_k on X.

Assume first that N = n + k + 1. Denote the family of rational normal curves of degree k + 1 on X through P_0, \ldots, P_k by $\{\Gamma\}$ and the inclusion relation $\{(G, \Gamma) \mid \Gamma \subset G\} \subset \mathbb{G}(k+3, n+k+1) \times \{\Gamma\}$ by I. From the proof of [7, Prop. 6.3] it follows that for a general surface section $S \subset \mathbb{P}^{k+3}$ of X containing P_0, \ldots, P_k there exists a rational normal curve $\Gamma \subset S$ of degree k+1 through P_0, \ldots, P_k . So we know that dim $I \ge \dim\{G \in \mathbb{G}(k+3, n+k+1) \mid P_0, \ldots, P_k \in G\} = 3(n-2)$. Since a general fibre of the (surjective) projection map $I \to \{\Gamma\}$ has dimension 2(n-2), we know that dim $\{\Gamma\} \ge n-2$. So X is $G_{k-1,k}$ -defective with defect at least n-1.

Suppose now that N > n + k + 1. Consider a linear subspace $\mathbb{P}^{N-k-1} \subset \mathbb{P}^N$ disjoint with $\langle P_0, \ldots, P_k \rangle$. Let Y be the closure of the image of the projection map $X \to \mathbb{P}^{N-k-1}$. From the proof of [7, Prop. 6.1] it follows that a general point in the singular locus of Y gives rise to a rational normal curve Γ on X of degree k + 1 through P_0, \ldots, P_k , hence X has $G_{k-1,k}$ -defect $\delta_{k-1,k}(X)$ at least dim(Sing(Y)) + 1. In case N = n + k + 2 the variety Y is a quadric in \mathbb{P}^{n+1} that contains linear subspaces of dimension n - 1. From [10, Chap. 6, Sec. 1] it follows that the rang of the quadric is at most 4 and so Sing(Y) is at least (n-3)dimensional, hence X has $G_{k-1,k}$ -defect at least n - 2. If N > n + k + 2, Y is a scroll with dim(Sing(Y)) $\geq 2n + k - 1 - N \geq 0$, so $\delta_{k-1,k}(X) \geq 2n + k - N \geq 1$.

Remark 6.2. If we take N = n + k + 2, we see that a smooth *n*-dimensional rational normal scroll $X \subset \mathbb{P}^N$ is $G_{k-1,k}$ -defective with defect at least n-2. One can see that the image of X under a projection with center a point in $\mathbb{P}^N \setminus X$ will also have $G_{k-1,k}$ -defect at least n-2.

7 A fine classification

The case of curves, surfaces and threefolds has been handled in [7] (k > n and $n \in \{2,3\}$), [5] (n = k = 2), [8] (n = k = 3) or [4] (n = 1). So we have only to prove Theorem 1.2. in case $n \ge 4$. From Section 4 follows that there are no smooth varieties that satisfy condition 1 of Theorem 1.1, so we only have to consider condition 2. The proof will also imply that only in the case that X is rational normal scroll of (minimal) degree in \mathbb{P}^{n+k+1} the $G_{k-1,k}$ -defect is equal to n-1.

Theorem 7.1. Let $X^{n\geq 4} \subset \mathbb{P}^{N\geq n+k+1}$ be a smooth non-degenerate variety with $a = \delta_{k-1,k}(X) \geq n-2$ that satisfies condition 2 of the characterization for $k \geq n$. Then X is one of the following varieties:

- 1. X^n is a rational normal scroll of (minimal) degree k + 2 in \mathbb{P}^{n+k+1} ;
- 2. X^n is a rational normal scroll of (minimal) degree k+3 in \mathbb{P}^{n+k+2} ;
- 3. X^n is the projection in \mathbb{P}^{n+k+1} of a n-dimensional rational normal scroll of (minimal) degree k+3 in \mathbb{P}^{n+k+2} .

Proof:

Suppose that $X^{n\geq 4} \subset \mathbb{P}^{N\geq n+k+1}$ satisfies the conditions of the Theorem. Let P_0, \ldots, P_k be k + 1 general points of X, contained in a general curve section $C = X \subset G_0$ (G_0 is a linear subspace of dimension N - n + 1) of X. Note that C is smooth and that there exists a family of rational normal curves of degree k+1 on X through P_0, \ldots, P_k of dimension $a - 1 \geq n - 3$. Let $H \subset \langle P_0, \ldots, P_k \rangle$ be a k - 1-dimensional linear subspace, $(Q_0, \ldots, Q_k) \in \Omega_{H,k}$ a general point and $S' = X \subset G'$ with $G' = \langle G_0, Q_0 \rangle$ (S' is an irreducible surface section of X that is smooth in the points P_0, \ldots, P_k). There is a (n - 2)-dimensional family of (N - n + 2)-dimensional linear subspaces of \mathbb{P}^N containing G_0 , so we have two possibilities (we use the notations of the proof of Prop. 5.1):

- (a) G' is a general element in this family; i.e. the projection morphism ν is surjective. In this case S' is smooth since X is smooth and S' is a general surface section of X. The surface S' contains a subfamily of $\{\Gamma\}$ of dimension at least k.
- (b) G' is a special element in this family; i.e. the projection morphism ν is not surjective. In this case S' contains a subfamily of {Γ} of dimension at least k + 1. In particular the linear system |g| on C has degree k + 1 and dimension at least k + 1. Hence S' has sectional genus 0, but S' does not need to be smooth.

Case (a).

Let \mathcal{L} be the linear system defining $S \subset \mathbb{P}^{N-1 \ge k+3}$ and write $\mathcal{L}(-\Gamma)$ to denote $\{D \in \mathcal{L} \mid D - \Gamma \ge 0\}$. Since $\dim(\langle \Gamma \rangle) = k + 1$, we have $\dim(\mathcal{L}(-\Gamma)) \ge 1$. Notice that $\mathcal{L} - \Gamma = \{D - \Gamma \mid D \in \mathcal{L}(-\Gamma)\}$ does not have fixed components because Γ is the only curve in $X \cap \langle \Gamma \rangle$ and $X \cap \langle \Gamma \rangle$ smooth in a general point of Γ . Let C' be a general element of $\mathcal{L} - \Gamma$, then $\Gamma.(\Gamma + C') = k + 1$. Since $\Gamma \cup C'$ is connected we have $\Gamma.C' \ge 1$. On the other hand, since S' contains a subfamily of $\{\Gamma\}$ of dimension at least k we find $\Gamma.\Gamma \ge k-1$. So we obtain two possibilities: $\Gamma.C' = 1$ and $\Gamma.\Gamma = k$ or $\Gamma.C' = 2$ and $\Gamma.\Gamma = k - 1$.

Case $\Gamma.C' = 2$ and $\Gamma.\Gamma = k - 1$.

If $\mathcal{L} - \Gamma$ is composed by a pencil, we can prove using exactly the same arguments as in the proof of [7, Th. 1.2, p. 216] that X^n is minimal of degree k + 3 in \mathbb{P}^{n+k+2} or a projection of such a variety in \mathbb{P}^{n+k+1} from a point. By [9], the only *n*-dimensional varieties with minimal degree k+3 for some $k \ge n \ge 4$ are rational normal scrolls, so we get the cases 2 and 3 of the Theorem.

Assume now that $\mathcal{L} - \Gamma$ is not composed by a pencil, hence in general C' is irreducible. Since $\Gamma C' = 2$, we have

$$g(C) = p_a(\Gamma + C') = 1 + \frac{1}{2}(\Gamma + C').(\Gamma + C' + K) = p_a(C') + p_a(\Gamma) + 1 \le 1.$$

Since $g(\Gamma) = p_a(\Gamma) = 0$, we find $g(C') = p_a(C') = 0$ and g(C) = 1, so X has sectional genus 1. From Section 2.4 it follows that X has to be a scroll over an elliptic curve. This gives us a contradiction since k + 1 general points of X are contained in a rational normal curve of degree k + 1.

Case $\Gamma . C' = 2$ and $\Gamma . \Gamma = k - 1$.

Because |C'| has no fixed components, |C'| is not composed by a pencil and so C' is in general irreducible. Since dim $|\Gamma| \ge k$ and $\Gamma.C' = 1$, it follows that $|\Gamma - C'| \ne \emptyset$ and we can write $\Gamma \sim \alpha C' + C''$ for some $\alpha \ge 1$ and $C'' \ge 0$ with $|C'' - C'| = \emptyset$. If C'' = 0 we have $\Gamma \sim \alpha C'$ and thus $\alpha^2(C'.C') = \Gamma.\Gamma = k$ and $\alpha(C'.C') = \Gamma.C' = 1$, which is in contradiction with $k \ge n \ge 4$, hence $C'' \ne 0$. We have

$$\alpha(C'.C') + C'.C'' = (\alpha C' + C'').C' = \Gamma.C' = 1.$$

Since $C'.C' \ge 0$ (dim(|C'|) ≥ 1) and $C'.C'' \ge 1$ ($C' \cup C''$ is connected) we obtain C'.C' = 0 and so deg(X) = C.C = k+2. Because codim $(X)+1 = N-n+1 \ge k+2$ we find that X^n is a smooth variety in \mathbb{P}^{n+k+1} of minimal degree k+2. Using [9], we find that X is a rational normal scroll (Case 1 of the Theorem).

Case (b).

Since C is a smooth hyperplane section of S', S' is smooth along C and thus $\operatorname{Sing}(S') \cap C = \emptyset$. So $\operatorname{Sing}(S')$ is finite and S' is irreducible.

Claim. If $s \in Sing(S')$ and $\Gamma \subset S'$ is a general curve in $\{\Gamma\}$, then $s \notin \langle \Gamma \rangle$.

Proof Claim: First we are going to prove that $s \notin \Gamma$. Assume $s \in \Gamma$. Since $\operatorname{Sing}(S')$ is finite, $s \in \Gamma$ for all curves Γ on S'. So a general curve Γ on S' is completely determined by k + 1 points P_0, \ldots, P_k on C as being the only 1-dimensional component of $X \cap \langle P_0, \ldots, P_k, s \rangle$. The uniqueness follows from $X \cap \langle P_0, \ldots, P_k \rangle = \{P_0, \ldots, P_k\}$ as a scheme. Now take k + 2 general points $P_0, \ldots, P_{k-1}, Q, Q'$ on C and let Γ (respectively Γ') be the curve in the family corresponding with P_0, \ldots, P_{k-1}, Q (respectively P_0, \ldots, P_{k-1}, Q'). Because

dim $(\langle P_0, \ldots, P_{k-1}, Q, Q' \rangle) = k + 1$, we can consider a deformation of C on S' to another curve C' containing $P_0, \ldots, P_{k-1}, Q, Q'$. Since Γ and Γ' are contained in $\langle C' \cup \{s\} \rangle$, the surface S' is deformed into $S'' = X \cap \langle C' \cup \{s\} \rangle$. Because $\Gamma \cap \Gamma'$ is finite it follows $s \in \operatorname{Sing}(S'')$. So for a general linear subspace $\mathbb{P}^{N-n+2} \subset \mathbb{P}^N$ with $\langle P_0, \ldots, P_{k-1}, Q, Q', s \rangle \subset \mathbb{P}^{N-n+2}$ we find dim $(\mathbb{T}_s(X) \cap \mathbb{P}^{N-n+2}) > 2$, so we may assume that

$$\mathbb{T}' := \mathbb{T}_s(X) \subset \langle P_0, \dots, P_{k-1}, Q, Q', s \rangle = \mathbb{T}_s(X) \subset \mathbb{P}^{N-n+2}$$

with $\mathbb{P}^{N-n+2} = \langle S' \rangle = \langle C \cup \{s\} \rangle$. Denote $\mathbb{T}_s(X) \subset \langle P_0, \dots, P_{k-1}, Q, Q' \rangle$ by \mathbb{T} . Since $s \notin C = X \cap \langle C \rangle$ and $\langle P_0, \dots, P_{k-1}, Q, Q' \rangle \subset \langle C \rangle \subsetneq \langle C \cup \{s\} \rangle$, we have $\mathbb{T} = \mathbb{T}_s(X) \cap \langle C \rangle$ and so

$$\mathbb{T} = \mathbb{T}_s(X) \cap \langle C \rangle \subset \langle P_0, \dots, P_{k-1}, Q, Q' \rangle \subset \langle C \rangle.$$

Since $P_0, \ldots, P_{k-1}, Q, Q'$ are generally chosen on C and k+1 < N-n+1, we may assume that those points are contained in a general hyperplane of $\langle C \rangle$ (not containing \mathbb{T}), a contradiction.

If $s \in \langle \Gamma \rangle \backslash \Gamma$ then s is one of the finitely many points in $\langle \Gamma \rangle \cap X$ not on Γ . So a general curve Γ is again completely determined by k + 1 points P_0, \ldots, P_k on C. Take a deformation of C on X to another curve C' containing P_0, \ldots, P_k . Since Γ is contained in $\langle C' \cup \{s\} \rangle$ and $s \in \langle \Gamma \rangle$, the surface S' deforms to $S'' = \langle C' \cup \{s\} \rangle \cap X$ with $s \in \operatorname{Sing}(S'')$. As before we find $\mathbb{T}_s(X) \subset \langle P_0, \ldots, P_k, s \rangle$ and thus $\dim(\mathbb{T}_s(X) \cap \langle P_0, \ldots, P_k \rangle) \geq 2$ for general points P_0, \ldots, P_k on C. Since $s \notin \langle P_0, \ldots, P_k \rangle \subset \langle C \rangle$ (otherwise $s \in C = X \cap \langle C \rangle$ and so $s \notin \operatorname{Sing}(S')$) we obtain $\mathbb{T} := \mathbb{T}_s(X) \cap \langle P_0, \ldots, P_k \rangle = \mathbb{T}_s(X) \cap \langle C \rangle$. But we may again assume that P_0, \ldots, P_k are contained in a general hyperplane of $\langle C \rangle$ since k < N - n + 1. So we get a contradiction. \Box

By using the same arguments as in the proof of [7, Theorem 1.2, p. 218-219] we can prove that in this case X is of minimal degree k + 2 in \mathbb{P}^{n+k+1} . Hence X is a rational normal scroll by [9].

Acknowledgements

The author wishes to thank Marc Coppens for suggesting the subject of the paper and some interesting ideas. His research was partially supported by the Fund of Scientific Research - Flanders (G.0318.03).

References

[1] E. Arbarello, M. Cornalba, P.A. Griffith, J. Harris *Geometry of Algebraic Curves Volume* I, Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Vol. **267** (1985).

- C. Carlini, J. Chipalkatti, On Waring's problem for several algebraic forms, Comment. Math. Helv. 78 (2003), 494-517.
- [3] L. Chiantini, C. Ciliberto, Weakly defective varieties, Trans. Amer. Soc. 354 (2001), 151-178.
- [4] L. Chiantini, C. Ciliberto, The Grassmannians of secant varieties of curves are not defective, Indag. Math. 13 (2002) 23-28.
- [5] L. Chiantini, M. Coppens, Grassmannians of secant varieties, Forum Math. 13 (2001) 615-628.
- [6] C. Ciliberto, Geometric aspects of polynomial interpolation in more variables and of Waring's problem, European Congress of Mathematics, Barcelona, Vol. I (2000), Progress in Mathematics, Vol. 201 (2001), 289-316.
- [7] F. Cools, On $G_{k-1,k}$ -defectivity of smooth surfaces and threefolds, Journal of Pure and Applied Algebra 203 (2005) 204-219.
- [8] M. Coppens, Smooth Threefolds with $G_{2,3}$ -defect, Int. J. of Math., Vol. 15, No. 7 (2004), 651-671.
- [9] D. Eisenbud, J. Harris, On varieties of minimal degree, in Algebraic Geometry, Bowdoin 1985, Proceedings of Symposia in Pure Mathematics, Vol. 46 (1987), 3-14.
- [10] Ph. Griffiths, J. Harris, *Principles of Algebraic Geometry*, Wiley Interscience Publ. (1978).
- [11] C. Fontanari, On Waring's problem for many forms and Grassmann defective varieties, Journal of Pure and Applied Algebra, Vol. 74, No. 3 (2002), 243-247.
- [12] T. Fujita, Classifiaction theories of polarized varieties, London Math. Soc. Lecture Note Series, vol. 155, Cambridge University Press, 1990.
- [13] E. Rogora, Varieties with many lines.
- [14] F. Zak, Tangents and secants of algebraic varieties, Translations of Mathematical Monographs 127 (1993).