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1 Introduction

Let X be a non-degenerate irreducible variety in PN of dimension n and let
0 ≤ h ≤ k be integers. Then we denote by Gh,k(X) the closure of the set of
h-dimensional linear subspaces H of PN that are contained in the span of k + 1
independent points of X. We call Gh,k(X) the h-Grassmannian of (k + 1)-secant
k-planes of X. The subvariety Gh,k(X) of G(h,N) has an expected dimension,
equal to

min{(k + 1)n + (k − h)(h + 1), (h + 1)(N − h)}.

This is an upper bound of the dimension of Gh,k(X). Now we say that X is Gh,k-
defective if the dimension of Gh,k(X) is smaller than the expected dimension. In
this case we call the difference of both dimensions the Gh,k-defect of X.

If h = 0, the variety Gh,k(X) is just the kth secant variety Sk(X) of X and
in this case the terminology Gh,k-defectivity is usually replaced by k-defectivity.
This case is for example studied in [14].

In case h > 0, things are much more complicated, mainly because of the lack
of a Terracini Lemma. Nevertheless, there are some results. For example in [4]
is shown that irreducible curves are not Gh,k-defective, in [5] is proved a clas-
sification of surfaces with G1,2-defect and in [7] one can find a classification of
Gk−1,k-defective surfaces and threefolds in case k > n.

One of the applications of the study of Gh,k-defective varieties is found in
the study of the Waring problem for forms (see [2, 6, 11]). Here one is mainly
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interested in the case where X is a Veronese embedding of projective spaces.
Another extrinsic reason of studying Gh,k-defective varieties is their strange

behaviour under projections (especially varieties with high Gk−1,k-defect).

In this paper we will prove that the Gk−1,k-defect of a n-dimensional variety
is at most n − 1 if k ≥ n. This can be seen as an extension of Zak’s result
(case k = 1) giving a bound on the dimension of the secant varieties (see [14]).
Moreover we characterize varieties Xn with a certain Gk−1,k-defect a > 0, again
in the case k ≥ n.

Theorem 1.1. Let Xn (n ≥ 2) be a non-degenerate variety in PN with N ≥
n + k + 1 for an integer k ≥ n and suppose that Gk−1,k(X) = (k + 1)n + k − a
with a > 0. Then a ≤ n−1 and one of the following two properties hold for k +1
general points P0, . . . , Pk on X:

1. For each i ∈ {0, . . . , k}, there exists a linear subspace Li of dimension a on
X containing Pi and so that dim〈L0, . . . , Lk〉 = k + a.

2. There exists a variety Υa of minimal degree k + 1 on X that contains the
points P0, . . . , Pk. In this case there exists an (a− 1)-dimensional family of
rational normal curves Γ of degree k + 1 on X containing P0, . . . , Pk.

Furthermore, if X satisfies one of the two properties, X is Gk−1,k-defective with
defect at least a.

Using the above Theorem, we will be able to classify the two most extremal
cases (Gk−1,k-defect equal to n − 2 or n − 1) if Xn is smooth and k ≥ n. Since
the case n ≤ 3 has been handled in [4, 7, 8], we will focus on the case n ≥ 4.

Theorem 1.2. Let Xn ⊂ PN be a smooth non-degenerate Gk−1,k-defective variety
with defect a ≥ n − 2 for an integer k ≥ n. Then X is one of the following
varieties:

1. Xn is a rational normal scroll of (minimal) degree k + 2 in Pn+k+1 (a =
n− 1);

2. n ≥ 3 and Xn is a rational normal scroll of (minimal) degree k + 3 in
Pn+k+2 (a = n− 2);

3. n ≥ 3 and Xn is the projection in Pn+k+1 of a n-dimensional rational
normal scroll of (minimal) degree k + 3 in Pn+k+2 (a = n− 2);

4. n = k = 3 and X3 is a hyperplane section of the Segre-embedding of P2×P2

in P8 (a = 1);

2



5. n = 3, k = 4 and X3 is a (linearly normal) embedding of the blowing-up of
P3 in a point in P8 (a = 1);

6. n = 3, k = 5 and X3 is the image of the 2-Veronese-embedding of P3 in P9

(a = 1).

2 Some conventions, definitions and generalities

2.1. Conventions. We write PN to denote the N -dimensional projective space
over the field C. A variety X ⊂ PN is an irreducible reduced Zariski-closed sub-
set of PN and we say that X is non-degenerate in PN if X is not contained in a
hyperplane of PN .

Let X ⊂ PN be a non-degenerate variety of dimension n. Then we call a closed
subscheme Y ⊂ X a m-dimensional section of X if Y is the scheme-theoretical
intersection of X with a linear subspace PN−n+m ⊂ PN such that all components
have dimension m.
If X ⊂ PN is a variety and P = (P1, . . . , Pr) is a point of Xr, we write 〈P 〉 to
denote the linear span 〈P1, . . . , Pr〉 ⊂ PN .

2.2. Definition of Gk−1,k(X) and some results. Let X ⊂ PN be a non-
degenerate n-dimensional variety and k ≤ N an integer. We can consider the
rational map ω : Xk+1 99K G(k,N) that maps a point P = (P0, . . . , Pk) in Xk+1

to the span 〈P 〉 if Pi 6= Pj for all i 6= j and dim(〈P 〉) = k. Such a span is called
a (k + 1)-secant k-plane of X. Now consider the incidence diagram

I

G(k − 1, N) G(k,N) Xk+1

..................................................................................................................................................................
...
............

α

..................................................................................................................................................................... .........
...

β

............................................................................................
ω

with I = {(H, G)|H ⊂ G} ⊂ G(k − 1, N)×G(k, N) and projection maps α and
β. Now we define Gk−1,k(X) as α(β−1(im(ω))). So Gk−1,k(X) is equal to the
closure of the set of (k − 1)-dimensional subspaces H of PN contained in some
(k + 1)-secant k-plane G of X.

From [5, Prop. 1.1] it follows that the dimension of Gk,k(X) := im(ω) ⊂
G(k,N) is equal to min{(k + 1)(N − k), (k + 1)n}. Since the fibers of β are
k-dimensional, we have that the dimension of Gk−1,k(X) is smaller or equal than
(k+1)n+k. Hence we define the expected dimension of Gk−1,k(X) ⊂ G(k−1, N)
as

expdim(Gk−1,k(X)) = min{(k + 1)n + k, k(N − k + 1)}.
If dim(Gk−1,k(X)) is smaller than this expected dimension, we say that X has
Gk−1,k-defect.
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In case k ≥ n the expected dimension of Gk−1,k(X) is equal to (k + 1)n + k
if and only if N ≥ n + k + 1. If dim(Gk−1,k(X)) = (k + 1)n + k − a and
N ≥ n + k + 1, for a general element H ∈ Gk−1,k(X) the set of (k + 1)-secant
k-planes of X containing H has dimension a.

Remark. If N ≤ n+k, im(ω) is equal toG(k, N) . Hence, in this case X is not
Gk−1,k-defective if N ≤ n + k since Gk−1,k(X) := α(β−1(im(ω))) = G(k − 1, N).

2.3. Let X ⊂ PN be a non-degenerate n-dimensional variety with N ≥ n + k + 1
for some integer k and let P0, . . . , Pk be general points on X. Since these
k + 1 points are contained in a general curve section of X, the uniform posi-
tion lemma for curves (see [1] and [3, Proposition 2.6] for the argument) implies
that X ∩ 〈P0, . . . , Pk〉 = {P0, . . . , Pk} as a scheme.

2.4. Polarized varieties. A polarized variety is a pair (V,S) such that V is an
abstract projective variety and S is an ample invertible sheaf on V .

For polarized varieties, the notion of sectional genus (for a general definition,
see [12]) exists. If S is very ample on V and X ⊂ PN is the embedding of V using
the global sections of S, then the sectional genus of (V,S) is defined as being the
arithmetic genus of a general curve section of X ⊂ PN .

The classification of smooth polarized varieties (V,S) of sectional genus at
most one is given in [12, Section 12]. We only consider the case where V = Xn ⊂
PN and S = OX(1) with n ≥ 4 and N ≥ 9.

Since n ≥ 4, if the sectional genus is 0 (see [12, Section 5]), X is a scroll of
a vector bundle on P1. Moreover, if X is embedded using the complete linear
system then X is a rational normal scroll of (minimal) degree N −n+1. We can
obtain all smooth rational normal scrolls Xn≥4 ⊂ PN in this way.

If the sectional genus is equal to 1, X has to be a scroll of a vector bundle on
a elliptic curve, since there are no Del Pezzo varieties in the considered case (see
[12, Section 8]).

3 A characterization

Proof of Theorem 1.1.:
Let X ⊂ PN≥n+k+1 be a non-degenerate n-dimensional variety with Gk−1,k-defect
equal to a > 0 for some k ≥ n.

Take H ∈ Gk−1,k(X) general and consider the closure in Xk+1 of the set
of points (P0, . . . , Pk) with Pi 6= Pj for all i 6= j and H ⊂ 〈P0, . . . , Pk〉. The
dimension of this set is equal to a. Let ΩH,k be an a-dimensional component
of that set. Take a general element P = (P0, . . . , Pk) of ΩH,k. Since we have
chosen H ∈ Gk−1,k(X) generally, (P0, . . . , Pk) is a general element of Xk+1.
In particular, 〈P0, . . . , Pk〉 ∩ X = {P0, . . . , Pk} as a scheme. Now let Q(1) =
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(Q
(1)
0 , . . . , Q

(1)
k ), . . . , Q(a) = (Q

(a)
0 , . . . , Q

(a)
k ) be other general elements of ΩH,k. De-

note ΨH,k =
⋃k

i=0 pi(ΩH,k) and 〈P, Q(1), . . . , Q(b)〉 by Mb for each b ∈ {1, . . . , a},
with pi the (i + 1)th projection map from Xk+1 to X.

Claim. dim Ma = k + a and dim(X ∩Ma) = a.

Proof of the Claim:
We will proof by induction on b the following subclaim: dim Mb = k + b and
dim(X ∩ Mb) = b for each b ∈ {0, . . . , a}. The Claim will then follow directly
from the subclaim by taking b equal to a.

For b equal to 0, the subclaim follows from Section 2.3. Now let b be an
integer so that 0 < b ≤ a. We know that

dim Mb = dim Mb−1 + dim〈Q(b)〉 − dim(Mb−1 ∩ 〈Q(b)〉)
≤ (k + b− 1) + k − (k − 1) = k + b

since H ⊂ Mb−1 ∩ 〈Q(b)〉. Suppose that dim Mb < k + b, thus Mb = Mb−1 and
dim Mb = k+b−1 < k+a. Since we have chosen Q(b) generically, we may assume
that ΨH,k ⊂ Mb. Hence dim ΨH,k ≤ b−1 < a because ΨH,k ⊂ X∩Mb = X∩Mb−1

and dim(X ∩ Mb−1) = b − 1. So the map p0 : ΩH,k → ΨH,k is not generically
finite. Let P ′

0 = p0(P
′) be a general element in the image of the map. Then

dim(X ∩ 〈P ′〉) = dim(X ∩ 〈P ′
0, H〉) ≥ 1, hence H ∩ X 6= ∅. This gives us a

contradiction since H is a general element of Gk−1,k(X).
Now we are going to show that dim(X ∩ Mb) = b. Take a general hyper-

plane π of Mb through H but not through 〈P 〉, so π ∩ 〈P, Q(i)〉 is a hyperplane
of 〈P, Q(i)〉 for each i ∈ {1, . . . , b}. Then it follows from [7, Prop. 1.3] that
there exists a point R(i) ∈ Xk+1 such that H ⊂ 〈R(i)〉 ⊂ 〈P, Q(i)〉 for each i.
Since 〈P, R(i)〉 = 〈P, Q(i)〉, the span 〈R(1), . . . , R(b)〉 is equal to π. By induction
(R(1), . . . , R(b) are also general in ΩH,k) we have dim(X∩〈R(1), . . . , R(b)〉) = b−1,
so dim(X ∩Mb) = b. 2

The Claim immediately implies that a < n. Let Υ be an a-dimensional com-
ponent of X ∩Ma.

Claim. Either Υ ∩ {P0, . . . , Pk} = {P0, . . . , Pk} or Υ ∩ {P0, . . . , Pk} is only one
point. In the second case X ∩ Ma contains an a-dimensional linear subspace Li

with Li ∩ {P0, . . . , Pk} = {Pi} for each i ∈ {0, . . . , k}.

Proof of the Claim:
Analogous to the proof of [7, Prop. 1.3, Claim 3]. 2

If Υ∩{P0, . . . , Pk} = {P0, . . . , Pk}, we find Υ∩〈P 〉 = {P0, . . . , Pk} as a scheme
because X∩〈P 〉 = {P0, . . . , Pk} as a scheme and Υ ⊂ X. Hence deg(Υ) = k+1 =
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codimMa(Υ) + 1 and so Υ is of minimal degree. In this case, we find that k + 1
general points on X are contained in an a-dimensional variety of minimal degree
k + 1.

It is easy to see that both properties give rise Gk−1,k-defectivity with defect
at least a. �

4 The first case of the characterization

Let Xn ⊂ PN be a non-degenerate irreducible variety with N ≥ n + k + 1 for
an integer k ≥ n such that for k + 1 general points P0, . . . , Pk on X there exist
a-dimensional (a > 0) linear subspaces L0, . . . , Lk ⊂ X of PN with Pi ∈ Li for
each i and dim〈L0, . . . , Lk〉 = k + a. Note that by a monodromy argument, each
property that holds for a subset of {L0, . . . , Lk} also holds for another subset
with the same cardinality.

Suppose that dim〈L0, . . . , Lk−1〉 < k + a − 1. Then one can easily prove by
induction that dim〈L0, . . . , Ll−1〉 < k + a − 1 − 2(k − l). For l = 1 we have
a < k + a− 1− 2(k − 1) and so k < 1, a contradiction.

Now suppose that dim〈L0, . . . , Lk−1〉 = k + a− 1. Then it is easy to prove by
induction that dim〈L0, . . . , Li〉 = a+ i, in particular we have dim〈L0, L1〉 = a+1
and so dim(L0 ∩ L1) = a− 1. By monodromy we have dim(Li ∩ Lj) = a− 1 for
all i 6= j. Hence the Linear Lemma (see [5]) implies that M := L0 ∩ · · · ∩Lk is of
dimension a− 1. Note that Pi 6∈ M since otherwise 〈P0, . . . , Pk〉 ⊂ M and so k ≤
a−1 ≤ n−1, a contradiction. Consider T ⊂ X×Xk+1 with (S, (P0, . . . , Pk)) ∈ T
if and only if there exist a-dimensional subspaces L0, . . . , Lk ⊂ X with S, Pi ∈ Li

for all i. We know that dim T ≥ (k + 1)n + a − 1 and so there exists a point
S ∈ X so that the fibre above S is at least nk + a− 1-dimensional. Let T ′ be a
component of that fibre and let Xi be its image under the i-th projection map to
X (i ∈ {0, . . . , k}). If Xi 6= X for each i, then nk+a−1 ≤ dim T ′ ≤ (k+1)(n−1),
so a ≤ n − k ≤ 0, a contradiction. Hence there exists an i so that Xi = X and
thus X is a cone with center S.

If a > 1, let PN−1 be a hyperplane of PN not through S. Then for k + 1 ge-
neral points P ′

0, . . . , P
′
k on X ′ := X ∩PN−1, there exist (a− 1)-dimensional linear

subspaces L′
0, . . . , L

′
k on X ′ with P ′

i ∈ L′
i such that dim〈L′

0, . . . , L
′
k〉 = k + a− 1

and dim〈L′
0, . . . , L

′
k−1〉 = k + a − 2. With the same arguments as above, we see

that X ′ is again a cone. So, by induction, we find that X is a cone with center a
linear subspace of dimension a− 1.

Assume that dim〈L0, . . . , Lk−1〉 > k +a− 1, so 〈L0, . . . , Lk−1〉 = 〈L0, . . . , Lk〉.
Take i ∈ {1, . . . , k} and consider 〈Li, P1 . . . , Pk〉. Clearly, the dimension of this
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set is smaller than k+a since Pi ∈ Li. Suppose that dim〈Li, P1 . . . , Pk〉 < k+a−1,
then dim(Li∩〈P1, . . . , Pk〉) ≥ 1 but X ∩〈P1, . . . , Pk〉 = {P1, . . . , Pk} as a scheme,
a contradiction. So we have that dim〈Li, P1 . . . , Pk〉 = k + a− 1.
Now, let 1 ≤ i ≤ j ≤ n. If dim〈Li, Lj, P1 . . . , Pk〉 < k + a we have Lj ⊂
〈Li, P1 . . . , Pk〉 and by monodromy 〈L0, . . . , Lk〉 ⊂ 〈Li, P1 . . . , Pk〉, a contradic-
tion. Hence dim〈Li, Lj, P1 . . . , Pk〉 = k+a and 〈Li, Lj, P1 . . . , Pk〉 = 〈L0, . . . , Lk〉.
Now fix P1, . . . , Pk on X and consider a 1-parameter family P0(t) on X with
P0(0) = P0. Consider also a 1-parameter family H(t) ⊂ 〈P0(t), P1, . . . , Pk〉 of
linear subspaces of dimension k − 1 with H(0) = H and 1-parameter families

Q
(j)
i (t) on X with Q

(j)
i (0) = Q

(j)
i for each i ∈ {0, . . . , k} and each j ∈ {1, . . . , a}

with H(t) ⊂ 〈Q(j)
0 (t), . . . , Q

(j)
k (t)〉 for each j. These families imply the exis-

tence of 1-parameter families L0(t), . . . , Lk(t) of a-dimensional subspaces with
Li(0) = Li for all i, Pi ∈ Li(t) for all i ∈ {1, . . . , k}, P0(t) ∈ L0(t) and
dim〈L0(t), . . . , Lk(t)〉 = k + a for every general value of the parameter t.
We may assume that in general P0(t) 6∈ 〈L0, . . . , Lk〉. If Li(t) = Li for each i
and for a general value of t, then P0(t) ∈ 〈L0(t), . . . , Lk(t)〉 = 〈L0, . . . , Lk〉, a
contradiction. Thus by monodromy we may assume that Li(t) 6= Li for a general
value of t. So there exists a family of a-dimensional subspaces on X through
a general point of X. Consider Σ = {(`, P )|P ∈ ` ⊂ X} ⊂ G(1, N) × X.
Above a general point P of X there is at least an a-dimensional family of lines,
so dim(Σ) ≥ n + a. Since a general not-empty fibre of p : Σ → G(1, N) is 1-
dimensional, we have dim(p(Σ)) ≥ n + a − 1. If a ≥ n − 2 we find by using
[13] that a = n − 2 and X is a scroll in Pn−1, so X is embedded in PN as a
Pn−1-bundle over a curve K. Let KP be the (n − 1)-dimensional component of
the union of all lines on X through a (general) point P ∈ X. We know that KP

is a (n− 1)-dimensional linear subspace of PN . Using a 1-parameter family P0(t)
on X we find 1-parameter families L1(t) and L2(t) in respectively KP1 and KP2 .
We have

〈P0(t), P1, . . . , Pk〉 ⊂ 〈L1(t), L2(t), P3, . . . , Pk〉 ⊂ 〈KP1 , KP2 , P3, . . . , Pk〉.

Since
dim(〈KP1 , KP2 , P3, . . . , Pk〉) ≤ k + a + 2 = k + n

and thus X 6⊂ 〈KP1 , KP2 , P3, . . . , Pk〉, we can choose the parameter family P0(t)
such that P0(t) 6∈ 〈KP1 , KP2 , P3, . . . , Pk〉 for general values of the parameter t, a
contradiction.

5 The second case of the characterization

Proposition 5.1. Let Xn ⊂ PN≥n+k+1 (k ≥ n) be a non-degenerate variety
so that for each k + 1 general points P0, . . . , Pk on X there exists an (a − 1)-
dimensional family of rational normal curves Γ of degree k + 1 on X through
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P0, . . . , Pk (a > 0). Then the genus of a general curve section of X is at most
n− a− 1.

Proof:
Let {Γ} be the family of rational normal curves Γ on X of degree k + 1. By
assumption, we have dim{Γ} ≥ n(k + 1)− (k + 1) + (a− 1). Now take a general
curve section C ′ = X∩G′

0 (G′
0 is a linear subspace of dimension N−n+1 ≥ k+2)

and take k + 1 general points P0, . . . , Pk on C ′ (these points are also general on
X). From Bertini’s theorems it follows that C ′ is irreducible and smooth at
P0, . . . , Pk. Consider a (k− 1)-dimensional linear subspace H of 〈P0, . . . , Pk〉 and
take (Q0, . . . , Qk) ∈ ΩH,k. Hence, G′ = 〈G′

0, Q0〉 is a (N − n + 2)-dimensional
linear subspace of PN which defines an irreducible surface section S ′ = X ∩G′ of
X that is smooth in P0, . . . , Pk.

Consider the inclusion relation I ′ ⊂ {Γ} ×G(N − n + 2, N). The dimension
of a general fibre of I ′ → {Γ} is (N − n − k + 1)(n − 2). Hence, we obtain
a irreducible component I of I ′ containing (Γ, G′) of dimension greater than or
equal to (N − n − k + 1)(n − 2) + (k + 1)(n − 1) + (a − 1), with Γ the rational
normal curve contained in X ∩ 〈P0, . . . , Pk, Q0, . . . , Qk〉. Consider the projection
ν : I → G(N − n + 2, N). The dimension of a general non-empty fibre of ν is at
least

(N−n−k+1)(n−2)+(k+1)(n−1)+(a−1)−(N−n+3)(n−2) = k−n+a+2.

If we consider the fibre above G′, we find that S ′ = X ∩G′ contains a subfamily
of {Γ} of dimension at least k − n + a + 2. Let S be the minimal resolution of
singularities of S ′. We become a family {γ} of rational curves on S of dimension
at least k−n+ a+2 by considering the strict transforms of the curves in {Γ} on
S ′. Denote the strict transforms on S of Γ and C ′ by resp. γ and C ′′. Any two
points of S can be connected by means of a rational curve in {γ}. This implies
h1(S,OS) = 0, so the family {γ} is contained in a linear system {γ} of dimension
at least k − n + a + 2. This linear system induces a linear system |g| on the
normalization C of C ′′. Since S ′ is smooth at P0, . . . , Pk, we find that S and S ′

are isomorphic above neighborhoods of those points. Since dim(|C ′′ − γ|) ≥ 1
(C ′′ is a divisor corresponding to the morphism S → G′ ∼= PN−n+2 and γ cor-
responds to Γ with dim(〈Γ〉) = k + 1), no curve of |γ| contains C ′′, hence
dim(|g|) ≥ k − n + a + 2. Since Γ ∩ C ′ = {P0, . . . , Pk} as a scheme, we find
γ ∈ |γ| gives rise to P0 + . . . + Pk ∈ |g|. Since P0, . . . , Pk are general points of
C, we see that |g| is non-special and dim(|g|) = deg(g) − g(C) = k + 1 − g(C).
Thus, k + 1− g(C) ≥ k − n + a + 2, so g(C) ≤ n− a− 1. �
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6 Examples

Example 6.1. Let Xn ⊂ PN be a n-dimensional smooth rational normal scroll.
If k ≥ n and n + k + 1 ≤ N ≤ 2n + k − 1, X is Gk−1,k-defective with defect at
least 2n + k −N .
Proof:
Take k + 1 general points P0, . . . , Pk on X.

Assume first that N = n + k + 1. Denote the family of rational normal
curves of degree k +1 on X through P0, . . . , Pk by {Γ} and the inclusion relation
{(G, Γ) |Γ ⊂ G} ⊂ G(k+3, n+k+1)×{Γ} by I. From the proof of [7, Prop. 6.3]
it follows that for a general surface section S ⊂ Pk+3 of X containing P0, . . . , Pk

there exists a rational normal curve Γ ⊂ S of degree k +1 through P0, . . . , Pk. So
we know that dim I ≥ dim{G ∈ G(k + 3, n + k + 1) |P0, . . . , Pk ∈ G} = 3(n− 2).
Since a general fibre of the (surjective) projection map I → {Γ} has dimension
2(n− 2), we know that dim{Γ} ≥ n− 2. So X is Gk−1,k-defective with defect at
least n− 1.

Suppose now that N > n + k + 1. Consider a linear subspace PN−k−1 ⊂ PN

disjoint with 〈P0, . . . , Pk〉. Let Y be the closure of the image of the projection
map X → PN−k−1. From the proof of [7, Prop. 6.1] it follows that a general
point in the singular locus of Y gives rise to a rational normal curve Γ on X of
degree k + 1 through P0, . . . , Pk, hence X has Gk−1,k-defect δk−1,k(X) at least
dim(Sing(Y )) + 1. In case N = n + k + 2 the variety Y is a quadric in Pn+1

that contains linear subspaces of dimension n− 1. From [10, Chap. 6, Sec. 1] it
follows that the rang of the quadric is at most 4 and so Sing(Y ) is at least (n−3)-
dimensional, hence X has Gk−1,k-defect at least n− 2. If N > n + k + 2, Y is a
scroll with dim(Sing(Y )) ≥ 2n+k−1−N ≥ 0, so δk−1,k(X) ≥ 2n+k−N ≥ 1. �

Remark 6.2. If we take N = n + k + 2, we see that a smooth n-dimensional
rational normal scroll X ⊂ PN is Gk−1,k-defective with defect at least n− 2. One
can see that the image of X under a projection with center a point in PN \ X
will also have Gk−1,k-defect at least n− 2.

7 A fine classification

The case of curves, surfaces and threefolds has been handled in [7] (k > n and
n ∈ {2, 3}), [5] (n = k = 2), [8] (n = k = 3) or [4] (n = 1). So we have only
to prove Theorem 1.2. in case n ≥ 4. From Section 4 follows that there are
no smooth varieties that satisfy condition 1 of Theorem 1.1, so we only have to
consider condition 2. The proof will also imply that only in the case that X is
rational normal scroll of (minimal) degree in Pn+k+1 the Gk−1,k-defect is equal to
n− 1.
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Theorem 7.1. Let Xn≥ 4 ⊂ PN≥n+k+1 be a smooth non-degenerate variety with
a = δk−1,k(X) ≥ n−2 that satisfies condition 2 of the characterization for k ≥ n.
Then X is one of the following varieties:

1. Xn is a rational normal scroll of (minimal) degree k + 2 in Pn+k+1;

2. Xn is a rational normal scroll of (minimal) degree k + 3 in Pn+k+2;

3. Xn is the projection in Pn+k+1 of a n-dimensional rational normal scroll of
(minimal) degree k + 3 in Pn+k+2.

Proof:
Suppose that Xn≥ 4 ⊂ PN≥n+k+1 satisfies the conditions of the Theorem. Let
P0, . . . , Pk be k + 1 general points of X, contained in a general curve section
C = X ⊂ G0 (G0 is a linear subspace of dimension N − n + 1) of X. Note that
C is smooth and that there exists a family of rational normal curves of degree
k + 1 on X through P0, . . . , Pk of dimension a− 1 ≥ n− 3. Let H ⊂ 〈P0, . . . , Pk〉
be a k − 1-dimensional linear subspace, (Q0, . . . , Qk) ∈ ΩH,k a general point and
S ′ = X ⊂ G′ with G′ = 〈G0, Q0〉 (S ′ is an irreducible surface section of X that
is smooth in the points P0, . . . , Pk). There is a (n − 2)-dimensional family of
(N − n + 2)-dimensional linear subspaces of PN containing G0, so we have two
possibilities (we use the notations of the proof of Prop. 5.1):

(a) G′ is a general element in this family; i.e. the projection morphism ν is
surjective. In this case S ′ is smooth since X is smooth and S ′ is a gen-
eral surface section of X. The surface S ′ contains a subfamily of {Γ} of
dimension at least k.

(b) G′ is a special element in this family; i.e. the projection morphism ν is
not surjective. In this case S ′ contains a subfamily of {Γ} of dimension at
least k + 1. In particular the linear system |g| on C has degree k + 1 and
dimension at least k + 1. Hence S ′ has sectional genus 0, but S ′ does not
need to be smooth.

Case (a).

Let L be the linear system defining S ⊂ PN−1≥k+3 and write L(−Γ) to denote
{D ∈ L |D − Γ ≥ 0}. Since dim(〈Γ〉) = k + 1, we have dim(L(−Γ)) ≥ 1. Notice
that L−Γ = {D−Γ |D ∈ L(−Γ)} does not have fixed components because Γ is
the only curve in X ∩ 〈Γ〉 and X ∩ 〈Γ〉 smooth in a general point of Γ. Let C ′ be
a general element of L − Γ, then Γ.(Γ + C ′) = k + 1. Since Γ ∪ C ′ is connected
we have Γ.C ′ ≥ 1. On the other hand, since S ′ contains a subfamily of {Γ} of
dimension at least k we find Γ.Γ ≥ k−1. So we obtain two possibilities: Γ.C ′ = 1
and Γ.Γ = k or Γ.C ′ = 2 and Γ.Γ = k − 1.
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Case Γ.C ′ = 2 and Γ.Γ = k − 1.
If L−Γ is composed by a pencil, we can prove using exactly the same arguments
as in the proof of [7, Th. 1.2, p. 216] that Xn is minimal of degree k + 3 in
Pn+k+2 or a projection of such a variety in Pn+k+1 from a point. By [9], the only
n-dimensional varieties with minimal degree k+3 for some k ≥ n ≥ 4 are rational
normal scrolls, so we get the cases 2 and 3 of the Theorem.

Assume now that L − Γ is not composed by a pencil, hence in general C ′ is
irreducible. Since Γ.C ′ = 2, we have

g(C) = pa(Γ + C ′) = 1 +
1

2
(Γ + C ′).(Γ + C ′ + K) = pa(C

′) + pa(Γ) + 1 ≤ 1.

Since g(Γ) = pa(Γ) = 0, we find g(C ′) = pa(C
′) = 0 and g(C) = 1, so X has

sectional genus 1. From Section 2.4 it follows that X has to be a scroll over an
elliptic curve. This gives us a contradiction since k + 1 general points of X are
contained in a rational normal curve of degree k + 1.

Case Γ.C ′ = 2 and Γ.Γ = k − 1.
Because |C ′| has no fixed components, |C ′| is not composed by a pencil and so
C ′ is in general irreducible. Since dim|Γ| ≥ k and Γ.C ′ = 1, it follows that
|Γ − C ′| 6= ∅ and we can write Γ ∼ αC ′ + C ′′ for some α ≥ 1 and C ′′ ≥ 0 with
|C ′′ − C ′| = ∅. If C ′′ = 0 we have Γ ∼ αC ′ and thus α2(C ′.C ′) = Γ.Γ = k and
α(C ′.C ′) = Γ.C ′ = 1, which is in contradiction with k ≥ n ≥ 4, hence C ′′ 6= 0.
We have

α(C ′.C ′) + C ′.C ′′ = (αC ′ + C ′′).C ′ = Γ.C ′ = 1.

Since C ′.C ′ ≥ 0 (dim(|C ′|) ≥ 1) and C ′.C ′′ ≥ 1 (C ′ ∪C ′′ is connected) we obtain
C ′.C ′ = 0 and so deg(X) = C.C = k+2. Because codim(X)+1 = N−n+1 ≥ k+2
we find that Xn is a smooth variety in Pn+k+1 of minimal degree k + 2. Using
[9], we find that X is a rational normal scroll (Case 1 of the Theorem).

Case (b).

Since C is a smooth hyperplane section of S ′, S ′ is smooth along C and thus
Sing(S ′) ∩ C = ∅. So Sing(S ′) is finite and S ′ is irreducible.

Claim. If s ∈ Sing(S ′) and Γ ⊂ S ′ is a general curve in {Γ}, then s 6∈ 〈Γ〉.

Proof Claim: First we are going to prove that s 6∈ Γ. Assume s ∈ Γ. Since
Sing(S ′) is finite, s ∈ Γ for all curves Γ on S ′. So a general curve Γ on S ′

is completely determined by k + 1 points P0, . . . , Pk on C as being the only
1-dimensional component of X ∩ 〈P0, . . . , Pk, s〉. The uniqueness follows from
X ∩ 〈P0, . . . , Pk〉 = {P0, . . . , Pk} as a scheme. Now take k + 2 general points
P0, . . . , Pk−1, Q, Q′ on C and let Γ (respectively Γ′) be the curve in the fa-
mily corresponding with P0, . . . , Pk−1, Q (respectively P0, . . . , Pk−1, Q

′). Because
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dim(〈P0, . . . , Pk−1, Q, Q′〉) = k + 1, we can consider a deformation of C on S ′ to
another curve C ′ containing P0, . . . , Pk−1, Q, Q′. Since Γ and Γ′ are contained in
〈C ′ ∪ {s}〉, the surface S ′ is deformed into S ′′ = X ∩ 〈C ′ ∪ {s}〉. Because Γ ∩ Γ′

is finite it follows s ∈ Sing(S ′′). So for a general linear subspace PN−n+2 ⊂ PN

with 〈P0, . . . , Pk−1, Q, Q′, s〉 ⊂ PN−n+2 we find dim(Ts(X) ∩ PN−n+2) > 2, so we
may assume that

T′ := Ts(X) ⊂ 〈P0, . . . , Pk−1, Q, Q′, s〉 = Ts(X) ⊂ PN−n+2

with PN−n+2 = 〈S ′〉 = 〈C ∪ {s}〉. Denote Ts(X) ⊂ 〈P0, . . . , Pk−1, Q, Q′〉 by T.
Since s 6∈ C = X ∩ 〈C〉 and 〈P0, . . . , Pk−1, Q, Q′〉 ⊂ 〈C〉  〈C ∪ {s}〉, we have
T = Ts(X) ∩ 〈C〉 and so

T = Ts(X) ∩ 〈C〉 ⊂ 〈P0, . . . , Pk−1, Q, Q′〉 ⊂ 〈C〉.

Since P0, . . . , Pk−1, Q, Q′ are generally chosen on C and k + 1 < N − n + 1, we
may assume that those points are contained in a general hyperplane of 〈C〉 (not
containing T), a contradiction.

If s ∈ 〈Γ〉\Γ then s is one of the finitely many points in 〈Γ〉 ∩X not on Γ. So
a general curve Γ is again completely determined by k + 1 points P0, . . . , Pk on
C. Take a deformation of C on X to another curve C ′ containing P0, . . . , Pk.
Since Γ is contained in 〈C ′ ∪ {s}〉 and s ∈ 〈Γ〉, the surface S ′ deforms to
S ′′ = 〈C ′∪{s}〉∩X with s ∈ Sing(S ′′). As before we find Ts(X) ⊂ 〈P0, . . . , Pk, s〉
and thus dim(Ts(X)∩〈P0, . . . , Pk〉) ≥ 2 for general points P0, . . . , Pk on C. Since
s 6∈ 〈P0, . . . , Pk〉 ⊂ 〈C〉 (otherwise s ∈ C = X ∩ 〈C〉 and so s 6∈ Sing(S ′)) we
obtain T := Ts(X)∩〈P0, . . . , Pk〉 = Ts(X)∩〈C〉. But we may again assume that
P0, . . . , Pk are contained in a general hyperplane of 〈C〉 since k < N − n + 1. So
we get a contradiction. �

By using the same arguments as in the proof of [7, Theorem 1.2, p. 218-219] we
can prove that in this case X is of minimal degree k + 2 in Pn+k+1. Hence X is
a rational normal scroll by [9]. �
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