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Abstract.— In this paper we study plane curves of degree d with e total inflection points,

for nonzero natural numbers d and e.
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0 Introduction

Let e and d be nonzero natural numbers and denote by V. the set of elements
((Ly, Py), ..., (Le, P.)) with Ly, ..., L, lines in the complex projective plane P2,
P, a point on the line L; for each i, P; ¢ L; for each ¢ # j and such that there
exists a plane curve C' of degree d with contact order d with L; at P; for each i.
So P, ..., P, are total inflection points of C.

In [5], the case d = 4 (i.e. quartic curves) has been studied intensively. The
main tool used in that thesis is the so-called A-invariant, which is nothing else
than a cross ratio of four points. In [3], the cases e = 1,2 have been handled
and also the cases e = 3,4 for some special configurations of the lines L; and the
points P;.

In Section 1 of this paper, we will first prove a general result (Proposition
1.3). Note that part (a) of this Proposition is already known (see [5, Chapter
II, Lemma 2.15] or [3, Theorem A]). In Section 2, we prove a generalization of
the main result of a paper of E. Ballico (see [2]). In Section 3, we introduce the
notion of expected dimension for a component of V..

In a following paper of the authors, the established techniques of this paper
will be used to describe all the components of V. in case e is equal to 3 or
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4, together with their images in the moduli spaces. Both authors are partially
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1 Definition and a general result

Definition 1.1. Let P? be the complex projective plane and P? be the incidence
relation in (P?)* x P2, thus P? = {(L, P)|P € L}.

If d and e are nonzero natural numbers, we denote by V. C (P?)¢ the set of
elements (£,P) = ((L1, P1),...,(Le, P.)) with P, & L; for all i # j (hence also
L; # L; for i # j) and such that there exists a plane curve I' of degree d, not
containing any of the lines L;, with i(L;.I", P;) = d. We write Vg, to denote the
closure of V. in (P?)e.

Assume (£, P) € Vye. On L; we have the divisor dP;, so we can consider the
subscheme dP; C P2. Denote by dP the subscheme dP; +- - - +dP, C P? of length
ed.

Denote by V (£, P) C I'(IP?, Op2(d)) the set {s|dP C Z(s)}, hence P(V (L, P))
is the associated linear system of plane curves.

Remark 1.2. We can easily see that V;; = P? and that dim(V (L, P)) = (df) —d
for all (L, P) € P?. This follows from the fact that for each line L € (P?)* the re-
striction map T'(P?, Opz(d)) — T'(L, Or(d)) is surjective and dP C L corresponds
to a unique element of P(I'(L, OL(d))).

Proposition 1.3. Let (£, P) € V..

(a) dim(V (L, P)) = (d_e+2) + 1, where (3) is defined to be 0 if n < 2.
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(b) Let L be a line in P* with P; ¢ L for 1 <i<e. Let VL(L,P) be the image of
the restriction map V (L, P) — I'(L,OL(d)). Let Py =L;NL for1 <i<e.
Ifd > e, dim(VL(L,P)) = d—e+2 and P(VL(L,P)) is a linear system gi—°t!
on L containing Pyo+ ...+ Py +gi=¢. Ifd < e, dim(V,(L,P)) = 1.

(c) Under the assumptions of (b), for P € L with P # Py for all 1 <i < e one
has ((L,P), (L, P)) € Vges1 if and only if dP € P(VL(L,P)).

Proof:

Note that (a) is true in case e = 1 by Remark 1.2. Consider (L, P;) € P? and
let L € (P?)* be a line different from L;. Let ¢ (resp. ¢;) be an equation of L
(resp. Ly) and let f € Ker[V(Ly, Py) — I'(L,OL(d))], hence ¢ divides f. The
divisor dP; + Pig C Ly belongs to Z(f), hence ¢; divides f. This proves

06T (P2, Op2(d — 2)) it d > 2,

Ker[V(Ly, P1) — T'(L, OL(d))] = {0 ifd=1



hence the dimension of Ker[V (L, Py) — I'(L, Or(d))] is equal to (g) and
. , d
dlm(VL(Ll, Pl)) B dln’l(V(Ll, Pl)) - (2) =d -+ 1.

This proves V(Ly, Py) = I'(L, Or(d)), which is (b) in case e = 1.

For P € L with P # Py, the divisor dP C L corresponds to a unique element
of P(VL(Ly, Pr)), hence ((L1, P1), (L, P)) € Va9 proving (c) in case e = 1, and we
find dim(V (L1, P1), (L, P))) = dim(Vz (L1, P1)) — d = (3) ((a) in case e = 2).

Take e > 2 and assume that (a) is true for e. Let ¢; (resp. £) be an equation
for L; (resp. L). As before we find

0y .. L T(P% Op2(d—e—1)) ifd>e,

Ker[V(L,P) = I'(L,0L(d))] = {0 ifd<e,

hence the dimension of Ker[V (£, P) — I'(L, Or(d))] is equal to (“"*") and

2
_ (d—e+2 L1 d—e+1\ Jd—e+2 ifd>e,
N 2 2 )1 if d < e.

Ifd>e, ly...0.T(P? Op:z(d—e)) C V(L,P) and we obtain that

dim(V, (L, P)) = dim(V(E,P))—(d_e+1)

PlO 4+ ...+ PeO +gj:6 C P(VL(‘CaP))

e

This finishes the proof of (b) for e. Moreover, claim (c¢) holds because of the
construction of P(V, (L, P)). In particular, if (L', P’) := ((L,P), (L, P)) € Vaer1,
then dP corresponds to a unique divisor of P(Vy(£,P)). This implies

dim(V (L', P")) = dim(V(L,P)) — dim(P(VL(L,P)))
 [(d—e+2 ] d—e+1 ifd>e
B ( 2 )+ 1o if d<e
d—(e+1)+2
()

hence (a) holds for e+ 1. B

Remark 1.4. From the proof of Proposition 1.3 in case e = 2 we also obtain

Vd72 = {((Ll, Pl), (Lzypz)) | P ¢ Lj fori # j}v hence WQ = (732)2'



2 A generalization of a result of Ballico

In this section, we will prove the following generalization of a result of E. Bal-
lico (see [2]), where the case e < 2 has been handled. The main reason why E.
Ballico restricted himself to the case e < 2, is that the analogous statement of
Remark 1.4 does not hold for e > 3. Due to the geometrical clear statements of
Proposition 1.3, we are able to make the natural generalization in case e > 3.

Proposition 2.1. Assume that (L, P) € Vy. with d > e and that z is an integer
satisfying 3z < (d_§+2) and z < (d_;_l). Let O ={0,...,0,} be general points

in P? and let V(L,P,0) = {s € V(L,P)| Z(s) is singular at Oy,...,0,}.

(a) dim(V (L, P,0)) = dim(V (L, P)) — 3z and a general element of V(L,P,0)
does not contain some line L; for 1 <i <e.

(b) If (d—e,z) # (6,9), then a general element of V (L, P,O) is smooth outside
O1,...,0, and has ordinary nodes at Oq,...,0,.

To prove Proposition 2.1, we use the following classical result of E. Arbarello
and M. Cornalba (see [1]).

Proposition 2.2. Let V;(0) = {s € I'(P?, Op2(f))| Z(s) singular at Ox,...,0,}.
1. If 3z < (fJ2r2) and z < (fgl), then dim(V;(0)) = (f;“2) — 3z.

2. In case (f,z) # (6,9), a general element of V¢(O) corresponds to an irre-
ducible curve I' smooth outside O1,...,0, and having an ordinary node at
Oy,...,0.,.

Proof of Proposition 2.1: Let (£,,P.) = (L1, P1),...,(Ls, Pr)) for all 1 <
x <e, V(Ly,Py) = T(P? Op2(d)) and V(Ly, Py, O) = V4(O).

Claimi: For 0 <z < e we have dim(V (L, P, 0)) = dim(V(L,, P.)) — 3z and
a general element of P(V (L., P, O)) does not contain any of the lines L; (for
1<i<x).

Proof of Claim i : Since 3z < (d_;+2) < (d;ﬂ) and z < (d_g_l) < (dgl), this claim

holds in case x = 0 (classical case). Assume z > 1 and that the claim holds for
x — 1. Clearly

Ker[V(ﬁx_l, 'P;B_l, O) — F(Lx, OL,; (d))] = 61 cee €$V;l_$(0)

Since 1 < x < e, one has 3z < (d_x”) and z < (d_x_l), hence the dimension of

2 2
d—x+2

that kernel is equal to ( 5 ) — 3z, because of Proposition 2.2.



Let Vi (Lyi-1,Pr-1,0) = Im[V(L,_1,Ps_1,0) — I'(L,, O (d))], then we
find by using Proposition 1.3 (a) that

d—z+2
dim(Vy, (Lo1, Poe1,0)) = dim(v(ﬁ“’p’“’O))_( §+ )+32

= dim(V(Ly-1,Po-1)) — (d : ;C : 2>

d—(r—1)4+2 d— 2
= {( (:1:2 )+)+1_60,33—1}_( :2U+)
= d—=x + 3 — 50713_1 = dlm(VLI (,Cr_l, Px_l)),

where dp 1 is a Kronecker delta. This implies that
VLI (Ex—lu P.T—l? O) = VLI (Ex—la Px—l)

since Vi, (Lo—1, Pu-1,0) C Vi, (Ly—1,Pr—1). So from (L, P,) € Vi, it follows
that
dP:c S P(‘/Lz (Ez—la Px—l)) = ]P)(VLI (‘Cx—la 73:(:—17 O))7

hence

dim(V (Ly, P, 0)) = dim(V(Ly—1, Pae1,0)) — (d — 2+ 2 — 8o 4-1)
= dim(V(Ly—1,Ps-1)) — (d— 2+ 2 —6p-1) — 32
= dim(V(L;, P)) — 32

and a general element of P(V (L., P, O)) does not contain L,. If it would contain
L; for some 1 < 4 < z — 1 then it should contain the divisor P, + dP, C L,
(here P, = L; N L,), hence it would contain L,, a contradiction. This finishes
the proof of Claim 7. [J

Since (d—e, z) # (6,9), there exists an irreducible curve I'y € V;_.(O) smooth
outside Oy, ..., O, having ordinary nodes at Oq,...,0,.

Claim ii : We can assume that P; & 'y for 1 <i <e.

Proof of Claim ii : Varying Oy, ..., O,, the closure of the union of the loci V;_.(O)
contains the union of d — e general lines in P? (see for example [4]). Such union

does not contain any of those points F;, hence for Oy,...,O, general we can as-
sume P, € Ty for 1 <i <e. [J

It follows that the curve Li+. ..+ L4y € P(V(L,P)) issmooth at Py, ..., P,.

From Claim ¢ we know that I' € P(V(L, P, O)) general does not contain any
of the lines L; (1 <i <e) hence I' N L; = {P;}. It follows that the fixed locus of
P(V(L,P,0)) is contained in the finite set {Py,..., P.} N (I'NTy).

5



A general element of P(V' (L, P, O)) is singular at one of the points if and only
if each element of P(V(L,P,O)) is singular at that point. We already knew this
does not hold for P;,..., P.. Also, since I'y is smooth outside Oq,...,0, and
I'NToNL; = 0, it follows that a general element of P(V (L, P,0)) is smooth
outside O1,...,0,. Since Li + ...+ L.+ Iy has ordinary nodes at Oy,...,0,, a
general element I' of P(V(L£,P,0)) has ordinary nodes at Oy,...,0,. B

3 Expected dimension of a component of V;,

Let (P?)%? be the open subset of (P?)¢ of elements (£, P) satisfying P, & L; for
i # j. For (L, P) € (P?)*° and i # j we write P,; = L; N L; and we write g to
denote the linear system P ; + ...+ Pi_1; + ggifﬁ on L;incase 2 <i<d+ 1.
We take g = 0 if ¢ > d + 1.

Assume e > 3 and let G¢ be the space of pairs (g, (£,P)) with (£, P) € (P?)*°
and g being an (e—2)-tuple (gs, . . ., g.) of linear systems as follows. For 3 <i <'e,
g; is a linear system génax{d_wm} on L; containing g/.

Let 7 : G¢ — (P?)*°? be the natural projection. It is a smooth morphism of
(e—1)(e—2)

. . . _9 .
relative dimension ) ;i = ““—5

Claim 3.1: There exist 2 sections Sy and Sy of T such that Vy. = 7(5S1 N Ss).

(e—1)(e—2)

Corollary 3.2. Each component of V. has codimension at most 5 nside

(P2)e.

Definition 3.3. Let V' be a component of V;.. We say V has the expected di-
mension if dim(V') = 3e— (6_1)2& and we say that V' is of exceptional dimension
if dim(V') > 3e — (6_1)2& In case e > 9 (this is a bound independent of d) then

all components of V; . have exceptional dimension.

Proof of Claim 3.1: The first section S; is defined by Si(£,P) = ¢ with
gi = (gl U{dP}) C g% on L;. In order to define Sy(L,P) = h, we are going to
make a well-defined construction imitating the construction of the linear space
V(Ly, Py) for 1 <z <e.

We are going to define h inductively starting with hy = P(Vy, (L2, Ps)). In-
ductively we also are going to define a sequence of subspaces

V/(Ee,Pe) - V/(Ee_l,Pe_l) c .- C V/(ﬁg,Pg) - V(ﬁz,Pg)

such that the dimension of V'(L,, P,)) is equal to (“"2*?)+1, the space V/(L,, P,)
contains £y ... 0, T'(P* Op:(d — x)) if vt < d and if s € V'(L,,P,) and 2 < i <



min{z,d+ 1}, then either ¢; C Z(s) or the multiplicity of Z(s) N L; at P; is more
then d — ¢+ 1.

Let D3 € hz be the divisor in hg having maximal multiplicity at Ps (being at
least d — 1) and let W5 C V7,(L2, Pa) be the corresponding 1-dimensional linear
subspace. Then V'(L3,Ps) is the inverse image of Wy in V/(Ls, Ps).

Since

00057 (P2, Opa(d — 3)) if d > 3,

Ker[V (Lo, Pa) — Vi, (Lo, Po)] = i
er[V (L2, P2) — Viy(La, Po)] {0 it d < 3,

one has (102037 (P?, Op2(d — 3)) C V'(L3,P3) if d > 3 and dim(V'(L3,P3)) =
)+ 1

( 21210\7\7 let 3 < x < e and assume h,_ 1 and V'(L,_1,P,_1) are defined. Let
s € Ker[V'(Ly-1,Pr—1) — ['(Ly, Or,(d))], hence ¢, divides s. We are going to
prove that ¢; divides s for 1 <i <z —1 too. Since Z(s) contains P, , +dP, C L,
we find ¢; divides s. Let 1 < ig < x — 1 and assume ¢; divides s for 1 <1 < . If
tg > d+2, 0y ... 0;,—1 divides s, so s = 0 and a fortiori ¢;, divides s. If ip < d+1,
Z(s) contains Py, + ...+ P14, C Ly,. If £;, does not divide s then Z(s) N Lj,
is a divisor with multiplicity at most d —ip + 1 at P;,, a contradiction. Hence ¢;,
divides s. Since £y ... L, T(P? Op2(d—x+1)) CV'(Ly 1, Poy) if x < d+1, we
find

Elng(Pz,Oﬂﬁ(d—x)) if © S d,

K V/ ECE— 77):17— - F L-T’O d -
er[V'(Ly-1 1) ( L.(d))] {O if z > d.

Let Vi (Lo—1,Pe—1) = Im[V'(Ly—1, Por) — ['(Ly, Op,(d))] then we find

d—x—i—2>

dim(VL'I(Em,l,Pm,l)) = dlm(vl(ﬁml,Pm1))—< 9
B {d—x+3 itr<d+1,

1 if v >d+1.

We define h, = P(V] (Lo—1,Ps-1)). Since ;... L, T(P? Op2(d — z + 1)) C
V'(Ly—1,Prq) if © < d+ 1, we obtain ¢/, C h, on L,. Let D, be the divi-
sor in h, having maximal multiplicity at P, (being at least d — z + 2) and let
W, C VL’I(Ex_l,Px_l) be the associated 1-dimensional linear subspace. Then

V'(L,,P,) is the inverse image of W, in V'(L,_1, P,_1). One has
dlm(V'(ﬁx, ’Px)) = dim(V’(ﬁx,l, ,Px71)) - dlm(Vle (Exfl, ,Pxfl)) +1

B d—x+2 4
— ) )

Also V'(L,, P,) contains the kernel of V'(L,_1,P,_1) — ['(L,, Or_(d)), hence it
contains ¢y ... 0, ['(P?, Op2(d — x)) if z < d.

7



Of course S1(L,P) = Sz(L,P) if and only if h; = g; for all 3 < i < e. The con-
dition hg = g3 is clearly equivalent to dP; € P(Vy, (L2, P2)), hence it is equivalent
to (L3, P3) € Vy.. Under these equivalence we also have V (L3, P3) = V'(Ls, Ps).
Let 3 < i < e and assume that h; = g; for 3 < j < iis equivalent to (L£;_1,P;—1) €
Vzi—1 and that under this equivalence one has V(L;_1,Pi—1) = V'(Li—1,Pi1).
Assume h; = g; for 3 < j < 4. Since V(L;_1,Pi-1) = V'(Li—1,Pi_1) we have
Vi.(Li—1,Pic1) = Vi, (Li—1,Pi—1). Then the condition g; = h; is equivalent to
dP; € P(VL,(Li—1,Pi-1)), which is equivalent to (L;, P;) € Vy; and by construc-
tion we get V'(L;, P;) = V(L;, P;). This finishes the proof of the claim. B

Example 3.4. : case ¢ = 3. All components V of V3 C (P?)? are of expected
dimension 8. In order to prove this, it is enough to show that V' & (P?)3] since
dim((P?)?) = 9 and dimV > 8 by Corollary 3.3. Now since for (£,P) € V
general, we have Vi, (Lo, P2) # I'(L3, Or,(d)) (see Proposition 1.3(b)) and thus
(L2, P2), (L3, P3)) & Vy 5 for general (Ls, P3) € P2, so the claim follows immedi-
ately.

Example 3.5. Let d be even and consider
V ={(L,P) € (P>)°| P &Ljifi+#jand 3C € ['(P?, Op2(2)) : Tp,(C) = L;}.

It is clear that V' C V. has dimension 5 + e and thus V' is of unexpected dimen-
sion if and only if e > 4.

Example 3.6. Let ¢ > 3 and consider
V={(L,P)e(P)*|P¢gL;ifi#jand P,,...,P. collinear}.

It is clear that V' is a component of V. of dimension 2e+2, so it is of unexpected
dimension if e > 3. In fact, in a following paper of the authors, it will be proved
that this is the only component of unexpected dimension if e = 4.
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