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0 Introduction

Let e and d be nonzero natural numbers and denote by Vd,e the set of elements
((L1, P1), . . . , (Le, Pe)) with L1, . . . , Le lines in the complex projective plane P2,
Pi a point on the line Li for each i, Pi 6∈ Lj for each i 6= j and such that there
exists a plane curve C of degree d with contact order d with Li at Pi for each i.
So P1, . . . , Pe are total inflection points of C.

In [5], the case d = 4 (i.e. quartic curves) has been studied intensively. The
main tool used in that thesis is the so-called λ-invariant, which is nothing else
than a cross ratio of four points. In [3], the cases e = 1, 2 have been handled
and also the cases e = 3, 4 for some special configurations of the lines Li and the
points Pi.

In Section 1 of this paper, we will first prove a general result (Proposition
1.3). Note that part (a) of this Proposition is already known (see [5, Chapter
II, Lemma 2.15] or [3, Theorem A]). In Section 2, we prove a generalization of
the main result of a paper of E. Ballico (see [2]). In Section 3, we introduce the
notion of expected dimension for a component of Vd,e.

In a following paper of the authors, the established techniques of this paper
will be used to describe all the components of Vd,e in case e is equal to 3 or
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4, together with their images in the moduli spaces. Both authors are partially
supported by the Fund of Scientific Research - Flanders (G.0318.06).

1 Definition and a general result

Definition 1.1. Let P2 be the complex projective plane and P2 be the incidence
relation in (P2)∗ × P2, thus P2 = {(L, P )|P ∈ L}.

If d and e are nonzero natural numbers, we denote by Vd,e ⊂ (P2)e the set of
elements (L,P) = ((L1, P1), . . . , (Le, Pe)) with Pi 6∈ Lj for all i 6= j (hence also
Li 6= Lj for i 6= j) and such that there exists a plane curve Γ of degree d, not
containing any of the lines Li, with i(Li.Γ, Pi) = d. We write Vd,e to denote the
closure of Vd,e in (P2)e.

Assume (L,P) ∈ Vd,e. On Li we have the divisor dPi, so we can consider the
subscheme dPi ⊂ P2. Denote by dP the subscheme dP1 + · · ·+dPe ⊂ P2 of length
ed.

Denote by V (L,P) ⊂ Γ(P2,OP2(d)) the set {s | dP ⊂ Z(s)}, hence P(V (L,P))
is the associated linear system of plane curves.

Remark 1.2. We can easily see that Vd,1 = P2 and that dim(V (L, P )) =
(

d+2
2

)
−d

for all (L, P ) ∈ P2. This follows from the fact that for each line L ∈ (P2)∗ the re-
striction map Γ(P2,OP2(d)) → Γ(L,OL(d)) is surjective and dP ⊂ L corresponds
to a unique element of P(Γ(L,OL(d))).

Proposition 1.3. Let (L,P) ∈ Vd,e.

(a) dim(V (L,P)) =
(

d−e+2
2

)
+ 1, where

(
n
2

)
is defined to be 0 if n < 2.

(b) Let L be a line in P2 with Pi 6∈ L for 1 ≤ i ≤ e. Let VL(L,P) be the image of
the restriction map V (L,P) → Γ(L,OL(d)). Let Pi0 = Li ∩ L for 1 ≤ i ≤ e.
If d ≥ e, dim(VL(L,P)) = d−e+2 and P(VL(L,P)) is a linear system gd−e+1

d

on L containing P10 + . . . + Pe0 + gd−e
d−e. If d < e, dim(VL(L,P)) = 1.

(c) Under the assumptions of (b), for P ∈ L with P 6= Pi0 for all 1 ≤ i ≤ e one
has ((L,P), (L, P )) ∈ Vd,e+1 if and only if dP ∈ P(VL(L,P)).

Proof:
Note that (a) is true in case e = 1 by Remark 1.2. Consider (L1, P1) ∈ P2 and
let L ∈ (P2)∗ be a line different from L1. Let ` (resp. `1) be an equation of L
(resp. L1) and let f ∈ Ker[V (L1, P1) → Γ(L,OL(d))], hence ` divides f . The
divisor dP1 + P10 ⊂ L1 belongs to Z(f), hence `1 divides f . This proves

Ker[V (L1, P1) → Γ(L,OL(d))] =

{
``1Γ(P2,OP2(d− 2)) if d ≥ 2,

0 if d = 1,

2



hence the dimension of Ker[V (L1, P1) → Γ(L,OL(d))] is equal to
(

d
2

)
and

dim(VL(L1, P1)) = dim(V (L1, P1))−
(

d

2

)
= d + 1.

This proves VL(L1, P1) = Γ(L,OL(d)), which is (b) in case e = 1.
For P ∈ L with P 6= P10 the divisor dP ⊂ L corresponds to a unique element

of P(VL(L1, P1)), hence ((L1, P1), (L, P )) ∈ Vd,2 proving (c) in case e = 1, and we
find dim(V ((L1, P1), (L, P ))) = dim(VL(L1, P1))− d =

(
d
2

)
((a) in case e = 2).

Take e ≥ 2 and assume that (a) is true for e. Let `i (resp. `) be an equation
for Li (resp. L). As before we find

Ker[V (L,P) → Γ(L,OL(d))] =

{
``1 . . . `eΓ(P2,OP2(d− e− 1)) if d ≥ e,

0 if d < e,

hence the dimension of Ker[V (L,P) → Γ(L,OL(d))] is equal to
(

d−e+1
2

)
and

dim(VL(L,P)) = dim(V (L,P))−
(

d− e + 1

2

)
=

(
d− e + 2

2

)
+ 1−

(
d− e + 1

2

)
=

{
d− e + 2 if d ≥ e,

1 if d < e.

If d ≥ e, `1 . . . `eΓ(P2,OP2(d− e)) ⊂ V (L,P) and we obtain that

P10 + . . . + Pe0 + gd−e
d−e ⊂ P(VL(L,P)).

This finishes the proof of (b) for e. Moreover, claim (c) holds because of the
construction of P(VL(L,P)). In particular, if (L′,P ′) := ((L,P), (L, P )) ∈ Vd,e+1,
then dP corresponds to a unique divisor of P(VL(L,P)). This implies

dim(V (L′,P ′)) = dim(V (L,P))− dim(P(VL(L,P)))

=

(
d− e + 2

2

)
+ 1−

{
d− e + 1 if d ≥ e

0 if d < e

=

(
d− (e + 1) + 2

2

)
+ 1,

hence (a) holds for e + 1. �

Remark 1.4. From the proof of Proposition 1.3 in case e = 2 we also obtain
Vd,2 = {((L1, P1), (L2, P2)) |Pi 6∈ Lj for i 6= j}, hence Vd,2 = (P2)2.
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2 A generalization of a result of Ballico

In this section, we will prove the following generalization of a result of E. Bal-
lico (see [2]), where the case e ≤ 2 has been handled. The main reason why E.
Ballico restricted himself to the case e ≤ 2, is that the analogous statement of
Remark 1.4 does not hold for e ≥ 3. Due to the geometrical clear statements of
Proposition 1.3, we are able to make the natural generalization in case e ≥ 3.

Proposition 2.1. Assume that (L,P) ∈ Vd,e with d ≥ e and that z is an integer
satisfying 3z <

(
d−e+2

2

)
and z ≤

(
d−e−1

2

)
. Let O = {O1, . . . , Oz} be general points

in P2 and let V (L,P , O) = {s ∈ V (L,P) |Z(s) is singular at O1, . . . , Oz}.

(a) dim(V (L,P , O)) = dim(V (L,P)) − 3z and a general element of V (L,P , O)
does not contain some line Li for 1 ≤ i ≤ e.

(b) If (d− e, z) 6= (6, 9), then a general element of V (L,P , O) is smooth outside
O1, . . . , Oz and has ordinary nodes at O1, . . . , Oz.

To prove Proposition 2.1, we use the following classical result of E. Arbarello
and M. Cornalba (see [1]).

Proposition 2.2. Let Vf (O) = {s ∈ Γ(P2,OP2(f))|Z(s) singular at O1, . . . , Oz}.

1. If 3z <
(

f+2
2

)
and z ≤

(
f−1

2

)
, then dim(Vf (O)) =

(
f+2

2

)
− 3z.

2. In case (f, z) 6= (6, 9), a general element of Vf (O) corresponds to an irre-
ducible curve Γ smooth outside O1, . . . , Oz and having an ordinary node at
O1, . . . , Oz.

Proof of Proposition 2.1: Let (Lx,Px) = ((L1, P1), . . . , (Lx, Px)) for all 1 ≤
x ≤ e, V (L0,P0) = Γ(P2,OP2(d)) and V (L0,P0, O) = Vd(O).

Claim i : For 0 ≤ x ≤ e we have dim(V (Lx,Px, O)) = dim(V (Lx,Px)) − 3z and
a general element of P(V (Lx,Px, O)) does not contain any of the lines Li (for
1 ≤ i ≤ x).

Proof of Claim i : Since 3z <
(

d−e+2
2

)
≤

(
d+2
2

)
and z ≤

(
d−e−1

2

)
≤

(
d−1
2

)
, this claim

holds in case x = 0 (classical case). Assume x ≥ 1 and that the claim holds for
x− 1. Clearly

Ker[V (Lx−1,Px−1, O) → Γ(Lx,OLx(d))] = `1 · · · `xVd−x(O).

Since 1 ≤ x ≤ e, one has 3z <
(

d−x+2
2

)
and z ≤

(
d−x−1

2

)
, hence the dimension of

that kernel is equal to
(

d−x+2
2

)
− 3z, because of Proposition 2.2.
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Let VLx(Lx−1,Px−1, O) = Im[V (Lx−1,Px−1, O) → Γ(Lx,OLx(d))], then we
find by using Proposition 1.3 (a) that

dim(VLx(Lx−1,Px−1, O)) = dim(V (Lx−1,Px−1, O))−
(

d− x + 2

2

)
+ 3z

= dim(V (Lx−1,Px−1))−
(

d− x + 2

2

)
= {

(
d− (x− 1) + 2

2

)
+ 1− δ0,x−1} −

(
d− x + 2

2

)
= d− x + 3− δ0,x−1 = dim(VLx(Lx−1,Px−1)),

where δ0,x−1 is a Kronecker delta. This implies that

VLx(Lx−1,Px−1, O) = VLx(Lx−1,Px−1)

since VLx(Lx−1,Px−1, O) ⊂ VLx(Lx−1,Px−1). So from (Lx,Px) ∈ Vd,x it follows
that

dPx ∈ P(VLx(Lx−1,Px−1)) = P(VLx(Lx−1,Px−1, O)),

hence

dim(V (Lx,Px, O)) = dim(V (Lx−1,Px−1, O))− (d− x + 2− δ0,x−1)

= dim(V (Lx−1,Px−1))− (d− x + 2− δ0,x−1)− 3z

= dim(V (Lx,Px))− 3z

and a general element of P(V (Lx,Px, O)) does not contain Lx. If it would contain
Li for some 1 ≤ i ≤ x − 1 then it should contain the divisor Pix + dPx ⊂ Lx

(here Pix = Li ∩ Lx), hence it would contain Lx, a contradiction. This finishes
the proof of Claim i. �

Since (d−e, z) 6= (6, 9), there exists an irreducible curve Γ0 ∈ Vd−e(O) smooth
outside O1, . . . , Oz having ordinary nodes at O1, . . . , Oz.

Claim ii : We can assume that Pi 6∈ Γ0 for 1 ≤ i ≤ e.

Proof of Claim ii : Varying O1, . . . , Oz, the closure of the union of the loci Vd−e(O)
contains the union of d− e general lines in P2 (see for example [4]). Such union
does not contain any of those points Pi, hence for O1, . . . , Oz general we can as-
sume Pi 6∈ Γ0 for 1 ≤ i ≤ e. �

It follows that the curve L1+. . .+Le+Γ0 ∈ P(V (L,P)) is smooth at P1, . . . , Pe.
From Claim i we know that Γ ∈ P(V (L,P , O)) general does not contain any

of the lines Li (1 ≤ i ≤ e) hence Γ ∩ Li = {Pi}. It follows that the fixed locus of
P(V (L,P , O)) is contained in the finite set {P1, . . . , Pe} ∩ (Γ ∩ Γ0).
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A general element of P(V (L,P , O)) is singular at one of the points if and only
if each element of P(V (L,P , O)) is singular at that point. We already knew this
does not hold for P1, . . . , Pe. Also, since Γ0 is smooth outside O1, . . . , Oz and
Γ ∩ Γ0 ∩ Li = ∅, it follows that a general element of P(V (L,P , O)) is smooth
outside O1, . . . , Oz. Since L1 + . . . + Le + Γ0 has ordinary nodes at O1, . . . , Oz, a
general element Γ of P(V (L,P , O)) has ordinary nodes at O1, . . . , Oz. �

3 Expected dimension of a component of Vd,e

Let (P2)e,0 be the open subset of (P2)e of elements (L,P) satisfying Pi 6∈ Lj for
i 6= j. For (L,P) ∈ (P2)e,0 and i 6= j we write Pi,j = Li ∩ Lj and we write g′i to
denote the linear system P1,i + . . . + Pi−1,i + gd−i+1

d−i+1 on Li in case 2 ≤ i ≤ d + 1.
We take g′i = ∅ if i > d + 1.

Assume e ≥ 3 and let Ge be the space of pairs (g, (L,P)) with (L,P) ∈ (P2)e,0

and g being an (e−2)-tuple (g3, . . . , ge) of linear systems as follows. For 3 ≤ i ≤ e,

gi is a linear system g
max{d−i+2,0}
d on Li containing g′i.

Let τ : Ge → (P2)e,0 be the natural projection. It is a smooth morphism of

relative dimension
∑e−2

i=1 i = (e−1)(e−2)
2

.

Claim 3.1: There exist 2 sections S1 and S2 of τ such that Vd,e = τ(S1 ∩ S2).

Corollary 3.2. Each component of Vd,e has codimension at most (e−1)(e−2)
2

inside
(P2)e.

Definition 3.3. Let V be a component of Vd,e. We say V has the expected di-

mension if dim(V ) = 3e− (e−1)(e−2)
2

and we say that V is of exceptional dimension

if dim(V ) > 3e− (e−1)(e−2)
2

. In case e ≥ 9 (this is a bound independent of d) then
all components of Vd,e have exceptional dimension.

Proof of Claim 3.1: The first section S1 is defined by S1(L,P) = g with
gi = 〈g′i ∪ {dPi}〉 ⊂ gd

d on Li. In order to define S2(L,P) = h, we are going to
make a well-defined construction imitating the construction of the linear space
V (Lx,Px) for 1 ≤ x ≤ e.

We are going to define h inductively starting with h3 = P(VL3(L2,P2)). In-
ductively we also are going to define a sequence of subspaces

V ′(Le,Pe) ⊂ V ′(Le−1,Pe−1) ⊂ · · · ⊂ V ′(L3,P3) ⊂ V (L2,P2)

such that the dimension of V ′(Lx,Px)) is equal to
(

d−x+2
2

)
+1, the space V ′(Lx,Px)

contains `1 . . . `xΓ(P2,OP2(d − x)) if x ≤ d and if s ∈ V ′(Lx,Px) and 2 ≤ i ≤
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min{x, d+ 1}, then either `i ⊂ Z(s) or the multiplicity of Z(s)∩Li at Pi is more
then d− i + 1.

Let D3 ∈ h3 be the divisor in h3 having maximal multiplicity at P3 (being at
least d− 1) and let W3 ⊂ VL3(L2,P2) be the corresponding 1-dimensional linear
subspace. Then V ′(L3,P3) is the inverse image of W3 in V (L2,P2).

Since

Ker[V (L2,P2) → VL3(L2,P2)] =

{
`1`2`3Γ(P2,OP2(d− 3)) if d ≥ 3,

0 if d < 3,

one has `1`2`3Γ(P2,OP2(d − 3)) ⊂ V ′(L3,P3) if d ≥ 3 and dim(V ′(L3,P3)) =(
d−1
2

)
+ 1.

Now let 3 < x ≤ e and assume hx−1 and V ′(Lx−1,Px−1) are defined. Let
s ∈ Ker[V ′(Lx−1,Px−1) → Γ(Lx,OLx(d))], hence `x divides s. We are going to
prove that `i divides s for 1 ≤ i ≤ x− 1 too. Since Z(s) contains P1,x +dP1 ⊂ L1

we find `1 divides s. Let 1 < i0 ≤ x− 1 and assume `i divides s for 1 ≤ i < i0. If
i0 ≥ d+2, `1 . . . `i0−1 divides s, so s = 0 and a fortiori `i0 divides s. If i0 ≤ d+1,
Z(s) contains P1,i0 + . . . + Pi0−1,i0 ⊂ Li0 . If `i0 does not divide s then Z(s) ∩ Li0

is a divisor with multiplicity at most d− i0 + 1 at Pi0 , a contradiction. Hence `i0

divides s. Since `1 . . . `x−1Γ(P2,OP2(d−x+1)) ⊂ V ′(Lx−1,Px−1) if x ≤ d+1, we
find

Ker[V ′(Lx−1,Px−1) → Γ(Lx,OLx(d))] =

{
`1 . . . `xΓ(P2,OP2(d− x)) if x ≤ d,

0 if x > d.

Let V ′
Lx

(Lx−1,Px−1) = Im[V ′(Lx−1,Px−1) → Γ(Lx,OLx(d))] then we find

dim(V ′
Lx

(Lx−1,Px−1)) = dim(V ′(Lx−1,Px−1))−
(

d− x + 2

2

)
=

{
d− x + 3 if x ≤ d + 1,

1 if x > d + 1.

We define hx = P(V ′
Lx

(Lx−1,Px−1)). Since `1 . . . `x−1Γ(P2,OP2(d − x + 1)) ⊂
V ′(Lx−1,Px−1) if x ≤ d + 1, we obtain g′x ⊂ hx on Lx. Let Dx be the divi-
sor in hx having maximal multiplicity at Px (being at least d − x + 2) and let
Wx ⊂ V ′

Lx
(Lx−1,Px−1) be the associated 1-dimensional linear subspace. Then

V ′(Lx,Px) is the inverse image of Wx in V ′(Lx−1,Px−1). One has

dim(V ′(Lx,Px)) = dim(V ′(Lx−1,Px−1))− dim(V ′
Lx

(Lx−1,Px−1)) + 1

=

(
d− x + 2

2

)
+ 1.

Also V ′(Lx,Px) contains the kernel of V ′(Lx−1,Px−1) → Γ(Lx,OLx(d)), hence it
contains `1 . . . `xΓ(P2,OP2(d− x)) if x ≤ d.
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Of course S1(L,P) = S2(L,P) if and only if hi = gi for all 3 ≤ i ≤ e. The con-
dition h3 = g3 is clearly equivalent to dP3 ∈ P(VL3(L2,P2)), hence it is equivalent
to (L3,P3) ∈ Vd,e. Under these equivalence we also have V (L3,P3) = V ′(L3,P3).
Let 3 < i ≤ e and assume that hj = gj for 3 ≤ j < i is equivalent to (Li−1,Pi−1) ∈
Vd,i−1 and that under this equivalence one has V (Li−1,Pi−1) = V ′(Li−1,Pi−1).
Assume hj = gj for 3 ≤ j ≤ i. Since V (Li−1,Pi−1) = V ′(Li−1,Pi−1) we have
V ′

Li
(Li−1,Pi−1) = VLi

(Li−1,Pi−1). Then the condition gi = hi is equivalent to
dPi ∈ P(VLi

(Li−1,Pi−1)), which is equivalent to (Li,Pi) ∈ Vd,i and by construc-
tion we get V ′(Li,Pi) = V (Li,Pi). This finishes the proof of the claim. �

Example 3.4. : case e = 3. All components V of Vd,3 ⊂ (P2)3 are of expected
dimension 8. In order to prove this, it is enough to show that V  (P2)3, since
dim((P2)3) = 9 and dim V ≥ 8 by Corollary 3.3. Now since for (L,P) ∈ V
general, we have VL3(L2,P2) 6= Γ(L3,OL3(d)) (see Proposition 1.3(b)) and thus
((L2,P2), (L3, P3)) 6∈ Vd,3 for general (L3, P3) ∈ P2, so the claim follows immedi-
ately.

Example 3.5. Let d be even and consider

V = {(L,P) ∈ (P2)e |Pi 6∈ Lj if i 6= j and ∃C ∈ Γ(P2,OP2(2)) : TPi
(C) = Li}.

It is clear that V ⊂ Vd,e has dimension 5 + e and thus V is of unexpected dimen-
sion if and only if e > 4.

Example 3.6. Let e ≥ 3 and consider

V = { (L,P) ∈ (P2)e |Pi 6∈ Lj if i 6= j and P1, . . . , Pe collinear}.

It is clear that V is a component of Vd,e of dimension 2e+2, so it is of unexpected
dimension if e > 3. In fact, in a following paper of the authors, it will be proved
that this is the only component of unexpected dimension if e = 4.
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