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1 Introduction

Let X ⊂ PN be an irreducible non-degenerate projective variety of dimension n
and let h and k be integers such that 0 ≤ h ≤ k ≤ N . Denote by Gh,k(X) ⊂
G(h,N) the (h, k)–Grassmann secant variety of X, i.e. the closure of the set of
h-dimensional linear subspaces contained in the span of k +1 independent points
of X. We will say that X is (h, k)-Grassmann defective, or simply (h, k)-defective,
if the dimension gh,k(X) of Gh,k(X) is smaller than the expected one, which is

γh,k(X) := min{(k + 1)n + (k − h)(h + 1), (N − h)(h + 1)}. (1)

The difference δh,k(X) = γh,k(X)− gh,k(X) is called the (h, k)-defect of X.
The case h = 0 is the most studied case (see for example [14]), where the vari-

ety Gh,k(X) coincides with the k-th secant variety Sk(X). In this case one speaks
of k–defective, rather than (0, k)–defective variety, of k-defect δk(X), rather that
(0, k)–defect, etc.

If h > 0, little is known. One of the most important reasons for this is
the lack of an analogue of Terracini’s Lemma (see [14, Chapter V, Prop. 1.4]).
Nevertheless, in [6] it is shown that curves are never Grassmann defective, in
[7] there is the classification of (1, 2)-defective surfaces and in [9] one gives a
classification of (k − 1, k)-defective surfaces and threefolds with k > n.
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Beside the intrinsic interest of Grassmann defective varieties, there are also
some extrinsic reasons to study them. For example, Grassmann defective varieties
behave strangely under projections and they are related to interesting aspects of
the Waring problem (see [3, 8, 11]).

In this paper we will prove the following lower bound for the dimension of
Gh,k(X):

gh,k(X) ≥ f(n, h, k) := (k + 1)n + (k − h)(h + 1)− (k − h)(n− 1)

if gh,k(X) < (h + 1)(N − h).
(2)

Varieties for which Gh,k(X) 6= G(h,N) and the bound (2) is attained are
called (h, k)-extremal varieties. The main aim of this paper is to classify them
(see Theorem 4.1). The case (h, k) = (0, 1) was already treated in [4, Section
3]. In view of the result in [6], curves in PN are (h, k)–extremal as soon as
(h + 1)(N − h) > f(1, h, k), i.e. N > k + k+1

h+1
.

In Section 2, we start with some definitions and basic properties and then we
prove the bound (2). In Section 3, we give examples of extremal varieties. In
Section 4, we prove that these examples are the only extremal varieties.

2 Basic properties and the proof of the bound.

We start this section with some conventions. We denote the N -dimensional pro-
jective space over the field of the complex numbers C by PN and we write G(h,N)
to denote the Grassmannian of h-dimensional linear subspaces of PN .

A variety X ⊂ PN is an irreducible reduced Zariski closed subset of PN . We
say that X ⊂ PN is non-degenerate if X is not contained in any hyperplane of
PN .

Let X be a non-degenerate n-dimensional variety in PN . We say that a closed
subscheme Y ⊂ X is a m-dimensional section of X if Y is the scheme-theoretical
intersection of X with a linear subspace of dimension N − n + m of PN such
that all irreducible components of Y have dimension m. When m equals 1, 2 or
n−1, we will use the terminology of curve section, surface section and hyperplane
section.

Let X ⊂ PN be a non-degenerate variety of dimension n and let k ≤ N be
an integer. The set of points (P0, . . . , Pk) ∈ Xk+1 with dim(〈P0, . . . , Pk〉) = k
is a non-empty Zariski open subset of Xk+1. So we have the rational map ω :
Xk+1 99K G(k,N) sending (P0, . . . , Pk) to 〈P0, . . . , Pk〉. An element of the image
is called a (k + 1)-secant k-space of X.

Consider, for all integers h ≤ k, the closed, irreducible variety I = {(H, G)|H ⊂
G} ⊂ G(h,N)× G(k,N) with projections α, β to the first and second factor re-
spectively. Define Gh,k(X) as the variety α(β−1(Im(ω))).
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In case N ≤ n + k, the general k-dimensional subspace G meets X along a
subvariety of dimension n + k −N which is non–degenerate in G. Therefore the
map ω is dominant, thus Gh,k(X) = G(h,N).

From now on we assume that N > n+k. In this case, the map ω is generically
injective (see Lemma 2.1 below), hence dim(Im(ω))) = (k + 1)n. Since the fibers
of β are Grassmannians G(h, k), then β−1(Im(ω)) is irreducible of dimension
(k+1)n+(k−h)(h+1). This explains the definition given in (1) of the expected
dimension γh,k(X) of Gh,k(X) ⊂ G(h,N) versus the true dimension gh,k(X) =
dim(Gh,k(X)) ≤ γh,k(X). As we said, δh,k(X) = γh,k(X) − gh,k(X) is called the
(h, k)-defect of X, and we we say that X is (h, k)-defective if δh,k(X) > 0.

Note that, if h = k and N > n + k, then clearly δk,k(X) = 0.

Lemma 2.1. Let X ⊂ PN be a non-degenerate n-dimensional variety with N ≥
n + k + 1 for some integer k and let P0, . . . , Pk be general points of X. Then
X ∩ 〈P0, . . . , Pk〉 = {P0, . . . , Pk} as a scheme.

Proof. The points P0, . . . , Pk are contained in a general curve section of X in
some Pk+2. The uniform position lemma for curves (see [1] or [5, Prop. 2.6] for
the argument) implies the assertion.

We will need the following classical result. We sketch its proof for sake of
completeness.

Proposition 2.2. Let X ⊂ PN be a variety and let X ′ be its general hyperplane
section. Then:

(i) if X is a cone with vertex of dimension m > 1, then X ′ is a cone with
vertex of dimension m− 1 which is the intersection of the vertex of X with
the span of X ′;

(ii) if X ′ is a cone with vertex of dimension m, then X is a cone with vertex of
dimension m + 1.

Proof. Part (i) is trivial. As for part (ii), note that X is a cone if and only if it
has a point of multiplicity equal to the degree of X. Since degree and multiplicity
of points are preserved by a general hyperplane section, X ′ being a cone implies
that X is a cone. Then part (i) applies and part (ii) follows.

The following proposition is well known in the case h = 0 (see [14]).

Proposition 2.3. If Gh,k(X) = Gh,k+1(X), then Gh,k(X) = G(h,N).

Proof. Let kh be the smallest integer l such that Gh,l(X) = G(h,N). We will
show by induction that for all i ∈ {k, . . . , kh − 1} we have Gh,i(X) = Gh,i+1(X).
This gives us a contradiction if k < kh.
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For i = k there is nothing to prove. Let us suppose that Gh,i(X) = Gh,i+1(X)
for some k ≤ i < kh − 1. Let H be a general element of Gh,i+2(X), so H ⊂
〈P0, . . . , Pi+2〉 with P0, . . . , Pi+2 ∈ X and dim(〈P0, . . . , Pi+2〉) = i + 2. We may

assume that Pi+2 6∈ H. Let H
′
be the image of the projection of H from Pi+2

to 〈P0, . . . , Pi+1〉. Now H
′ ⊂ 〈P0, . . . , Pi+1〉 has dimension h, so H

′
is an element

of Gh,i+1(X) = Gh,i(X). Since H ⊂ 〈H ′
, Pi+2〉, we have H ∈ Gh,i+1(X). This

implies Gh,i+1(X) = Gh,i+2(X).

Since ω is generically injective if N > n + k, there is a slightly different way
of describing Gh,k(X). Consider the closure Ih,k(X) ⊂ Xk+1 × G(h,N) of the
set of points (P0, . . . , Pk, H) with dim(〈P0, . . . , Pk〉) = k and H ⊂ 〈P0, . . . , Pk〉.
Note that Ih,k(X) is irreducible of dimension (k + 1)n + (h + 1)(k− h). Consider
the projection map q : Ih,k(X) → G(h,N). The closure of the image of q is
Gh,k(X). Let H be a general element of Gh,k(X). The fibre of q above H is pure
dimensional, of dimension

ξh,k(X) := dim(Ih,k(X))− dim (Gh,k(X))

= δh,k(X) + max{0, (k + 1)n− (h + 1)(N − k)}
(3)

(see [12, II, §3, Ex. 3.22]). Let ΩH,k be a component of this fibre, which can be
naturally viewed as a subvariety of Xk+1, and denote the i-th projection map to
X by pi.

Now we come to the proof of the bound (2). We will do this in two different
ways, both useful for the classification result we will prove in §4. By taking into
account (3), one way is to bound ξh,k(X) form above. This we will do first. The
following two lemmas are useful.

Lemma 2.4. If h < k then the map p := p0 × · · · × pk−h−1 : ΩH,k → Xk−h is
generically finite.

Proof. Let (P0, . . . , Pk) be a general element of ΩH,k. Since H∩〈P0, . . . , Pk−h−1〉 =
∅, we have 〈P0, . . . , Pk−h−1, H〉 = 〈P0, . . . , Pk〉, so we have the following equality
of intersection schemes

〈P0, . . . , Pk−h−1, H〉 ∩X = 〈P0, . . . , Pk〉 ∩X = {P0, . . . , Pk}.

Thus if (P0, . . . , Pk−h−1, Qk−h, . . . , Qk) is another element of p−1(P0, . . . , Pk−h−1),
we have Qi ∈ {P0, . . . , Pk} for all i ∈ {k−h, . . . , k}. This proves the assertion.

Lemma 2.5. If h < k and Gh,k(X) 6= G(h,N), then the map pi : ΩH,k → X is
not surjective for any i = 0, . . . , k.

Proof. Let H̃ be a general element of Gh,k+1(X). So H̃ ⊂ 〈P0, . . . , Pk+1〉 with

Pi ∈ X for all i and dim(〈P0, . . . , Pk+1〉) = k+1. We may assume that Pk+1 6∈ H̃.

Consider the projection of H̃ to 〈P0, . . . , Pk〉 from Pk+1. Since this is a general
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element of Gh,k(X), we may assume that it is equal to H. If pi is surjective,

then Pk+1 ∈ Im(pi), so there is a G ∈ Gk,k(X) with H̃ ⊂ 〈H, Pk+1〉 ⊂ G,

hence H̃ ∈ Gh,k(X) and Gh,k(X) = Gh,k+1(X). Proposition 2.3 implies that
Gh,k(X) = G(h,N), and this yields a contradiction.

Next we prove the promised bound.

Proposition 2.6. If Gh,k(X) 6= G(h,N), then

ξh,k(X) ≤ (k − h)(n− 1)

and

δh,k(X) ≤ min{(k − h)(n− 1), (h + 1)(N − k − n)− (k − h)}.

Proof. The assertion is clear if h = k. So assume h < k. Denote pi(ΩH,k) by Xi.
Lemma 2.5 implies that Xi 6= X and thus dim(Xi) < n. By Lemma 2.4 we have

ξh,k(X) = dim(ΩH,k) = dim(Im(p0 × · · · × pk−h−1))

≤ dim(X0)× . . .× dim(Xk−h−1) ≤ (k − h)(n− 1).

The rest of the assertion follows by (3).

As an immediate consequence we have:

Theorem 2.7. If X ⊂ PN is a non–denerate variety then (2) holds.

Corollary 2.8. If X is (h, k)-defective, then N > k +n+ k−h
h+1

, n > 1 and h < k.

Proof. If X is (h, k)-defective, then Gh,k(X) 6= G(h,N) and from Proposition 2.6
we see that that

0 < δh,k(X) ≤ (h + 1)(N − k − n)− (k − h)

thus the first part of the statement follows. Moreover we also have

0 < δh,k(X) ≤ (k − h)(n− 1)

yielding the rest of the assertion.

Note that this provides an alternative proof of the main result of [6].

Definition 2.9. Let X ⊂ PN be a non-degenerate variety of dimension n. We
say that X is (h, k)-extremal if Gh,k(X) 6= G(h,N) and equality holds in (2) or,
equivalently, if ξh,k(X) = (k − h)(n− 1).
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Note that if X ⊂ PN is (h, k)–extremal, then N ≥ n + k + 1. In this case
any variety is (k, k)–extremal (see Corollary 2.8). Moreover, any (h, k)–extremal
variety is also (h, k)–defective, unless either h = k or n = 1. Indeed, all curves
in PN are (h, k)–extremal if and only if N > k + k+1

h+1
(see [6]).

We finish this section by giving another proof of Proposition 2.6, which will
be useful for the proof of the classification Theorem 4.1 below.

Alternative proof. We want to prove (2). In view of the results in [6], this is true
if n = 1. We will assume n > 1 and proceed by induction.

Note that f(n, h, k)− f(n− 1, h, k) = h + 1. Let X ′ be a general hyperplane
section of X. Since Gh,k(X) 6= G(h,N), then clearly Gh,k(X

′) 6= G(h,N − 1).
Therefore, by induction, it suffices to prove that

gh,k(X) ≥ gh,k(X
′) + h + 1. (4)

It is well known that one can flatly degenerate X to the cone over X ′ with
vertex a point, with possibly some embedded component at the vertex, as follows.
Consider PN as a hyperplane in PN+1 and take a point T ∈ PN+1 \PN . Let C(X)
(resp. C(X ′)) be the cone over X (resp. X ′) with vertex T . Let L be a general
pencil of hyperplanes in PN+1. A general L ∈ L cuts out on C(X) a copy of X.
If L′ ∈ L contains T then its intersection with C(X) has support on C(X ′). Note
however that this intersection might have an embedded component at T due to
the failure of the S2 property for C(X) at T , namely to the lack of projective
normality of X (see [12], p. 185). Such an embedded component however will
not play any role in our argument.

Let J be the closure of the set of elements (P0, . . . , Pk, L, H) with L ∈ L,
P0, . . . , Pk general points of C(X) ∩ L and H a h-dimensional linear subspace of
〈P0, . . . , Pk〉. Let π be the projection of J to the last two components. For a
general (L, H) ∈ π(J), we get

dim(π−1(L, H)) = ξh,k(C(X) ∩ L) = ξh,k(X).

If H ∈ Gh,k(C(X ′)) is general, then (L′, H) ∈ π(J), and we get

dim(π−1(L′, H)) = ξh,k(C(X ′)).

Hence ξh,k(X) ≤ ξh,k(C(X ′)) and thus

gh,k(X) ≥ gh,k(C(X ′)). (5)

The projection from the vertex T gives a rational dominant map

p : Gh,k(C(X ′)) 99K Gh,k(X
′).

Let H ′ ∈ Gh,k(X
′) be general. We claim that the closure of the fiber of p above H ′

equals the set of hyperplanes of 〈H ′, T 〉. Indeed, let H be a general hyperplane of
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〈H ′, T 〉. There exist points P ′
0, . . . , P

′
k ∈ X ′ with H ′ ⊂ 〈P ′

0, . . . , P
′
k〉, hence H ⊂

〈P ′
0, . . . , P

′
k, T 〉. A hyperplane of 〈P ′

0, . . . , P
′
k, T 〉 through H intersects each line

〈P ′
i , T 〉 at a point P ′′

i ∈ C(X ′). Hence H ⊂ 〈P ′′
0 , . . . , P ′′

k 〉 and H ∈ Gh,k(C(X ′)).
We conclude that

gh,k(C(X ′)) = gh,k(X
′) + h + 1.

By (5), (4) follows, proving our result.

From the above argument, we can draw an interesting conclusion about (h, k)–
extremal varieties.

Proposition 2.10. Let X be a (h, k)-extremal variety of dimension n. Then:

(i) if n ≥ 2, a general hyperplane section of X is again (h, k)-extremal;

(ii) a cone over X is again (h, k)-extremal.

3 Some examples

Example 3.1. Let X ⊂ PN be a cone over a curve with vertex a linear subspace
of dimension n− 2. Then X is (h, k)-extremal, as soon as N > k + n + k−h

h+1
.

Proof. Note that X is a cone over its general curve section C which is non–
degenerate in PN−n+1. Thus C is (h, k)–extremal as soon as N > k + n + k−h

h+1
.

Then the statement follows from part (ii) of Proposition 2.10.

Example 3.2. Let X ⊂ Pn+3 be a cone over the Veronese surface of degree 4
in P5 with vertex a linear subspace of dimension n − 3, and n ≥ 2. Then X is
(0, 1)-extremal.

Proof. By Proposition 2.10, it suffices to remark that the Veronese surface is
(0, 1)-extremal, equivalently that it is 1-defective, which is classical (see [13]).

Example 3.3. Let X ⊂ Pn+k+1 be a rational normal scroll of dimension n and
degree k + 2. If k ≤ 2h then X is (h, k)-extremal.

Proof. The assertion is clear for n = 1. So we may assume n ≥ 2. Since singular
rational normal scrolls are cones over smooth rational normal scrolls of the same
degree, part (ii) of Proposition 2.10 implies that we may assume that X is smooth,
and at least 2-dimensional (see Example 3.1).

One has X = P(⊕n
i=1OP1(ri)), with rn ≥ . . . ≥ r1 ≥ 1 integers such that∑n

i=1 ri = k + 2, and X is embedded in Pn+k+1 via the sections of the OX(1)
bundle (see [10]). We will denote by L the hyperplane class of X. Let Π be
a general (n − 1)–dimensional ruling of the scroll. The linear system |L − Π|
corresponds to sections of the bundle ⊕n

i=1OP1(ri−1), hence dim(|L−Π|) = k+1,
and, since ri ≥ 1, i = 1, . . . , n, then |L − Π| is base point free and therefore its
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general element X ′ is a smooth rational normal scroll of dimension n − 1 and
degree k + 1, which spans a Pn+k−1. Indeed the hyperplanes through X ′ cut out
on X the pencil |Π|.

Let P0, . . . , Pk be general points of X and let H be a h–dimensional subspace of
〈P0, . . . , Pk〉. Then there is a unique element X ′ ∈ |L−Π| containing P0, . . . , Pk.
Consider a general subspace G of dimension k containing H and contained in
〈X ′〉. Any such a G is (k + 1)–secant to X ′, hence to X, and contains H. Since
these subspaces G fill up a family of dimension (k − h)(n − 1), we see that
ξh,k(X) ≥ (k − h)(n− 1) and therefore gh,k(X) ≤ f(n, h, k).

We claim that Gh,k(X) 6= G(h, n + k + 1). To see this, note that (h + 1)(n +
k − h + 1) > f(n, h, k) because k ≤ 2h. Thus we may apply Proposition 2.6 and
conclude that ξh,k(X) = (k − h)(n− 1) hence gh,k(X) = f(n, h, k).

4 The classification theorem

In this section we prove the classification theorem for (h, k)–extremal varieties.

Theorem 4.1. Let X ⊂ PN be a non-degenerate, n–dimensional, (h, k)-extremal
variety for integers 0 ≤ h ≤ k. Then either n = 1 and N > k + k+1

h+1
, or h = k

and N > n + k, or X is one of the examples considered in §3, i.e.:

(i) N > n + k + k−h
h+1

and X ⊂ PN is a cone over a curve with vertex a linear
subspace Pn−2;

(ii) (h, k) = (0, 1) and X is a cone over the Veronese surface of degree 4 in P5

with vertex a linear subspace of dimension n− 3;

(iii) N = n + k + 1, k ≤ 2h and X is a rational normal scroll of degree k + 2.

Proof. Assume n > 1 and h < k. From Corollary 2.8, we have N > n + k + k−h
h+1

.
Consider a general surface section Y which spans a projective space of dimension
M := N − n + 2. By Proposition 2.10, Y is also (h, k)-extremal.

If (h, k) = (0, 1), the surface Y is 1-defective and [13] implies Y is either a
cone over a curve or the Veronese surface in P5. By Proposition 2.2 and non–
extendability of the Veronese surface (see e.g. [2]), we are either in case (i) or
(ii).

Assume that (h, k) 6= (0, 1), in particular k ≥ 2. Let H ∈ Gh,k(Y ) be a
general element. Consider Ih,k(Y ) ⊂ Y k+1 ×G(h,M). One has the rational map
p : Ih,k(Y )1G(k,M), sending a general point (P0, . . . , Pk, H) to 〈P0, . . . , Pk〉. Note
that the general fibre of p has degree (k+1)! and the monodromy, or Galois, group
of p is the full symmetric group on {P0, . . . , Pk} (see [1] for a similar situation).

Consider also the projection q of Ih,k(Y ) to G(h,M). Since Y is (h, k)-
extremal, any component ΩH,k of q−1(H) has dimension k−h. Let (P0, . . . , Pk, H)
be a general element of ΩH,k, thus P0, . . . , Pk are general points of Y . Denote

8



the i–th projection map of ΩH,k to Y by pi and the image of pi by Γi. Since the
monodromy group of p is the full symmetric group, Γ0, . . . , Γk all have the same
dimension (see [9, p. 209-210] for a similar argument). The proof of Proposition
2.5 and Proposition 2.6 imply that Γ0, . . . , Γk are curves.

Write Γ to denote the curve Γ0 ∪ . . . ∪ Γk. We claim that Γ spans a Pk+1.
Indeed, let r be the dimension of this span. If we consider the projection in 〈Γ〉
from H to a Pr−h−1, the curve Γ projects to a curve Γ′ which has a (k − h)-
dimensional family of (k + 1)-secant Pk−h−1. Choose any k − h − 2 among the
curves Γ0, . . . , Γk, say Γi1 , . . . , Γik−h−2

. By imposing to such a Pk−h−1 to contain
a general point each of these k − h − 2 curves, and projecting down from these
points, we find a curve Γ′′ in Pr−k+1, which contain the images Γ′′

j1
, . . . , Γ′′

jh+3
of

the curves different from Γi1 , . . . , Γik−h−2
. Now any line joining general points of

two of the curves Γ′
j1

, . . . , Γ′
jh+3

, meets all the other curves of this set. This is
only possible if r − k + 1 = 2, i.e. r = k + 1.

Next, for every i = 0, . . . , k, we consider the intersection Γi ∩ {P0, . . . , Pk},
which contains at least the point Pi. We claim that either Γi∩{P0, . . . , Pk} = {Pi}
for all i = 0, . . . , k, or {P0, . . . , Pk} ⊂ Γi for all i = 0, . . . , k. Suppose indeed that
there is a j 6= i such that Pi ∈ Γj. By monodromy (see a similar argument
above), then {P0, . . . , Pk} ⊂ Γj, and, again by monodromy, {P0, . . . , Pk} ⊂ Γi for
all i = 0, . . . , k.

Suppose first that Γi ∩ {P0, . . . , Pk} = {Pi} for all i = 0, . . . , k. Note that
〈P0, . . . , Pk〉 intersects Y in {P0, . . . , Pk} as a scheme (see Lemma 2.1). Hence it
intersects each curve Γi at Pi transversally. Thus Γi is a curve in Pk+1 intersecting
transversally the hyperplane 〈P0, . . . , Pk〉 ⊂ Pk+1 at one point, hence each Γi is a
line. So for general points P0, . . . , Pk on Y , there exist lines Γ0, . . . , Γk ⊂ Y with
Pi ∈ Γi and dim(〈Γ1, . . . , Γk〉) = k. Now [9, Prop. 1.3 and Section 4] implies that
Y is a cone over a curve. By Proposition 2.2, we are in case (i).

Suppose finally that {P0, . . . , Pk} ⊂ Γi for all i = 0, . . . , k. Arguing as above
we see that each Γi is a rational normal curve of degree k + 1 in 〈Γ〉. Consider a
minimal resolution of singularities S → Y and let C be the proper transform on S
of one of the curves Γ0, . . . , Γk. Let L be the continuous system of curves in which
C moves. Notice that dim(L) ≥ k+1 ≥ 3, since k+1 general points on Y belong
to a curve C ∈ L. Since C is rational, the surface S is rational, dim(|C|) ≥ k + 1
and C2 ≥ k. Let G be the pull-back to S of a hyperplane section of Y . The index
theorem tells us that (k + 1)2 ≥ kG2, hence G2 ≤ k + 2 because k > 1. Since Y
is non–degenerate in PM , we have G2 ≥ M − 1 = N − n + 1 ≥ k + 2. Therefore
G2 = k + 2 and Y is a surface of minimal degree k + 2. By the way, this yields
C2 = k and Γ0 = . . . Γk = Γ in this case. In any event, we get N = n + k + 1 and
X is also of minimal degree k +2, so X is either a cone over the Veronese surface
or a rational normal scroll (see [10]), i.e. we are either in case (ii) or (iii).
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