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Abstract. — In this article, we will study plane curves of a certain degree d with 3 or 4
total inflection points. In particular, we will study their image in the moduli spaces. Also a

result on curves with 5 total inflection points is included.
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0 Notation and introduction

We will first fix some notations. Let P? be the projective plane over some al-
gebraically closed field k& and let P? be the incidence relation in (P?)* x P? i.e.
P?={(L,P)| P € L}.

If d and e are nonzero natural numbers, we denote by V. C (P?)¢ the set of
elements (£,P) = (L1, P1),...,(Le, P.)) with P, ¢ L; for all 7 # j (hence also
L; # L; for i # j) and such that there exists a plane curve I' (not necessarily
irreducible) of degree d, not containing one of the lines L;, with intersection
number i(I".L;, P;) = d. We say that in this case the pairs (L;, P;) are total
inflection points of I'. We write V. to denote the closure of V. in (P?)e.

If (L, P) € Vg, denote by V(L,P) C I'(P?, Op(d)) the set {s|dP; + ...+
dP, C Z(s)}, whereby dP; is the subscheme of P? corresponding to the divisor
dP; on L;. So the associated linear system P(V (L, P)) consists of curves I' of
degree d having (L;, P;) as total inflection point for all 7. If 1 < f < e, we will
mostly write (Lf, Py) to denote the element ((Ly, P1),...,(Lys, Pf)) € Vg (unless
stated otherwise).
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We write V. to denote the union of the spaces of curves P(V(L,P)) with
(L,P) € Vg.. We denote the set of points corresponding to smooth plane curves
of Vg, by Vie Let mae : Vg, — Ma-1)a-2)/2 be the moduli map and denote its
image by M (Vy.).

In [7], the case d = 4 (i.e. quartic curves) has been studied intensively. The
main tool used there is the so-called A-invariant, which is nothing else than a cross
ratio of four points (see also [4]). In [2], the cases e = 1,2 have been handled
and also the cases e = 3,4 for some special configurations of the lines L; and the
points P;. In [3], a few general results are proven on curves with total inflection
points.

In Section 1, we will consider the case e = 3 (so three total inflection points).
We will give a full description of the components of Vj; 5 for d > 2 and M (V,3) for
d > 5, prove that they are rational and compute their dimensions (see Theorem
1.1 and Theorem 1.5). In Section 2, we consider the case e = 4. Again we find
a full list of the components of V4 for d > 3 and M (V) for d > 6. We will
prove that all components of V4 (Theorem 2.2) and almost all components of
M (Vy4) (Theorem 2.11) are rational. In Section 3, we will prove a result on the
case ¢ = 5 (Theorem 3.2).

We recall a proposition proven in [3], which we will use several times during
this article.

Proposition 0.1. Let (L, P) € V.
(a) dim(V (L, P)) = (“5"%) + 1, where (3) is defined to be 0 if n < 2.

(b) Let L be a line in P? with P; & L for1 <i<e. Let VL(L,P) be the image of
the restriction map V(L,P) — I'(L,Or(d)). Let Py =L;N L for1 <i<e.
Ifd> e, dim(VL(L,P)) = d—e+2 and P(VL(L,P)) is a linear system gi—°+!
on L containing Pig+ ...+ Py + gfil:e Ifd <e, dim(V,(L,P)) =1.

e

(c) Under the assumptions of (b), for P € L with P # Py for all 1 <i < e one
has ((L,P), (L, P)) € Viet1 if and only if dP € P(VL(L,P)).

The following lemma is well-known. Since we cannot find a good reference,
we include a proof for sake of completeness.

Lemma 0.2. Let C) and Cy be smooth plane curves of degree d > 4. Then C}
and Cy are wsomorphic if and only if they are projectively equivalent; i.e. there
exists an automorphism ¢ of P* such that ¢(Cy) = Cs.

Proof. In case C'; and C5 are isomorphic curves, both are defined by a linear
system g2 on the same curve C. Let g; be the linear system on C' defining C;



(¢ € {0,1}). In order to prove the existence of ¢, it is enough to prove that
g1 = g2. Take D € gy general, then D = P, + ... + P; with P, # P; for
1 # j. We identify C' with (', hence it is enough to prove that D = C;.L for
a line L in P2. Let L be the line connecting P, and P, and assume P; ¢ L.
From the Adjunction Formula, it follows that the canonical linear system on
(' is defined by intersections of €} with plane curves of degree d — 3. Using
d — 3 lines in P2, it is possible to find canonical divisors K; on C such that
K,ND=P +...4 P, for 0 <i<d—3. On the other hand, using L and d — 4
suited lines in P2, we can find a canonical divisor K;_o containing P, + ...+ P;_»
but not P;. This proves that D imposes at least d — 1 conditions on K, hence
h'(Ke — D) < h°(K¢) — (d—1) = g — d + 1. From Riemann-Roch, it follows
that h%(D) = deg(D) —g+1+h°(Kg—D) < (d—g+1)+(9—d+1) = 2. This
contradicts D € g». O]

1 The case e=3

Let (P?)*0 C (P?)3 be the set of points (£,P) = ((Ly, 1), (L2, P%), (L3, P3))
with P, & L; for i # j and let (P?)*%2? C (P?)? be the subspace of (P?)*° of
elements (£, P) such that the lines L, Lo and Lz have a common point S. Let
(P2)301 = (P2)30\ (P2)3.02,

For (L, P) € (P?)*°, we write g4~ to denote the linear system P(V,(Ls, P2))
on L3. Let Pio3 = (P, Py) N L. Since d(Py, P») € P(V(Ls,P2)), we find
dP o3 € g47", hence

gi = (Pig+ Py + g0 2, dPras).

Moreover, (£,P) € (P?)*02 is equivalent to P35 = Pp3 and (L,P) € V3 is
equivalent to dP; € gg_l.

We continue in case (£,P) € (P?)>%1. We can choose coordinates (X; : X :
X5) on P2, Let Ry, Ry and Rj3 be the coordinate axes. There exists a coordinate
transformation ¢ on P? such that ¢(L;) = R; : X; = 0 for i € {1,2,3}, ¢(P,) =
Qr:=(0:1:1)and ¢(P) = Q2:=(1:0:1), hence ¢(P3) = Q3 := (1 : —t:0)
for some t € k (note that Pj is not contained in L), ¢(P13) = Q13 := (0:1:0),
d(Pos) = Q23 :=(1:0:0) and ¢(Pr123) = Q123 :=(1:—1:0). On R3 we can
take (X : X») as local coordinates, so on R3 we have Q13 = (0: 1), Q25 = (1:0),
Q123 =(1:—1)and Q3 = (1 : —t). Identify g on R3 with the projective space
P(k[ X1, X5]q4) of homogeneous forms of degree d and use homogeneous coordinates
(ag = ag_1 : ... : ag) for {agX{ + ag 1 X Xy + ... + apXZ). The subspace
Qi3+Q23 —I—ggjg C g4 is defined by the linear equations ag = a4 = 0, while dQ1 2 3
corresponds to {(X; + X3)9). It follows that ¢4~ ' = (Q13+ Qa3 —i—gj:%, dQ123) C
g4 has as equation ag = a4. The point Q3 = (1: —t) € Lj satisfies dQ3 € g ' if
and only if the form (X + X;)¢ satisfies the equation, i.e. if and only if t¢ = 1.
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The point Q1235 = (1: —1) on Rj3 is a solution of this equation. If char(k) =0 or
char(k) = p > 0 does not divide d, there are exactly d solutions of this equation.
If char(k) = p > 0 divides d, we can write d = d’.p® with d’ not divisible by p. In
this case, the condition becomes t* = 1, hence there are exactly d’ solutions. In
case char(k) = 0 or char(k) = p > 0 does not divide d, we also write d’ = d.

Denote ((Ry,®Q1), (Ra, Q2), (R3,Q3)) by (R,Q(t)) if @3 = (1 : —t : 0). By
using 0.1, we see that (R, Q(t)) € V3 if and only if t¥ = 1, hence if and only if
t € pg ={1,w,...,w? 1} whereby w is a d’-th root of unity in k (for example, if
k = C we can take w = ™/,

We get that if (£,P) € Vg3 N (P?)>% there exists a coordinate trans-
formation ¢ and an element ¢ € pg such that ¢(L,P) = (R, Q(t)), hence
(L,P) = ¢ (R, Q(t)). So we can conclude that

Vas N (PP = | Aut(P2).(R, Q(t))

t€pgr

and thus it is the union of d’ smooth components of dimension 8. For an element
t € pg, we write V; C Vy to denote the component containing Aut(P?).(R, Q(t)).

Now we study the case where (£, P) € (P?)*%2. We can choose coordinates
(X7 © Xy) on L such that Pj3 = P53 = (1 : 0) and Pio3 = (0 : 1). As
before, we identify g4 on Lz with P(k[X1, Xs]4) and we use coordinates (aq :
Ag—1: ... ap) on gd The linear subspace 2P 3+ gd 2 C gd has linear equations
ag = ag_1 = 0. Since dP; 53 € g2 has coordinate (1: 0 : : 0), the equation of
ggil = <2P173 + gg:g;dpl,2,3> C gg is giVGIl by aqg—1 = 0. Since P3 7& P1’3 = P2,3
(P5 is not contained in L; or Ls), we may assume P3 = (a : 1) on Lz. Hence
dP; € ¢47' if and only if (X; — aX,)? satisfies the equation, i.e. if and only
if da = 0. The solution @ = 0 corresponds to Pj53 and if char(k) = 0 or
char(k) = p > 0 does not divide d, there is no other solution. In this case, (£, P)
belongs to the closure V; of Aut(P?).(R,Q(1)). However, if char(k) = p > 0
divides d, all points P5 on Lg satisfy dPs € g3 ', so (P?)>%2 is a component of
Vas. Notice that

At (P2). (R, QL) () Q)), (R, Q)
is a dense subset of (P?)>%2 with R} : X; =0, R, : Xy =0, R, : X; = Xy,
Q1=(0:1:0),Q,=(1:0:0and Q5=(1:1:1)(soS=(0:0:1)).

Since Aut(P?) is rational, we have proven the following theorem.

Theorem 1.1. In case char(k) = 0, let d = d; in case char(k) = p > 0, write
d = p°d withc > 0 andp 1t d'. There are exactly d' components of V3 intersecting
(P?)301. Each of them has dimension 8, the intersection with (P*)>%! is smooth
and ezactly one of them is not contained in (P*)>%'. In case ¢ > 1, (P?)3%2 s
another 8-dimensional component of Vgs. Each component of Vg3 is rational.

We have the following generalization for the case where char(k) = p > 0 is
divisible by d.



Proposition 1.2. Assume char(k) = p >0 and d = p°d’ with ¢ > 1 and p { d'.
Let e < p¢+ 1 and let Lq,..., L. be lines through a common point S and let
P, e L;\{S} for1<i<e. Then (L,P) € Vye.

Proof. We may assume e > 3. Let L = (P, P5) and assume 2 < z < e with
P,eLforl<i<xand P, ¢ L otherwise. Write f = e —x. In case f =0, we
have dL € P(V(L,P)), hence (L, P) € Vy.. Let f > 0 and assume the claim holds
for f — 1 (instead of f). Let Qc_y+1 = Le_y11 N L. Let (L', P") € (P*)*° (resp.
(L",P") € (P?)*1?) be obtained from (L£,P) by replacing (Le—si1, Pe—41) by
(Le—f+1, Qe—f+1) (resp. by omitting (Le— 41, Pe—p41)). Both (£, P’) and (L, P")
correspond to f — 1 instead of f, hence (L', P") € V. and (L",P") € Vie_1.

In order to proof the claim, it is enough to show dP,_,1 € P(Vz,_, (L",P")).
There exists a I' € V(L',P’) such that L._piy ¢ I and Le_p N T = dQe—p41.
Since V/(L',P") C V(L",P") it follows that dQ._j41 € P(Vy,_,,,(L",P")), hence

P(Ve, p (L7, P")) = ((e = 1)S + gg=¢t1, dQe-r1)-

Choose coordinates (x : y) on L._iq such that S = (1:0) and Qe—s41 = (0: 1).

Use coordinates (ag : ... : ag) on g% on L. ;1 as before. The linear system
(e —1)S + gf}:jﬁ has equations ag = ... = @g_er2 = 0 and dQ._j11 = (1 :
0:...:0). Hence P(Vy,_,, (£",P")) has equations ag_1 = ... = Gg_cy2 = 0.

For P = (a : ) € Le_sy1 one has dP € P(Vy,_,  (L",P")) if and only if the
form (Bz — ay)? satisfies those equations. This is equivalent to 3¢ a? (f) =0 for
1 <i<e—2. Incase af # 0, all those conditions are satisfied if and only if
e—2<p°—1, hence e < p°+ 1. O

Lemma 1.3. Assume (L,P) € Vg, with e < d. Then a general element of
P(V(L,P)) is a smooth plane curve.

Proof. The claim follows immediately from [3, Prop. 2.1] by taking z = 0. ]

For each t € pgz, we write V; to denote the union of spaces P(V (L, P)) for
all (£,P) € V;. We denote the set of points corresponding to smooth plane
curves of V; by Vy. Since V; C Vg3, we can consider the image of V; under
ma3 : Vg — M@a-1)@a—2)/2- We denote this image by M(V,).

Now we restrict to the case char(k) = 0.

Lemma 1.4. Ifd > 5 and V; is component of Vg3, then a general element of Vy
has ezxactly 3 total inflection points.

Proof. Since V, 3 has codimension 1 inside (P?)? (see Theorem 1.1 or [3, Ex. 3.4]),
we find V4 has codimension at least 2 inside (P?)*) hence dim(V;4) < 10 (in
fact, we will show in Section 2 that equality holds). Indeed, fixing (£, P) € V3,
the set

S = {<Lv P) € P? | ((‘C’P)7 (L7P)) € V;l,4}

bt



is at most 2-dimensional, since S C {(L, P) € P?| ((L2, P2), (L, P)) € Vy3}.
We obtain dim(V;) = 8 + (*}") and dim(Vy4) < 10+ (%}?), hence dim(V,) >
dim(Va4) if d > 4. O

Since V; = Aut(P?).(R, Q(t)) for each t € ug, the set myz3(P(V(R, Q(t)))°)
is a dense open subset of M (V}), where again the o-sign indicates the smooth
curves. For a general curve C' € P(V(R, Q(t)))°, Lemma 0.2 implies that [C] =
[Cl] € M(d,l)(d,g)/g for some C' € P(V(R, Q(t/)))o with ¢/ € L if and Only if
#(C) = (" for some ¢ € Aut(P?). Lemma 1.4 implies that the lines Ry, Ry and
Rj3 are permutated by the map ¢.

We write A = (a;;);;—, to denote a matrix corresponding to ¢ and Qs(t) =
(1:—t:0) for some t € pg.

First we consider the case where ¢((Ry, Ry, R3)) = (Rs, Ry, R3). In this case,
the matrix becomes

0 app O
A= ay 0 0
0 0 oass
We also need ¢(Q1) = @2, hence ajs = agz, and ¢(Q2) = @1, hence as; = ass.
010
So ¢ corresponds to the matrix [ 1 0 0 [. So ¢(Qs(t)) = Qs(t') implies
0 01

(=t:1:0)=(1:—t:0), hence ¢’ = 1/t. Note that moreover the equality t = ¢’
holds if and only if ¢ = 1 or d is even and t = —1. We obtain M (V;) = M (V1,,).

0 0 a3
In case ¢((R1, Ry, R3)) = (R3, R, Ry), the matrix becomes 0 ayp O
asy 0 0

We also need ¢(Q2) = Q2 and ¢(Q3(t)) = @1, hence a;3 = az; = —t.az. So
d(Q1) = Q3(t') implies (—t:1:0) = (1: —¢t': 0) and thus again t' = 1/¢.
As above, the case ¢((Ry, Re, R3)) = (R1, R3, Rs) implies t' = 1/t.

0 0 a3
In case ¢((Ry, Ry, R3)) = (Rs, R3, Ry), the matrix becomes | ay; 0 0
0 a3 0

In this case we need ¢(Q1) = Q2 hence a;3 = azy and ¢(Q3(t)) = @1 hence
as; = —t.azy. Since also ¢(Q2) = Qs3(t'), we get (1 : —t:0) = (1 : —t' : 0) and
thus ¢ = ¢'. Tt follows that ¢ acts on P(V (R, Q(t)))°.

In case ¢((Ry, Ry, R3)) = (R3, R1, R2), we find analogously as the above case
that ¢t = ¢’ and that ¢ acts on P(V (R, Q(t)))°.

In case t # 1 and ¢t # —1 if d is even, we find a subgroup Z/3Z C Aut(P?)
acting on P(V (R, Q(t)))° such that P(V (R, Q(t)))°/(Z/3Z) is birationally equiv-
alent to M(V}). Since P(V(R, Q(t)))° is rational and Z/3Z is Abelian, it follows
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that M(V;) is also rational (using a result of E. Fischer, see [5]). This extends
the result of Casnati and Del Centina (they consider the components M (V})
and M (V_y) in case d is even; see [2, Theorem B]) showing that all components
of M(Vy3) are rational. All the above results are summarized in the following
theorem.

Theorem 1.5. If char(k) = 0 and d > 5, the set M(Vy3) has 1+ 91 components
if d is odd and 2 + d% components if d is even. Moreover, each component is
rational.

2 The case e =14

In this section we will for simplicity assume that £ = C.

Assume that (£,P) is an element of V4, with no three of the lines Ly, Lo,
Ly and L, are concurrent. Since (L3,P3) = ((L1, P1), (Le, P»), (L3, Ps)) is an
element of V3 N (P?)3%! there exists an element ¢ € pg such that (L3, P3) €
V;. If we consider coordinates (X : X, : X3) on P2 there exists a coordinate
transformation ¢ such that ¢((Ls,Ps)) = (R, Q(t)). Assume that Ry := ¢(Ly) :
X3 = AX; + BX, (L4 does not contain P5). We can use (X; : X) as local
coordinates on R4. Identify the linear system g4 on Ry with P(k[X, X5]4) and
use homogeneous coordinates (aq : ... : ag) for (agX ¢ +aq 1 X' Xo+. . . +aoX).
Denote R, N R; by Q;; if 1 <¢ < j <4.

Since Q14 = (0: 1), Q24 = (1 :0) and Q34 = (=B : A) on Ry, the linear

system Q14 + Q24+ Q34 + gjjg C g% is defined by the following equations:

ll(ad, Ce ,(Io) = ag =V,
lz(ad, . ,ao) = Qq = 0,
I3(ag, ..., a0) == ag(—B)? + ag_1(=B)¥ A+ ... + apA? = 0.

If we define f; € k[ X1, X2, X34 to be
(X3 — X))+ (X3 — Xo) + (=Dt X, + Xo)* — (1) X! — (1) XY — X¥,

it is easy to see that the curve C in P? with equation fi(X; : X : X3) = 0 is
contained in P(V (R, Q(t))), hence the divisor C N Ly is an element of g4 % =
P(Vg,(R,Q(t))). The divisor C N Ry is defined by

QX{ 4 ..+ ap Xy = fi(X1, Xo, AX + BX,) =0,
so we have the following equalities

(g, .. d0) =G = (B — 1)7,
lo(da, - .. do) = da = (A — 1)%,
Iy(@g, ..., d0) = fi(—B,A,0) = (~1)%A — tB)".



Since gfo = Q14+ Q24+ Q34+ gfil:g,C N Ry), we find that gj’Z is defined
by
l2<zid, . ,50).ll(ad, . ,CL()) = ll('dd, e ,ao).lg(ad, .. 7CI,O),
I3(ag, ..., ao).la(ag, . .., ap) = la(aq, . .., ap).ls(aq, - .., ao).

Assume that the local coordinates of Q4 are (« : ). Proposition 0.1 implies
that dQ, = ((8X1 — aXs)?) € ¢472, hence

(A=1D¥(=a)! = (B —1)7p
(=D)UA=tB)".p* = (A= 1)(=BB — ad)’

so there exist ¢’ and " in py such that

—t'(A—1)a=(B-1)8
t" (A —tB)3 = t(A — 1)(Aa + BB)

hence
tt' —1)AB = (t't" —t) A+ tt'(1 —t")B.

Proposition 2.1. Under the above assumptions, we have:

€ Virgn

Proof. For i, we don’t have to prove anything. We will only prove statement i
(77 and iv are analogously). It is enough to prove that

((R27 Q2)7 (R37 Q3)7 (R47 Q4)) € V;f”-

Consider a coordinate transformation ¢ on P? such that ¢(Ry) : X; = 0, ¢(R3) :
Xo=0,90(Ry): X3=0, p(Q2) =(0:1:1) and ¢(Q3) = (1:0: 1), hence

—Bt+A
0 =Ba g
0 0 1-A
~A -B 1

is a matrix corresponding to ¢. So the image of Q4 = («, 5, Ao + B3) under ¢
is equal to (8=24 : (1 — A)(Aa+ Bf) : 0) = (1: —t": 0). O



We can rewrite the equation t(t' — 1)AB = (t't" —t)A+tt'(1 —t")B as

(' — 1)AB = (% 1A+ (1 - "B.

If ¢/,¢" and t't"/t are fixed and not equal to 1, we have a smooth conic of
lines L4 and for each line L, on this conic, there is only one point P, such that
(L,P) € Vga. So we get a 9-dimensional component of V4.

If ¢t # 1 and exactly one of the numbers ', " or t't" /t is equal to 1, it is easy
to see that L, moves in a pencil of lines through a fixed point (A # 0 and B # 0
since otherwise L4 contains Py 5 respectively P;3). Once L, is fixed, we have
only one choice for Py so that (£,P) € Vy4. Again, this gives us a 9-dimensional
component of V4.

If at least two of the numbers ¢,t',t” or t't"/t are equal to 1, the points
Py, Py, Py, Py are collinear and so t =t/ = t" = t't"/t = 1. In this case, we get
no condition on the line L, and for each line L, we have one point P, such that
(L,P) € Vyg, in particular Py is the point on L4 collinear with Pj, P, and Ps.
Hence this case gives rise to a 10-dimensional component of V4.

Let v4 be the set of elements (t,¢',t") with ¢,¢/,t" € pg and no 2 or 3 of
the elements t,¢',t” and ¢'t"/t equal to 1. It is easy to see that (¢,t',t") € vy if
(t,t',t") € (ugq)? is not of the form (a,1,1), (1,a,1), (1,1,a), (a,a,1), (a,1,a) or
(1,a,1/a) with a # 1, hence |vyg| = d*> — 6(d — 1). We denote for (¢,¢,t") € vy,
the corresponding component of Vg4 by Vip 4.

Notice that V;y 4 is 9-dimensional for each (t,t',t") € v4\ {(1,1,1)} and that
Vi1, is 10-dimensional. All these components are rational, since they are bira-
tionally equivalent to Aut(P?) x P! or Aut(P?) x (P')2.

Now assume that (£, P) is an element of V4, with
(L3, P3) = ((L1, P,), (Ly, Py), (Ls, Ps)) € (P?)>%2,

hence Ly, Lo and L3 are concurrent. From the case e = 3, it follows that P, P
and P are collinear (since (L3, P3) € Vg3 N (P?)*%2) and (L3, Ps) € V4.

If L, contains the intersection point S = Ly N Ly N L3, we have that all lines
Ly, Lo, Ly and L4 are concurrent and the points P, P», P; and P, have to be
collinear, hence (L, P) € Vi1,1.

If L, does not contain the point S, there exist elements ¢’ and ¢” in u4 such that
((Ll, Pl), (LQ, PQ), (L4, P4)) € ‘/t’ and ((Lz, Pz), (L3, P3), (L4, P4)) € ‘/t//, hence
(E,P) € Vl,t’,t”-

The above results are summarized in the following theorem.

Theorem 2.2. For k = C, the set V4 has d*> — 6(d — 1) — 1 components of
dimension 9 and one component of dimension 10. Each component is rational.



For all (¢,t,t") € v4, denote by Vs the union of the spaces of curves
P(V(L,P)) with (L, P) € V;p 4 and by V7, ., the subset of points corresponding
to smooth curves. Since V;, ,» C Vg ,, we can consider the image of V;;, ,» under
the moduli map mg4 : Vi v — M(a_1)a—2)/2- Denote this image by M(V; ).

If (L5,P3) € V; general, denote by Vi (L3, P3) C Vip the union of
spaces of curves P(V'((Ls, Ps), (L4, Py))) with (L3, Ps), (L4, Py)) € Vip 4 and by
Vi (L3, P3)° the points corresponding to smooth curves. Let M (V, (L3, Ps3))
be the image of V; (L3, P3)° under the moduli map mgy4. Since for a general
element (£, P) € V4, there exists a ¢ € Aut(P?) and an element (L4, Py) € P?
such that (£,P) = &((Ls, Ps), (Ls, Py)), we have that M(V,y (L3, P3)) is an
open dense subset of M(V; ). So if we want to prove that M (V; ) is ratio-
nal, it is enough to show that M (V,y (L3, Ps)) is rational for a general element
(Eg, P3) e V.

Proposition 2.3. If d > 6 and (t,t',t") € vy \ {(1,1,1)}, then a general curve
in Vi has exactly 4 total inflection points. In particular, if (L,P) € Vi
general, a general curve of P(V(L,P))° has exactly 4 total inflection points.

Proof. Suppose d > 6 and that a general curve in V;;, ,» has more than 4 inflection
points. Then there exists a closed subset W C V5 such that the map p :
W — Vs : (L£,P) — (L4,Ps) has as image V;; and such that the union
W of spaces of curves P(V(L,P)) with (£,P) € W is equal to Vip . We
know that dimW = dim W + (d?) and dim Vv = 9 + (df), hence dim W =
9+ (%2) — (d;?’) =6+d > 12. Since dim(V,p ¢v) = 9, the dimension of a general
fibre of p is equal to d — 3 > 3. On the other hand, such a general fiber can
be seen as a subset of P? and hence its dimension is at most 3. So it follows
that d = 6 and a general fiber of p is equal to P2. If we define the map ¢ to
be the projection W — Vg5 : (L, P) — ((L1, P1), (L2, P»), (Ls, P5)), we get that
p(W) = (P?)3, hence Vg3 = (P?)3, a contradiction. O

Proposition 2.4. Assume d > 6 and (t,t',t") € vy \ {(1,1,1)}. If (L3, Ps3) is a
general element of Vi, the space Vi (L3, Ps) is rational.

Proof. There exists a smooth rational curve T' C (P?)* (if 1 ¢ {¢/,t",¢'t"/t}, T is
a conic; if ¢ # 1 and only one of the numbers ¢/, t and ¢'t”/t is equal to 1, T" is
a line), such that for L, € I' general one finds a unique point P, € L4 such that
((L3,Ps3), (Ls, Py)) € V%J’,tl- B

This defines a curve I' C P? x (P?)* together with a projection I' — T' :
(L4, Py) — L4 that is generically injective, hence [ — T is a birational equiva-
lence. Since I' is smooth, the normalization map of I defines an inverse morphism
I' = T, so I' is isomorphic to I' and I' is rational and smooth.

On I' x P2, consider the closed subscheme D flat over I' with the fiber over
(L4, P4) being dP4 C L4.
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Let p; : I x P2 — T and py : I' x P2 — P2 be the projections and consider
P : (p3(Or2(d))) — p3(Op2(d)) ® Op

and
P1(®) : pr(p3(Op2(d))) = T(P?, Op2(d)) x T' — py, (p3(Op2(d)) ® Op) = Ep

whereby FEp is locally free of rank d. Let ® be the map pi,(P) restricted to
V(L3,P3) x I and consider the short exact sequence

0 — Ker(®) — V(L3, Ps) x I’ — Im(P) — 0.

Ker(®) and Im(®) are vector bundles over r since they are torsion free and T is

a smooth curve. For € T', one has Tor;(Im(®), k(Z)) = 0, hence we have an
exact sequence

0 — Ker(®) ® k(z) — V(L3,P3) — Im(P) @ k() — 0

with dim[Im(®) ® k(Z)] = d — 2 by construction. From Im(®) C Ep, we obtain
the following commutative diagram

V (L3, P3) ——Im(®) @ k(Z)

(%) ul
Ep ® k(7)

By definition of I' one has rank(®(%)) = d — 2, hence u is injective. This shows

Ker(®) @ k(z) = Ker(®(7)), hence Ker(®) ® k(x) = Vy((L3, Ps3), (Ly, Py)). Con-
sider the projection of P(Ker(®)) c P(V(Ls,P3)) x T on P(V(L3,P3)). Since
P(Ker(®)) is rational and this projection is generically injective (see Prop. 2.3),
we find that the image of the projection is rational. O

Now let S; be the symmetric group of order 4, where we denote o € S by
(0(1),0(2),0(3),0(4)). Define 6 : Sy x vy — v4 as the map that maps (o, (¢,t',t"))
to (to,t1,t2) if the component consisting of elements

(ﬁo, 7)0) = ((Lg(l), Po‘(l))7 ey (LU(4), PU(4))) € Vd’4

with (£, P) € V,p 4 is equal to Vi, 4, 1,

Proposition 2.5. If d > 6 and (t,t',t"), (to,t1,t2) € va \ {(1,1,1)}, we have
M(Vip ) = M(Vigty 1,) if and only if 6(o, (t,t',1")) = (to, t1,t2) for some element
o € 84.
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Proof. The image of a curve contained in V7, ., (resp. Vg, . ) under an au-
tomorphism ¢ € Aut(P?) remains in V;, . (vesp. Vp , ), hence M (Viy ) =
M (Vg ty.1,) if and only if V2, . =Vp . Since d > 6, a general curve contained
in V7 mor Vp 4, has exactly 4 total inflection points. Thus if Vi, v = Vp 4 40,
the total inflection points just are ordered in a different way and so there has to

be a permutation o € Sy such that Vi ¢, 1, = {(Ls,Po) | (L, P € Vipar))}. ]
Write O[t, ', t"] to denote 6(S, x {(t,¢',t")}) and S[t,t',t"] to denote
{o € 8,|0(c,(t,t',t") = (t,¢',t")}

for (¢,t',t") € vy.

Proposition 2.6. For each (t,t',t") € vy, we have that S[t,t',t"] is a subgroup
of S84 and |S[t,t',t"]|.|O[t, t',t"]| = 24 = |S4|. Moreover, the sets O[t,t',t"] with
(t,t',t") € vy form a partition of v,.

Proof. Note that 6 is a left group action of S; on vy, S[t,t',t"] is the stabilizer of
(¢,¢',t") and O[t,t',t"] is the orbit of (¢,',t"). The statement of the proposition
now follows from classical theorems on group actions. O]

Consider the following table.

oceS8s | 0o (t, 1) T € vy with 0(0,T) =T

(1,2,3,4) | (¢, t,t") T = (t,t',t") € vg
(1,3,2,4) | (3,55, 2) T=(1,1,1) or
T=(-1,a,—-1)

with a € p4 \ {1} and d even
(1,2,4,3) t',t, ) T=(1,1,1) or
T=(a,a,—1)

with @ € ug \ {1} and d even
(1,4,2,3) | (&, 74, t") T = (a,*,a®) with a € py

t a’
(1,3,4,2) | (£ 14 | T=(a,L a® witha € i
(1747372> (t’f‘,"’tl”t%) T = (1,1,1) or

T =(a,—1,-1)
with a € pg \ {1} and d even

continued on the next page

12



continued from the previous page
oce8s |0, (t,tt) T € vy with 0(0,T) =T
(2,1,3,4) | (3,455 T=(1,1,1) or
T=(-1,-1,a)
with a € pg \ {1} and d even
(2,1,4,3) | (#.1.77) T = (a,%,a) with a € pq or
T = (a, é, —a)
with a € pg \ {1, —1} and d even
(2,3,1,4) | (t,t",7) T = (a3, a,a) with a € pg
(2,3,4,1) | (¢, t, 1) T = (a,a,a) with a € pg
(2,4,1,3) | (¥, 4, 5) T = (a,a, ) with a € py
(2,4,3,1) | (3,0, 77) T = (a,a®, ) with a € pq
(3,1,2,4) (t, 77, 1) T = (a® a,a) with a € pg
(3,1,4,2) (747:t, 7) T = (a,a,t) with a € pq
(3,2,1,4) (%,t%,tl/) T=(1,1,1) or
T=(-1,a,1)
with @ € pug \ {1} and d even
(3,2,4,1) (t%,%,t’) T:(%,a,a) with a € g
(3,4,1,2) (tlf”,t”,t’) T = (a,a,a) with a € pg or
T =(—a,a,a)
with a € pg \ {1, —1} and d even
(3,4,2,1) | (¢, 2=, 4) T = (a,,a) with a € py
(4,1,2,3) | (¢, t/ti/, ) T = (a,a,a) with a € g
(4,1,3,2) | (2,1 T = (a,a® 1) with a € pq
(4,2,1,3) (71", ) T = (1 ,a,a) with a € pq
(4,2,3,1) (t”,t—l,,t) T=(1,1,1) or
T = (a,—1,a)
with a € pg \ {1} and d even
(4,3,1,2) | (37, 7,0 T = (a,+,a) with a € pq
(4,3,2,1) (t%,t,t?,%) T = (a,a, ) with a € pg or
T=(a,—a,?)
with a € pg \ {1, —1} and d even

In the third columns, all T € v, are listed such that 6(c,T) = T. These
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T € vy, are computed in the following way. For example, if o = (1,3,2,4) and
T = (t,t',t") € vqg C (ug)® such that 0(0,7) = T, we have t = 1, 2 = ¢
and 5 = t", hence * = (t")? = & = 1. If t = ¢" = 1, we must have ¢/ = 1
since (t,t',t") € vg4. In the other case, we have t = t” = —1 and ¢’ # 1 since

(t, U, t") € vg.

Proposition 2.7. Let (t,t',t") € vg. The set O[t,t',t"] has less than 24 elements
if and only if (t,t',t") is of the form

1 1 11 1 1
3 - 3 3 = - - - -
((l 7a)a’)7 (CL, a7a )7 ((I,CL ’ a)a (CL, (1,7 a)a (a)aua)7 (CL, aaa) or (a7a7 CL)
or d is even and (t,t',t") is of the form
1
(—1,—1,a),(—1,a,—1),(a,—l,—1),(—1,a,—),(a,—l,a),(a,a,—l),
a

1 1
(—a,a,a), (a, o —a) or (a, —a, 5)

Moreover, then O[t,t',t"] is of the form {(1,1,1)}, {(=1,—1,—1)} (d even),
{(—=1,i,4), (i, —i,—i)} (d € 4Z),
M) ={ (@ 0.0, (0, 1@, (0.6, 0), (0,
a’a
1 11, /1 1 11 11
(Eaa»a)a(a7av5)7(&757607(&7575)}

for some a € {W|0<j<d/2}\ {i},

5@ = {(@a.al (050 (00 ). Gon ) G (g0

a a a a a a a

for some a € {w? |0 < j < d/2},

C(a) = {(—1, —1,a),(-1,a,-1),(a,—1,-1), (-1, a, 2), (a,—1,a),(a,a,—1),

1 1 1 1 1 1. 11
1,2 (=1, = 1), (2 =1, 1), (1, 5 a), (=, =1, =), (=, =, —1
( ? 7@)’( 7a7 )7(a7 ? )7( 7a7a>7(a7 7a)7(a7a7 )}
for some a € {w |0 < j<d/2} (d even) or

D(a) := {(—a, a,a), (a, %, —a), (a, —a, %), (a,—a,—a), (—a, —é, a),(—a,a, —%)7

LA Ll )

a a a’a a’’a a a a a’t a Ta’ ala

for some a € {w |0 < j < d/4} (d even).
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Proof. Since |S[t,t',t"]|.|O[t, ', t"]| = |S4|, we have |O[t,t',t"]| < 24 if and only
if {Id} & S[t,t',t"], hence if and only if there exists a @ € Sy \ {/d} such that
O(a, (t, ', t")) = (t,t',t"). These (t,t',t") € vy can be found in the third column
of the table above. For such a (¢,t',t") € vy (with |O[t,t',t"]| < 24), we can
compute O[t,t',t"] by using the second column of the table. We use hereby the
fact that the sets O[t,t',t"] form a partition of v. O

If (¢,t',t") € vq does not appear in the list given in Proposition 2.7, we have
|O[t,t',t"]| = 24. Hence, in case d is odd, the number of components of M (V;4)
is equal to

1+2d—1+d3—6(d—1)—1—(8+6).d—;1_d3+11d+12
T2 24 B 24 '

Analogously, we can see that if d is odd, M (V) has 44204 components.
The following proposition gives us a full list of the subgroups S[t, ', t"] C Sy

for all (¢,t',t") € vy (up to isomorphism).

Proposition 2.8. Let (¢,t',t") € v,.
o if (t,t',t")=(1,1,1) or (=1,—1,—1) (d even): S[t,t',t"] = S,
o ifdedZ, (t,t',t") = (—i,i,3) or (i,—i,—i): S[t,t',t"] = Ay,
o if (t,t',t") € A(a) for some a € {w |0 < j<d/2}\ {i}: S[t,t',t"] = Zs,

t, ', t" a) for some a € {w’ |0 < j < d/2}: S[t,t',t"] = Ly,

o if

) €
t, t/, t”)

(
(¢, B(a)

o if ( C(a) for some a € {w? |0 < j < d/2}: S[t, t', t"] = Zs,
o if (t,U',t") € D(a) for some a € {w’ |0 < j < d/4}: St ', 1"] = Ly,
e in the other cases: S(t,t',t") = {Id} C S,.

Proof. To compute S[t,t',t"] for an element (¢,t',t") € vy, we only have to write
down all the elements o € Sy with 0(o, (t,t',t")) = (t,t',t”) (this can be done
using the table). The number of elements |S[t, ', t"]| is equal to 24/|O[t, ', t"]|.

[

Proposition 2.9. Ifd > 6 and

(t, ¢, t") € v\ {(1,1,1), (=1, =1, —1), (=i,4,%), (i, —i, —i)},

the component M (Vi) C M(Vyy4) is rational.
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Proof. Let (L3, Ps) € V; be general. It is enough to prove that M(V,y (L3, P3)
is rational. We will first prove that

Vt,t’,t” (/33, 733)O
S[t, ', "]

12

M (Viw (L3, Ps))

Assume that C' and C” are general smooth curves in V;y (L3, Ps)° with C' €
P(V((L,P)))and C" € P(V(L',P")). We have that [C] = [C'] € M(V,y (L3, P3))
if and only if there exists an automorphism ¢ of P? such that ¢(C) = C’. If the
latter happens, since C' and C” have exactly 4 total inflection points, the auto-
morphism ¢ changes the order of the total inflection points, hence there exists
a permutation o € Sy such that ¢(L,P) = (L., P,). Thus we get that (L', P’)
and (L., P!) are contained in Viy 4, so o € S[t,t',t"]. On the other side, if
CeP(V(L,P)) CVivw(Ls, Ps)° and o € S[t, ', t"], the curve C' also belongs to
P(V(La,Ps)). Since there exists an automorphism ¢ of P? such that ¢(L,, P,)
is of the form ((Ls,Ps), (L}, P;)), we have C" = ¢(C) € V4 p (L3, P3)°.

By Proposition 2.8, we have that S[t,t',t"] C Sy is Abelian. By using a result
due to E. Fischer (see [5]) and Proposition 2.4, we conclude that M (V; (L3, Ps3))
is rational. O

Remark 2.10. From [2, Theorem C] follows that M (V] ;) is rational. We cannot
use the above arguments in order to prove that M (V,y ) is rational for

(") € {(1,1,1), (=1, =1, —1), (—i,4,4), (i, —i, —i)},
since in each of these cases, the group S[t,t',t"] is not Abelian.

The results on the components of M(Vy4) are summarized in the following
theorem.

Theorem 2.11. Assume k = C and d > 6. If d is odd, M(Vy,) has T+Ld12

components and each of these components is rational. If d is even, M(Vy4) has

% components and at most T of them are not rational, whereby T = 3 if 4|d

and T =1 ifd =2 mod 4.

3 A result for the case e =5

We will first give a new proof of the following result of A.M. Vermeulen (see [7,
Prop. 2.12]).

Proposition 3.1. Let (£, P) be an element of (P?)¢ such that no 3 lines are
concurrent. If for all 2 < i < j <e, we have ((L1, P), (Li, ), (L;j, Pj)) € Vys,
then (L,P) € V.
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Proof. 1t is easy to see that it is enough to prove the following claim: assume
(L,P) = (L1, P1),...,(Le, P.)) € Vg and (L, P) € P? such no 3 of the lines
Ly, ..., Le, L are concurrent. If moreover ((L1, P1),(L;, B;), (L, P)) € Vg3 for all
i€{2,...,e}, we have ((L,P),(L,P)) € Vget1.

We will first consider the case where e < d + 1. Let I' € P(V(L,P)) be a
curve not containing one of the lines L;. We have

P(VL(L,P)) = (Pio+...+ Po+gitT.L)

({T.L} in case e = d + 1) with P,y = L; N L. Since I' € P(V((Ly, P1), (L;, P})))
and ((Lq, P1), (Li, P;), (L, P)) € Vs for all i € {2,..., e}, one has

dP € P(V((L1, P), (P, Ly))) = (Pro + Pio + ¢33, T.L).

Of course, we have

P(VL(L, P)) C [ PVL((Ly, Pr), (Li, P2)))

=2

and dim(P(V,(L,P))) =d—e+ 1.

For 2 <i <e, wehave Pio+...+Pio+g5_t C(i_y P(VL((L1, P1), (L;, ).
Take F € ¢4 with Py & F, then Pio+...+Pig+F € Pio+ Piyo+9g5 s If
Pig+...+ P+ F e€PV,((Li, P),(Lit1, Piy1))), then for some G € g3~2, we

have Pl g+ ...+ Po+ F € (Pio+ Piy10+ G,I'.L), hence
FLe(Pig+ Piiog+G Po+...+Po+F),

so Pip € I'N L. This implies Ly C I" since Py € I'N L, so we get a contradiction
and Pio+ ...+ Pio+ F ¢ P(VL((L1, 1), (Lit+1, P+1))) and so

dim {ﬂ P(V.((Ly, 1), (L;, Pj)))} < dim {ﬂ P(VL((Ly, 1), (L;, Pj)))} :

j=2 j=2

This proves dim {ﬂ;zQ P(VL((L1, P1), (L;, P])))} =d—e+1, hence

e

P(VL(L,P)) = () P(VL((L1. 1), (Ly, Fy)))

Jj=2

and so dP € P(V,(L,P)), hence ((L,P), (L, P)) € Vger1.

Now assume e > d + 2. We have P(V((Ly, P), ..., (Lat1, Pat1))) = {T'}.
Since (£, P) € Vg, we have dP, =T'.L; for all i € {1,...,e}. The previous part
of this proof implies ((L1, P1), ..., (Las1, Pay1), (L, P)) € Vg at2, hence dP € T'.L.
So we find I' e P(V((L, P), (L, P))), i.e. (L, P),(L,P))€E Vget1. O
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Theorem 3.2. Assume that V C Vg5 a component is of dimension 10 such that
for a general (L, P) € V', no three of the points Py, ..., Ps are collinear. Then d
is even and (L, P) € V.

Proof. Assume that
(L1, P1), (L2, P2), (L3, P3), (L4, Py)) € Vi 4r o

and
((L17 P1)7 (L27 P2)7 (L37 P3)7 (L57 P5)) € ‘/;27t/2,t/2"

Note that dim(V;, ) = dim(Vt%t/Q,t/Q/) = 9 (we even have that none of the num-
bers t1,t),t],ta,t, or t5 is equal to 1) and that ¢; = to. Since dim(V,) =
8 and dim(V) = 10, for general elements ((L3,Ps), (L}, Py)) € Vi, ¢ and
((Ls,Ps), (L, F5)) € Vtz,t’zﬂfé’ we have ((L3,Ps), (L, Py), (Ls, ) € V.

One needs ((L1, 1), (Lo, I%2), (La, Py), (Ls, P5)) € Vi,u,¢ general for some
ts, th,t4 € pg (we omitted the accents in (L}, P;) and (L, P;) for notational
reasons). Using the base {(L1, P1), (Le, P»), (L3, P5)}, let (X7 @ Xy : X3) be
the coordinates of P?, and by using {(Ly, P1), (L2, P%), (L4, Py)}, let them be
(X7 : XS5 XY%). Assume L, has as equation X3 = AX; + BX,. It is easy to see
that

1—-A 0 0
0 1-B 0
—A -B 1

is a matrix corresponding to the coordinate transformation from the coordinates
(X1 : X9 X3) to (X7 : X5 X)), The equation X} = A’X| + B'X) of L; becomes
X5 = [A/(1 — A) + A]X, + [B'(1 — B) + B]X,. Hence (A,B) = (A'(1 — A) +
A, B'(1 — B) + B) is a general solution of

! 41!

(t,— DAB = (22 _1)A 1401 - B (1)

to

This equation holds for general (A’, B’) satisfying

t/ t”
(th —1)A'B' = (i—; — DA +t,(1—t5)B. (2)
Since (2) is an equation without constant term, the constant term in (1) has to
be equal to zero, so we get

tyt}

to

(th, —1)AB = ( — DA+ t,(1 —t5)B. (3)

This equation should be satisfied for general (A, B) satisfying
1ty

1

(t, —1)AB = ( —1DA+#(1 4B, (4)
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hence (3) and (4) have to define the same curve. If we take A =1 we get that

ity 1 thty 1
_ _ t2
tt —1  thty — 1

Since t; = tq, we get t)t] = tht], hence the coefficients of A in (3) and (4) are
equal. So we get that the coefficients of AB in (3) and (4) are also equal, so t; =t}
and thus ¢}, = tJ. We can conclude that ((L1, P1), (L2, P2), (L3, P3), (L4, P;)) and
(L1, Pr), (Lo, P2), (L3, P3), (L5, P5)) belong to the same component of V4.

Now let (LU, PW) = ((L3,Ps),(L;, P;)) be general elements of V;, 4 for
each j = 4,...,m. We see that ((Ls,Ps),(L;, ), (L;, P;)) € V for each i,j €
{4,...,m} with ¢ # j. Hence we get that ((L1, P),(Li, P;),(L;, Pj)) € Vags,
o (L,P) = ((L1,P)),(Ly, Ps),...,(Lm, Pn)) € Vam. Let T € P(V(L,P)) with
L; ¢ T for all i and let n['y + ... + n,, be its decomposition into irreducible
curves. Write d; to denote the degree of T';

Assume s > 2. Since

d=i(T.L;, P)) Zn (T;.L;, P)) <ini.di:d,

we get that (L;, P;) is also a total inflection point of I'; for all : € {1,...,s} and
j €A{1,...,m}. A fortiori, the points Pi,..., P,, are contained in N:_; I’i, thus
m is bounded. We get a contradiction, so s =1 and I' = nqI';.

If d; > 3, then the number of total inflection points of I'; is bounded by d,
hence d; < 2. Since d; = 1 is excluded, we find d; = 2 and (£, P) € Vaj. O

Remark 3.3. A point (£,P) € (P?)° is contained in Vo5 if and only if there
exists a smooth conic C' C P? through the five points P, ..., Ps such that L; is
the tangent line to C' at P, for all i. It is clear that V55 is 10-dimensional (see
also [3, Ex. 3.5]).
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