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Abstract.— Let X ⊂ PN be an irreducible non-degenerate variety. If the (h, k)-Grassmann

secant variety Gh,k(X) of X is not the whole Grassmannian G(h, N), we have that the sin-

gular locus of Gh,k(X) contains Gh,k−1(X). Moreover, if X is a smooth curve without

(2k + 2)-secant 2k-space divisors, we obtain the equality Sing(Gh,k(X)) = Gh,k−1(X).
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1 Introduction

Let X ⊂ PN be a projective irreducible non-degenerate variety and let h and
k be integers such that 0 ≤ h ≤ k ≤ N . Denote by Gh,k(X) ⊂ G(h, N) the
(h, k)-Grassmann secant variety of X, i.e. the closure of the set of h-dimensional
linear subspaces contained in the span of k + 1 independent points of X.

In case h = 0, the variety Gh,k(X) coincides with kth secant variety Sk(X)
of X. This case has been intensively studied (see for example [Zak]). The study
of the case h > 0 is more recent (see for example [ChCo]).

Grassmann secant varieties are interesting objects, since they are in relation
with projections of varieties into lower dimensional projective spaces. They are
also in connection with Waring problems for homogeneous forms and tensors
(see for example [CaCh] and [Fon]).

In this paper, we will study the singular locus of Grassmann secant varieties.
If Gh,k(X) 6= G(h, N), we will prove that the singular locus of Gh,k(X) contains
Gh,k−1(X) (Proposition 3.1). Moreover, if X is a smooth curve such that every
effective divisor of length 2k + 2 on X spans a (2k + 1)-dimensional linear
subspace of PN , we are able to prove that the singular locus of Gh,k(X) is equal
to Gh,k−1(X) (Theorem 3.3). Note that these results generalize the results
established in [Cop].
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2 Preliminaries

We start this section with some conventions.
We denote by PN the projective space of dimension N over the field C of

complex numbers. We say that a variety X ⊂ PN is non-degenerate if it is not
contained in any hyperplane of PN .

The linear span 〈Y 〉 of a closed subscheme Y of PN is the intersection of all
hyperplanes H containing Y as a closed subscheme. If P0, . . . , Pk are different
points of PN , we write 〈P0, . . . , Pk〉 to denote the linear span of the reduced
subscheme of PN supported by those points. If P ∈ Y , we denote by TP (Y ) the
embedded tangent space of Y at P .

Definition 2.1 (Plücker embedding of Grassmannians). The Grassmannian
G(h, N), parameterizing h-dimensional linear subspaces in PN , can be embedded
in a large projective space as follows. Let H be an element of G(h, N) spanned
by points Q0, . . . , Qh ∈ PN with Qi = (qi0 : . . . : qiN ) for all i ∈ {0, . . . , h}.
Let S be the set of subsets D ⊂ {0, . . . , N} of length h + 1. Take D ∈ S and
write D = {j0, . . . , jh} with j0 < . . . < jh. Denote by pD(H) the determinant
of the matrix [qijk

]i,k∈{0,...,h}. Consider the map p : G(h, N) → PM with M =(
N+1
h+1

)
− 1 sending H to (pD(H))D∈S . Note that p is well-defined since the

image of H is independent of the choice of its generators Q0, . . . , Qh. We call
p the Plücker embedding of G(h, N). By considering affine subsets of G(h, N),
one can show that G(h, N) is smooth of dimension (h + 1)(N − h).

Lemma 2.2. Let P, P1, . . . , Pr ∈ PN such that P ∈ 〈P1, . . . , Pr〉 and let G ∈
G(h− 1, N) be a linear subspace not containing any of the points P, P1, . . . , Pr.
Let p be the Plücker embedding of G(h, N) in PM . Then we have p(〈G, P 〉) ∈
〈p(〈G, P1〉), . . . , p(〈G, Pr〉)〉.

Proof. Fixing projective coordinates in PN , we can write P as a linear com-
bination a1.P1 + . . . + ar.Pr with a1, . . . , ar ∈ C, since P ∈ 〈P1, . . . , Pr〉. By
expanding the determinant pD(〈G, P 〉) along the last row (i.e. the row corre-
sponding to the point P ), we get

pD(〈G, P 〉) = a1.pD(〈G, P1〉) + . . . + ar.pD(〈G, Pr〉)〉

for every subset D of length h + 1 of {0, . . . , N}. We conclude

p(〈G, P 〉) = a1.p(〈G, P1〉) + . . . + ar.p(〈G, Pr〉),

hence p(〈G, P 〉) ∈ 〈p(〈G, P1〉), . . . , p(〈G, Pr〉)〉.

Definition 2.3 (Grassmann secant varieties). Let X ⊂ PN be a projective
irreducible non-degenerate variety. If k ≤ N is an integer, denote by

i : Xk+1 99K G(k,N)

the rational map sending (P0, . . . , Pk) to 〈P0, . . . , Pk〉. An element of the image
is called a (k + 1)-secant k-space of X.
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Consider for all integers h ≤ k the diagram

I

G(h, N)G(k,N)Xk+1

.................................................................................................... ...........
.

p2
...................................................................................................

.
............

p1

............. ............. ............. ............. ............. ......................... ............
i

where I = {(G, H)|G ⊃ H} ⊂ G(k, N)×G(h, N) and p1, p2 the projections to
the first and second factor, respectively. We define the (h, k)-Grassmann secant
variety Gh,k(X) of X as the subvariety p2(p−1

1 (Im(i))) of G(h, N).

Remark 2.4. Using the Pluc̈ker embedding of G(h, N) in PM , we can consider
the Grassmann secant variety Gh,k(X) as a subvariety of PM .

3 Singular locus of Grassmann secant varieties

Proposition 3.1. If X ⊂ PN is a non-degenerate variety and 0 ≤ h < k are
integers such that

Gh,k(X)  G(h, N) ⊂ PM ,

we have Gh,k−1(X) ⊂ Sing(Gh,k(X)).

Proof. Let H be a general element of Gh,k−1(X), hence H ⊂ 〈P0, . . . , Pk−1〉
for some P0, . . . , Pk−1 ∈ X. Since Sing(Gh,k(X)) is a Zariski closed subset of
Gh,k(X), we only need to show that H ∈ Sing(Gh,k(X)). Denote by T :=
TH(Gh,k(X)) ⊂ PM the embedded tangent space of Gh,k(X) ⊂ PM at H.

We write H as 〈G, Q〉 with G ∈ G(h − 1, N) and Q ∈ H ⊂ PN . Let
P ∈ X \ (H ∪ {P0, . . . , Pk−1}).

Let R ∈ 〈Q,P 〉. If R ∈ G, we have R 6= Q and

P ∈ 〈Q,R〉 ⊂ 〈Q,G〉 ⊂ 〈P0, . . . , Pk−1〉.

Since X ∩ 〈P0, . . . , Pk−1〉 = {P0, . . . , Pk−1} as a scheme, this gives us a contra-
diction. We get that 〈G, R〉 is h-dimensional.

Write LG,Q,P to denote the subset {〈G, R〉 |R ∈ 〈Q,P 〉} ⊂ G(h, N). Note
that LG,Q,P ⊂ Gh,k(X), since R ∈ 〈Q,P 〉 implies

〈G, R〉 ⊂ 〈G, Q, P 〉 = 〈H,P 〉 ⊂ 〈P0, . . . , Pk−1, P 〉.

On the other hand, Lemma 2.2 implies p(LG,Q,P ) is a line in PM . This gives us
p(LG,Q,P ) ⊂ T and a fortiori p(〈G, P 〉) ∈ T for all P ∈ X \ (H ∪ {P0, . . . , Pk}).
Since T is linear, we even get p(〈G, P 〉) ∈ T for all P ∈ X \H.

We claim that p(H̃) ∈ T if dim(H ∩ H̃) ≥ h − 1. Indeed, take G = H ∩ H̃

and Q ∈ H̃ \G, thus H̃ = 〈G, Q〉. Since X ⊂ PN is non-degenerate, we can find
points P ′

0, . . . , P
′
N ∈ X \ H such that 〈P ′

0, . . . , P
′
N 〉 = 〈X〉 = PN . Now we can

apply Lemma 2.2 because p(〈G, P ′
i 〉) ∈ T. This gives us p(H) = p(〈G, Q〉) ∈ T

since T is linear.
To finish the proof of this theorem, it is enough to show that the dimen-

sion of the span of {p(H̃) | dim(H ∩ H̃) ≥ h − 1} is equal to dim(G(h, N)) =
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(h + 1)(N − h). Take projective coordinates on PN such that H is the linear
subspace 〈E0, . . . , Eh〉, where Ei = (0 : . . . : 0 : 1 : 0 . . . : 0) with one on the
ith coordinate. Denote for each i ∈ {0, . . . , h} and j ∈ {h + 1, . . . , N}, the sub-
space 〈E0, . . . , Ei−1, Ei+1, . . . , Eh, Ej〉 by Hi,j . The above claim implies that
p(Hi,j) ∈ T since dim(H ∩Hi,j) ≥ h− 1. It is easy to see that the set of points
p(H), p(H0,h+1), . . . , p(Hh,N ) is independent, hence dim(T) ≥ (h + 1)(N − h).
Of course, we have dim(T) ≤ (h + 1)(N − h), since Gh,k(X) ⊂ G(h, N) and
G(h, N) is smooth.

In order to state Theorem 3.3, we need the following definition.

Definition 3.2. Let X ⊂ PN be a smooth irreducible non-degenerate curve. If
D is an effective divisor of degree d such that dim〈D〉 = e, we say that D is an
d-secant e-space divisor.

Theorem 3.3. Let X ⊂ PN be a smooth irreducible non-degenerate curve and
let 0 ≤ h < k be integers such that Gh,k(X) 6= G(h, N). If X has no (2k + 2)-
secant 2k-space divisors, we have Sing(Gh,k(X)) = Gh,k−1(X).

Proof. Since X has no (k + 2)-secant k-space divisors, [Cop] implies that the
map i : Xk+1 → G(k, N) is an embedding. Hence we may identify Xk+1 and
i(Xk+1).

Denote J := p−1
1 (i(Xk+1)) ⊂ I and q : J → G(h, N). Since the restriction

of p1 to J is a P(h+1)(k−h)-bundle above i(Xk+1), we see Y is smooth. Also note
that q(J) = Gh,k(X).

Let (D,H) ∈ J with H 6∈ Gh,k−1(X). We are going to prove that q locally
defines an embedding of J in G(h, N) at (D,H). In particular, we will show
that the tangent map

d(D,H)(q) : T(D,H)(J) → TH(G(h, N))

is injective.
Assume d(D,H)(q) is not injective, so there exists a tangent vector (α, β) ∈

T(D,H)(J) with β = 0 but α 6= 0. Take a holomorphic arc D(t) in i(Xk+1)
with D(0) = D corresponding to α. The arc D(t) gives rise to holomorphic arcs
P0(t), . . . , Pk(t) on X with Pi(0) = Pi, such that D(t) = 〈P0(t), . . . , Pk(t)〉. Let
P̂0, . . . , P̂k, P̂0(t), . . . , P̂k(t), D̂(t), Ĥ be corresponding objects in the affine cone
CN+1 above PN of respectively P0, . . . , Pk, P0(t), . . . , Pk(t), D(t),H.

Using the description of tangent spaces of Grassmannians in [Har, Lecture
16], the tangent vector (α, β) ∈ T(D,H)(J) ⊂ T(D,H)(I) gives rise to a commu-
tative diagram

D̂ CN+1/D̂

Ĥ CN+1/Ĥ......................................................................................................................................................................................................................................... ............
β

......................................................................................................................................................................................................................................... ............
α

...................................
...
.........
...

...................................
...
.........
...

where β ∈ Hom(Ĥ,CN+1/Ĥ) and α ∈ Hom(D̂,CN+1/D̂). Since β ≡ 0, we have
α|Ĥ ≡ 0.
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Let P̂ ∈ D̂, so P̂ = a0.P̂0 + . . . + ak.P̂k for some a0, . . . , ak ∈ C. If P̂ (t) is
an arc satisfying P̂ (t) ∈ D̂(t) and P̂ (0) = P̂ , the map α sends P̂ to v̂ + D̂, with
v̂ = dP̂ (t)

dt (0). For example, we can take

P̂ (t) = a0.P̂0(t) + . . . + ak.P̂k(t),

hence α(P̂ ) = a0.v̂0 + . . . + ak.v̂k + D̂ with v̂i = dP̂i(t)
dt (0). We conclude that α

is the map sending a0.P̂0 + . . . + ak.P̂k to a0.v̂0 + . . . + ak.v̂k + D̂.
If P̂ ∈ Ĥ ⊂ D̂ is general, we have P̂ = a0.P̂0 + . . . + ak.P̂k with a0, . . . , ak

all different from zero. Since α|Ĥ ≡ 0, we get

a0.v̂0 + . . . + ak.v̂k ∈ D̂.

This is only possible if v̂0 = . . . = v̂k = 0, since 2D = 2P0 + . . . + 2Pk is a
(2k + 2)-secant (2k + 1)-space divisor of X. However, this implies α ≡ 0, a
contradiction.

We have proven that q is locally an embedding of J in G(h, N) around
(D,H) if H 6∈ Gh,k−1(X). To finish this theorem, we only need to show that J
is injective outside q−1(Gh,k−1(X)), since dim(J) = dim(Gh,k(X)) (see [ChCi]).

Let H ∈ Gh,k(X) \ Gh,k−1(X) and assume that (D1,H) and (D2,H) are
two different points of J above H. Consider D1 and D2 as divisors on X. Let
E be the scheme theoretical intersection of D1 and D2. If deg(E) = e, we have
e < k + 1 since D1 6= D2. Since H 6∈ Gh,k−1(X), we see H 6⊂ 〈E〉, hence

dim〈〈D1〉 ∩ 〈D2〉〉 ≥ dim〈〈E〉,H〉 ≥ e.

So we have

d := dim〈〈D1〉, 〈D2〉〉 = dim〈D1〉+ dim〈D2〉 − dim〈〈D1〉 ∩ 〈D2〉〉 ≤ 2k − e.

Since d = dim〈D1 + D2 −E〉, we get that D1 + D2 −E is a (2k + 2− e)-secant
d-space divisor on X with d ≤ 2k − e, a contradiction.
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