A Tropical Proof of the Brill-Noether Theorem (joint work with J. Draisma, S. Payne and E. Robeva)

Filip Cools

K.U.Leuven (Belgium)

June 15th, 2010

*ロ * * ● * * ● * * ● * ● * ● * ●

Classical Brill-Noether Theory (BNT)

Fix integers $g, r, d \ge 0$, and denote the Brill-Noether number by $\rho(g, r, d) := g - (r + 1)(g - d + r)$.

- (a) If $\rho(g, r, d) \ge 0$, then every smooth curve X/\mathbb{C} of genus g has a divisor D of degree $\le d$ and rank r.
- (b) If ρ(g, r, d) < 0, then on a general smooth curve X/C of genus g, there is no divisor D of degree ≤ d and rank r.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

BNT for metric graphs ?

In the paper "Specialization of linear systems from curves to graphs", M. Baker proves part (a) of BNT for metric graphs, i.e.

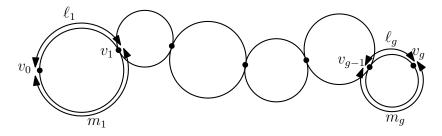
If
$$\rho(g, r, d) := g - (r + 1)(g - d + r) \ge 0$$
, then every metric graph Γ of genus g has a divisor D of degree $\le d$ and rank r.

He also conjectures that part (b) of BNT is true under the following form.

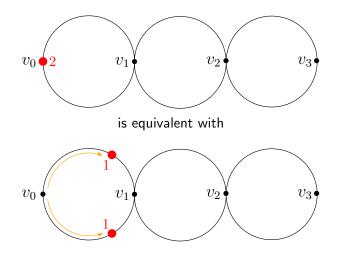
If $\rho(g, r, d) < 0$, then there exists a metric graph Γ of genus g for which there is no divisor D of degree $\leq d$ and rank r.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

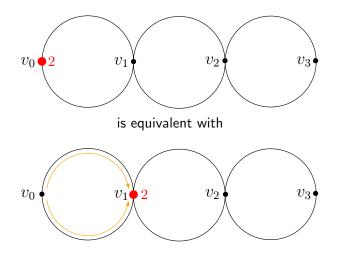
Consider the metric graph Γ of genus g which is a chain of g loops, where the lengths of the two edges of the *i*th loop are equal to ℓ_i and m_i .



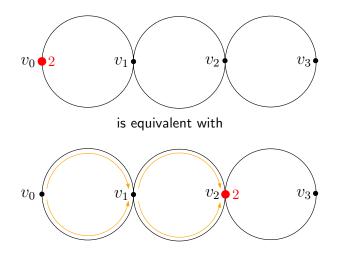
▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○



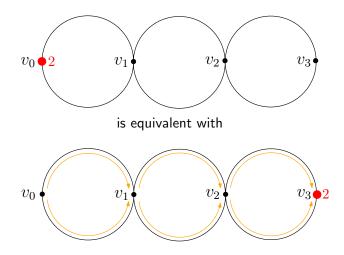
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ



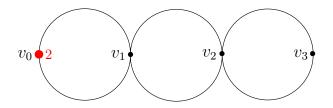
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

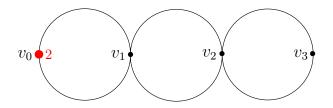


◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ



The divisor $D = 2v_0$ has rank 1. So for g = 3, d = 2 and r = 1, there does exists a divisor on Γ of rank r and degree $\leq d$, but $\rho = g - (r+1)(g - d + r) = -1$.

Conclusion: not a good example for part (b) of BNT for metric graphs.



The divisor $D = 2v_0$ has rank 1. So for g = 3, d = 2 and r = 1, there does exists a divisor on Γ of rank r and degree $\leq d$, but $\rho = g - (r+1)(g - d + r) = -1$. Conclusion: not a good example for part (b) of BNT for metric graphs.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Idea

Assume that the edge lengths ℓ_i and m_i are generic positive numbers.

Precise definition: The metric graph Γ is *generic* if none of the ratios ℓ_i/m_i is equal to the ratio of two positive integers whose sum is less or equal to 2g - 2.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Example: $\ell_i = 2g - 2$ and $m_i = 1$ for all *i*.

Theorem

Assume Γ is generic.

- (a) If $\rho(g, r, d) < 0$, there is no divisor D on Γ with degree $\leq d$ and rank r. (i.e. part (b) of BNT for metric graphs)
- (b) If $\rho(g, r, d) \ge 0$, then the dimension of $W_d^r(\Gamma)$ is equal to $\min\{\rho(g, r, d), g\}$.
- (c) If $\rho(g, r, d) = 0$, there are exactly

$$\lambda = g! \prod_{i=0}^{r} \frac{i!}{(g-d+r+i)!}$$

linear systems on Γ of rank r and degree d.

Theorem

Assume Γ is generic.

- (a) If $\rho(g, r, d) < 0$, there is no divisor D on Γ with degree $\leq d$ and rank r. (i.e. part (b) of BNT for metric graphs)
- (b) If ρ(g, r, d) ≥ 0, then the dimension of W^r_d(Γ) is equal to min{ρ(g, r, d), g}.
- (c) If $\rho(g, r, d) = 0$, there are exactly

$$\lambda = g! \prod_{i=0}^{r} \frac{i!}{(g-d+r+i)!}$$

linear systems on Γ of rank r and degree d.

Theorem

Assume Γ is generic.

- (a) If $\rho(g, r, d) < 0$, there is no divisor D on Γ with degree $\leq d$ and rank r. (i.e. part (b) of BNT for metric graphs)
- (b) If ρ(g, r, d) ≥ 0, then the dimension of W^r_d(Γ) is equal to min{ρ(g, r, d), g}.
- (c) If $\rho(g, r, d) = 0$, there are exactly

$$\lambda = g! \prod_{i=0}^{r} \frac{i!}{(g-d+r+i)!}$$

linear systems on Γ of rank r and degree d.

Proposition

Assume Γ is generic, r = 1 and g = 2d - 2 (so $\rho(g, r, d) = 0$). Then there is a bijection between $W_d^1(\Gamma)$ and

$$\left\{\begin{array}{l} \text{lattice paths } p = (p_0, \dots, p_g) \text{ in } \mathbb{Z} \text{ satisfying } p_0 = p_g = 1, \\ p_i \ge 1 \text{ and } p_i - p_{i-1} = \pm 1 \text{ for all } i \in \{1, \dots, g\}\end{array}\right\}$$

as follows. If $p = (p_0, \ldots, p_g)$ is such a path, let D_p be the divisor on Γ with

- one chip in v_0 ,
- ▶ one (extra) chip on the unique point w_i of the *i*th loop satisfying p_{i-1}v_{i-1} + w_i ~ p_iv_i if p_i p_{i-1} = 1,

▶ no (extra) chips on the *i*th loop if $p_i - p_{i-1} = -1$. Note that D_p is v_0 -reduced. The bijection maps p to the linear system $|D_p|$.

Proposition

Assume Γ is generic, r = 1 and g = 2d - 2 (so $\rho(g, r, d) = 0$). Then there is a bijection between $W_d^1(\Gamma)$ and

$$\left\{\begin{array}{l} \text{lattice paths } p = (p_0, \dots, p_g) \text{ in } \mathbb{Z} \text{ satisfying } p_0 = p_g = 1, \\ p_i \ge 1 \text{ and } p_i - p_{i-1} = \pm 1 \text{ for all } i \in \{1, \dots, g\}\end{array}\right\}$$

as follows. If $p = (p_0, \ldots, p_g)$ is such a path, let D_p be the divisor on Γ with

- ▶ one chip in v₀,
- ► one (extra) chip on the unique point w_i of the *i*th loop satisfying p_{i-1}v_{i-1} + w_i ~ p_iv_i if p_i p_{i-1} = 1,

▶ no (extra) chips on the *i*th loop if $p_i - p_{i-1} = -1$. Note that D_p is v_0 -reduced. The bijection maps p to the linear system $|D_p|$.

Proposition

Assume Γ is generic, r = 1 and g = 2d - 2 (so $\rho(g, r, d) = 0$). Then there is a bijection between $W_d^1(\Gamma)$ and

$$\left\{\begin{array}{l} \text{lattice paths } p = (p_0, \dots, p_g) \text{ in } \mathbb{Z} \text{ satisfying } p_0 = p_g = 1, \\ p_i \ge 1 \text{ and } p_i - p_{i-1} = \pm 1 \text{ for all } i \in \{1, \dots, g\}\end{array}\right\}$$

as follows. If $p = (p_0, \ldots, p_g)$ is such a path, let D_p be the divisor on Γ with

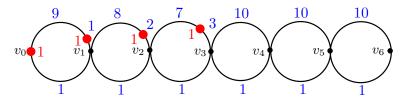
- ▶ one chip in v₀,
- ► one (extra) chip on the unique point w_i of the *i*th loop satisfying p_{i-1}v_{i-1} + w_i ~ p_iv_i if p_i p_{i-1} = 1,

▶ no (extra) chips on the *i*th loop if $p_i - p_{i-1} = -1$. Note that D_p is v_0 -reduced. The bijection maps p to the linear system $|D_p|$.

Example: r = 1, g = 6, d = 4

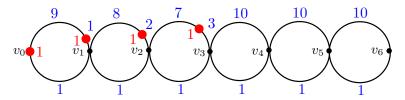
In this case, there are precisely five lattice paths that satisfy the conditions:

- ▶ (1, 2, 3, 4, 3, 2, 1)
- (1,2,3,2,3,2,1)
- ▶ (1, 2, 3, 2, 1, 2, 1)
- (1,2,1,2,3,2,1)
- ▶ (1, 2, 1, 2, 1, 2, 1)

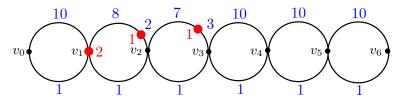


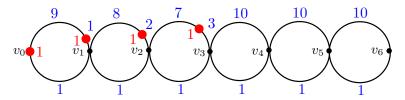
since we have e.g.

- one chip at v₀,
- one chip at the unique point w₂ of the 2nd loop satisfying p₁v₁ + w₂ = 2v₁ + w₂ ~ p₂v₂ = 3v₂ since p₂ - p₁ = 1,
- no chip at the 4th loop since $p_4 p_3 = -1$.

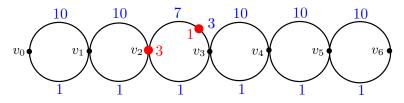


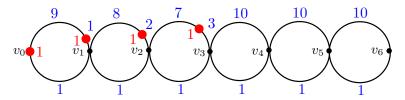
and is equivalent with



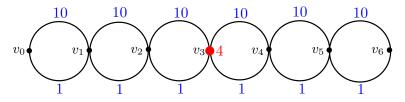


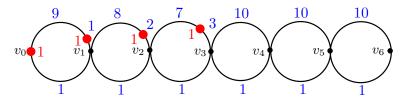
and is equivalent with



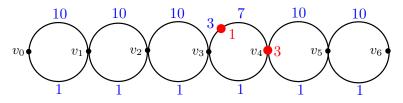


and is equivalent with

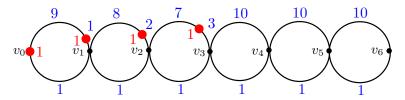




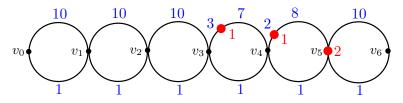
and is equivalent with

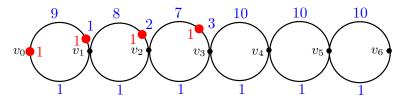


◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

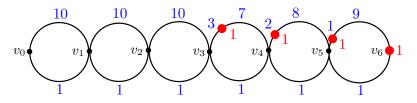


and is equivalent with





and is equivalent with



◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Corollary of the theorem

Using Baker's Specialization Lemma, we get a new (tropical) characteristic-free proof of the BNT for curves.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

Main result of the recent preprint "Linear pencils on graphs and on real curves" (joint work with M. Coppens) There exists a smooth complex curve X (resp. X') of genus g = 2d - 2 defined over \mathbb{R} having exactly $\lambda = \frac{1}{d} \binom{2d-2}{d-1}$ linear pencils of degree d such that all of them (resp. exactly $\lambda' = \binom{d-1}{\lfloor \frac{d-1}{2} \rfloor}$ of them) are real.

d	2	3	4	5	6	7	8	9	10
g	2	4	6	8	10	12	14	16	18
λ	1	2	5	14	42	132	429	1430	4862
λ'	1	2	3	6	10	20	35	70	126

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Note that $\lim_{d\to\infty} \frac{\lambda'}{\lambda} = 0$.