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Introduction

o f ¢ C[x*!,y*1]: irreducible Laurent polynomial

@ A(f): its Newton polygon
o ie.if

f= > cxlyl,

(i,))ez?
then
A(f) = Conv{(i,]) € Z?|c;j # 0} C R?

C(f): curve in TZ = (C \ {0})? defined by f

Theorem

(Baker, 1893) The (geometric) genus of C(f) is bounded by the
number of Z2-points in the interior of A(f).

(Khovanskii, 1977) Generically, this bound is attained.
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Examples

o f=y2-x3-Ax —BwithB #0

A #(A°NnzZ?) =1
TNA() the genus of C(f) is equal to one
N iff 4A3 + 27B2 £ 0

@ f =y? —h(x) with degh = 2g + 1 and h(0) # 0

#(A°NZ%) =g
2 AT the genus of C(f) is equal to g iff
T~ h(x) has no multiple roots
20 + 1
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Central question of this talk

Does there exist a similar combinatorial interpretation for the gonality?

Question J

@ gonality = minimal degree of a non-constant rational map to IP’%:

@ hyperelliptic = gonality 2 (by definition)
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Central question of this talk

@ A lattice polygon is the convex hull in R? of a finite number of
Z?-points (also called lattice points).

@ The genus of a two-dimensional lattice polygon A is the
(geometric) genus of the curve defined by a generic Laurent
polynomial f with A(f) = A.

@ Notation: g(A). By the foregoing: g(A) = #(A° N Z?).

@ The gonality of a two-dimensional lattice polygon A is the gonality

of the curve defined by a generic Laurent polynomial f with
A(f) = A.

@ Notation: y(A). Well-defined by a semi-continuity argument.

Question (reformulated)
Does there exist a purely combinatorial interpretation for v(A)? J
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Some terminology and easy facts

@ A Z-affine transformation is a map
PR R%:(X,y) — (X,y)A+b

with A € GL»(Z) and b € Z2.

@ Two lattice polygons A and A’ are equivalent if there is a Z-affine
transformation ¢ such that ¢(A) = A’. (Notation: A = A’)

@ A Z-affine transformation ¢ acts on C[x*1,y*!] as

= 3 Geey)™ el = 3 xy)i,

(i.j)ez? (i,j)ez?

@ A(p(f)) = w(A(f)) and C(f) = C((f)).
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The lattice width as an upper bound

@ The lattice width of a non-empty lattice polygon A is the minimal d
for which there is a Z-affine transformation ¢ such that

p(8) C{(x.y) eR*[0 <y <d}.

@ Notation: Iw(A).

@ Convention: Iw()) = —1.

@ Easy fact: v(A) < Iw(A).

Let f be a generic Laurent polynomial with A(f) = A.

Let ¢ be a Z-affine transformation realizing Iw(A).

C(f) = C(p(f)), so it suffices to deal with C(¢(f)).

Then C(¢(f)) — AL Cc PL: (x,y) — x is of degree at most d.

©

e ¢ ¢
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Sharp?

@ Counterexample 1

Q

C

® v(A) =d — 1 (Namba, 1979: gonality of smooth plane curves)

@ Iw(A) = d, since every edge contains d + 1 lattice points
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Sharp?

@ Counterexample 2

@ ~(A) < 3 (by Brill-Noether Theorem, curves of genus 4 are at
most 3-gonal)

@ Iw(A) = 4, because the interior polygon contains an interior
Z2-point itself
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The interior polygon
@ Let A be a two-dimensional lattice polygon. The convex hull of the

interior lattice points is called the interior polygon of A.
Notation: A

Theorem (-, Lubbes & Schicho)

w(AM) = Iw(A) — 2, unless A = Conv{(0,0), (d,0),(0,d)} ford > 2,
in which case Iw(A) = d and lw(A®M) =d — 3.

@ Thus in fact v(A) < Iw(A®)) + 2. This rules out Counterexample 1
as an exceptional case. Counterexample 2 is more fundamental.

@ Algorithm for computing Iw(A).

Conjecture

(A) = Iw(AM) 42, unless A = Conv{(2,0),(0,2),(-2,-2)}, in
which case vy(A) = 3.
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o e ST G |
The metric graph I'(h)

@ Let A C R? be a lattice polygon.
@ Let Aq,...,Ar C A be aregular subdivision.

@ Leth: A — R be an upper-convex piece-wise linear function such
that its restrictions to A4, ..., A, are linear. Assume that

h(ANnZz?) cC Z.
@ Definition metric graph I'(h):
@ vertices vy, ...,V

@ number of edges between v; and v; is the integral length of A; N A;
@ length of an edge between v; and v; is the greatest common divisor

of the 2 x 2-minors of
ap ap 1
Q1 a2 1)’
where (ax1, axz2, 1) is a primitive normal vector to the graph of h|a, .
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Example

U1 2 (%)

U3

Vg

Note that the edge (v, V) has length equal to 2 since the
corresponding 2 x 3-matrix is

1 -11
-1 -1 1)°
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Lower bound for v(A)

@ Given a metric graph I, denote by ~(I') the gonality of T, i.e.

~(') = min{d | 3D € Divg(T") : ran (D) > 1}.

Theorem

If h: A — R gives rise to a regular subdivision (as above), then

(M(h)) <~(A).

@ |dea of proof:

o
o
o

]

let Tor(A) be the toric threefold corresponding to h

consider the toric degeneration of Tor (A) to Uj_, Tor (4;)

view C(f) as a generic hyperplane section of the toric surface
Tor(A) and let it degenerate

use Baker’s Specialization Lemma (might need to blow-up some
boundary T!’s at the bottom of Al)
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Lower bound = gonality?

@ We expect that it is always possible to obtain equality:

Conjecture

There always exists a height function h : A — R such that

1(M(h)) =~(A).

@ Example: our Counterexample 2.

3
A
AgiAll 1
Aq
As As Arz
A ANg /N
Ay
t 1

1(A) =~((h)) = 3.
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Lower bound = upper bound?

@ A proof of the following combinatorial statement would solve it all:
Conjecture

There always exists a height function h : A — R such that
y(F(h)) = Iw(AMD) + 2, except if A = Conv{(2,0),(0,2),(-2,—-2)}.

@ Example of a lattice polygon A for which we can prove the above
conjecture:

(0.4)

(0,0) (b,0)
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Lower bound = upper bound?

@ A specific guess for the height function h: the “union skin”
subdivision of A

@ Example: v(A) = y(r(h)) =Iw(A) =8

i r'(h)

(0,-4)

(_47 0)

//&\\
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Other invariants: Clifford index and dimension

@ Question : does the metric graph I'(h) (corresponding to the union
skin subdivision of A) have the same Clifford index and dimension
as the generic curve C(f)?

@ Example: A = Conv{(3,0),(0,3),(-3,-3)}

e C(f) has a g3 since it is the intersection of two cubics in P2,
The Clifford index is 9 — 2.3 =3 < 6 — 2.1 = 4 and the Clifford
dimension is 3.

e I'(h) also has a g3.

A I'(h)
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@ Thanks for listening!
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