Newton polygons and curve gonalities

Filip Cools joint work with Wouter Castryck

K.U. Leuven

Tropical Geometry workshop (Edinburgh) April 5, 2012

Filip Cools (K.U. Leuven)

Newton polygons and curve gonalities

ICMS Edinburgh 1 / 21

< A >

+ = + +

Introduction

- An upper bound for the gonality
- Proving sharpness: a graph-theoretic attack

A 10

18 A.

Introduction

Introduction

- $f \in \mathbb{C}[x^{\pm 1}, y^{\pm 1}]$: irreducible Laurent polynomial
- Δ(f): its Newton polygon
 i.e. if

$$f = \sum_{(i,j)\in\mathbb{Z}^2} c_{ij} x^i y^j,$$

then

$$\Delta(f) = \mathsf{Conv}\{(i, j) \in \mathbb{Z}^2 \,|\, \boldsymbol{c}_{ij} \neq 0\} \subset \mathbb{R}^2$$

• C(f): curve in $\mathbb{T}^2_{\mathbb{C}} = (\mathbb{C} \setminus \{0\})^2$ defined by f

Theorem

(Baker, 1893) The (geometric) genus of C(f) is bounded by the number of \mathbb{Z}^2 -points in the interior of $\Delta(f)$.

(Khovanskii, 1977) Generically, this bound is attained.

Filip Cools (K.U. Leuven)

Newton polygons and curve gonalities

< ロ > < 同 > < 回 > < 回 >

Examples

• $f = y^2 - x^3 - Ax - B$ with $B \neq 0$

 $#(\Delta^{\circ} \cap \mathbb{Z}^2) = 1$ the genus of C(f) is equal to one iff $4A^3 + 27B^2 \neq 0$

• $f = y^2 - h(x)$ with deg h = 2g + 1 and $h(0) \neq 0$

 $#(\Delta^{\circ} \cap \mathbb{Z}^2) = g$ the genus of C(f) is equal to g iff h(x) has no multiple roots

イロト イポト イヨト イヨト

Filip Cools (K.U. Leuven)

Newton polygons and curve gonalities

ICMS Edinburgh 4 / 21

Central question of this talk

Question

Does there exist a similar combinatorial interpretation for the gonality?

- gonality = minimal degree of a non-constant rational map to $\mathbb{P}^1_{\mathbb{C}}$
- hyperelliptic = gonality 2 (by definition)

< 🗇 🕨

Central question of this talk

- A lattice polygon is the convex hull in ℝ² of a finite number of Z²-points (also called lattice points).
- The genus of a two-dimensional lattice polygon Δ is the (geometric) genus of the curve defined by a generic Laurent polynomial *f* with Δ(*f*) = Δ.
- Notation: $g(\Delta)$. By the foregoing: $g(\Delta) = #(\Delta^{\circ} \cap \mathbb{Z}^2)$.
- The gonality of a two-dimensional lattice polygon Δ is the gonality of the curve defined by a generic Laurent polynomial *f* with Δ(*f*) = Δ.
- Notation: $\gamma(\Delta)$. Well-defined by a semi-continuity argument.

Question (reformulated)

Does there exist a purely combinatorial interpretation for $\gamma(\Delta)$?

Introduction

- An upper bound for the gonality
- Proving sharpness: a graph-theoretic attack

Some terminology and easy facts

• A \mathbb{Z} -affine transformation is a map

$$arphi: \mathbb{R}^2
ightarrow \mathbb{R}^2: (\textbf{\textit{x}}, \textbf{\textit{y}}) \mapsto (\textbf{\textit{x}}, \textbf{\textit{y}}) \textbf{\textit{A}} + \textbf{\textit{b}}$$

with $A \in GL_2(\mathbb{Z})$ and $b \in \mathbb{Z}^2$.

- Two lattice polygons Δ and Δ' are equivalent if there is a Z-affine transformation φ such that φ(Δ) = Δ'. (Notation: Δ ≡ Δ')
- A \mathbb{Z} -affine transformation φ acts on $\mathbb{C}[x^{\pm 1}, y^{\pm 1}]$ as

$$f = \sum_{(i,j)\in\mathbb{Z}^2} c_{ij}(x,y)^{(i,j)} \quad \mapsto \quad arphi(f) = \sum_{(i,j)\in\mathbb{Z}^2} c_{ij}(x,y)^{arphi(i,j)}.$$

• $\Delta(\varphi(f)) = \varphi(\Delta(f))$ and $C(f) \cong C(\varphi(f))$.

1

The lattice width as an upper bound

 The lattice width of a non-empty lattice polygon Δ is the minimal d for which there is a Z-affine transformation φ such that

$$\varphi(\Delta) \subset \{(x, y) \in \mathbb{R}^2 \,|\, 0 \leq y \leq d\}.$$

- Notation: $lw(\Delta)$.
- Convention: $lw(\emptyset) = -1$.
- Easy fact: $\gamma(\Delta) \leq \mathsf{Iw}(\Delta)$.
 - Let *f* be a generic Laurent polynomial with $\Delta(f) = \Delta$.
 - Let φ be a ℤ-affine transformation realizing lw(Δ).
 - $C(f) \cong C(\varphi(f))$, so it suffices to deal with $C(\varphi(f))$.
 - Then $C(\varphi(f)) \to \mathbb{A}^1_{\mathbb{C}} \subset \mathbb{P}^1_{\mathbb{C}} : (x, y) \mapsto x$ is of degree at most d.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Sharp?

Counterexample 1

• $\gamma(\Delta) = d - 1$ (Namba, 1979: gonality of smooth plane curves)

• $lw(\Delta) = d$, since every edge contains d + 1 lattice points

э

イロト イポト イヨト イヨト

Sharp?

Counterexample 2

- γ(Δ) ≤ 3 (by Brill-Noether Theorem, curves of genus 4 are at most 3-gonal)
- $lw(\Delta) = 4$, because the interior polygon contains an interior \mathbb{Z}^2 -point itself

< ロ > < 同 > < 回 > < 回 >

The interior polygon

- Let Δ be a two-dimensional lattice polygon. The convex hull of the interior lattice points is called the interior polygon of Δ. Notation: Δ⁽¹⁾
- Theorem (-, Lubbes & Schicho)

 $lw(\Delta^{(1)}) = lw(\Delta) - 2$, unless $\Delta \equiv Conv\{(0,0), (d,0), (0,d)\}$ for $d \ge 2$, in which case $lw(\Delta) = d$ and $lw(\Delta^{(1)}) = d - 3$.

- Thus in fact γ(Δ) ≤ lw(Δ⁽¹⁾) + 2. This rules out Counterexample 1 as an exceptional case. Counterexample 2 is more fundamental.
- Algorithm for computing $lw(\Delta)$.

Conjecture

$$\gamma(\Delta) = \text{Iw}(\Delta^{(1)}) + 2$$
, unless $\Delta \equiv \text{Conv}\{(2,0), (0,2), (-2,-2)\}$, in which case $\gamma(\Delta) = 3$.

Introduction

- An upper bound for the gonality
- Proving sharpness: a graph-theoretic attack

A 10

3 A

The metric graph $\Gamma(h)$

- Let $\Delta \subset \mathbb{R}^2$ be a lattice polygon.
- Let $\Delta_1, \ldots, \Delta_r \subset \Delta$ be a regular subdivision.
- Let *h* : Δ → ℝ be an upper-convex piece-wise linear function such that its restrictions to Δ₁,..., Δ_r are linear. Assume that *h*(Δ ∩ ℤ²) ⊂ ℤ.
- Definition metric graph $\Gamma(h)$:
 - vertices v_1, \ldots, v_r
 - number of edges between v_i and v_j is the integral length of $\Delta_i \cap \Delta_j$
 - length of an edge between v_i and v_j is the greatest common divisor of the 2 × 2-minors of

$$\begin{pmatrix} a_{i1} & a_{i2} & 1 \\ a_{j1} & a_{j2} & 1 \end{pmatrix},$$

where $(a_{k1}, a_{k2}, 1)$ is a primitive normal vector to the graph of $h|_{\Delta_k}$.

< ロ > < 同 > < 回 > < 回 >

Example

Note that the edge (v_1, v_2) has length equal to 2 since the corresponding 2 \times 3-matrix is

$$\begin{pmatrix} 1 & -1 & 1 \\ -1 & -1 & 1 \end{pmatrix}$$

< 回 > < 三 > < 三

Lower bound for $\gamma(\Delta)$

• Given a metric graph Γ , denote by $\gamma(\Gamma)$ the gonality of Γ , i.e.

$$\gamma(\Gamma) = \min\{d \mid \exists D \in Div_d(\Gamma) : r_{BN}(D) \ge 1\}.$$

Theorem

If $h: \Delta \to \mathbb{R}$ gives rise to a regular subdivision (as above), then

$$\gamma(\Gamma(h)) \leq \gamma(\Delta).$$

Idea of proof:

- let $\operatorname{Tor}(\widetilde{\Delta})$ be the toric threefold corresponding to h
- consider the toric degeneration of $Tor(\Delta)$ to $\cup_{i=1}^{r} Tor(\Delta_i)$
- view C(f) as a generic hyperplane section of the toric surface Tor(Δ) and let it degenerate
- use Baker's Specialization Lemma (might need to blow-up some boundary T¹'s at the bottom of Δ̃!)

ICMS Edinburgh

16/21

Lower bound = gonality?

• We expect that it is always possible to obtain equality:

Conjecture

There always exists a height function $h : \Delta \to \mathbb{R}$ such that $\gamma(\Gamma(h)) = \gamma(\Delta)$.

• Example: our Counterexample 2.

Newton polygons and curve gonalities

Lower bound = upper bound?

• A proof of the following combinatorial statement would solve it all:

Conjecture

There always exists a height function $h : \Delta \to \mathbb{R}$ such that $\gamma(\Gamma(h)) = \mathsf{lw}(\Delta^{(1)}) + 2$, except if $\Delta \equiv \mathsf{Conv}\{(2,0), (0,2), (-2,-2)\}$.

• Example of a lattice polygon ∆ for which we can prove the above conjecture:

Filip Cools (K.U. Leuven)

Newton polygons and curve gonalities

ICMS Edinburgh 18 / 21

Lower bound = upper bound?

- A specific guess for the height function *h*: the "union skin" subdivision of Δ
- Example: $\gamma(\Delta) = \gamma(\Gamma(h)) = \mathsf{Iw}(\Delta) = 8$

< 同 > < 三 > < 三 >

 $\Gamma(h)$

 $\mathbf{4}$

Other invariants: Clifford index and dimension

- Question : does the metric graph Γ(h) (corresponding to the union skin subdivision of Δ) have the same Clifford index and dimension as the generic curve C(f)?
- Example: $\Delta = Conv\{(3,0), (0,3), (-3,-3)\}$
 - C(f) has a g₉³ since it is the intersection of two cubics in P³. The Clifford index is 9 − 2.3 = 3 < 6 − 2.1 = 4 and the Clifford dimension is 3.
 - $\Gamma(h)$ also has a g_9^3 .

• Thanks for listening!

Filip Cools (K.U. Leuven)

Newton polygons and curve gonalities

ICMS Edinburgh 21 / 21

2