Newton polygons and curve gonalities

Filip Cools joint work with Wouter Castryck

K.U. Leuven

Tropical geometry and computational biology (Saarbrücken) September 29, 2011

Filip Cools (K.U. Leuven)

Newton polygons and curve gonalities

▲ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆ ○ へ ○
 TG & CB at Saarbrücken 1/36

Introduction

- An upper bound for the gonality
- Relation with toric surfaces
- Proving sharpness: a geometric attack
- Proving sharpness: a graph-theoretic attack

Introduction

Introduction

- $f \in \mathbb{C}[x^{\pm 1}, y^{\pm 1}]$: irreducible Laurent polynomial
- Δ(f): its Newton polygon
 i.e. if

$$f = \sum_{(i,j)\in\mathbb{Z}^2} c_{ij} x^i y^j,$$

then

$$\Delta(f) = \mathsf{Conv}\{(i, j) \in \mathbb{Z}^2 \,|\, \boldsymbol{c}_{ij} \neq 0\} \subset \mathbb{R}^2$$

• C(f): curve in $\mathbb{T}^2_{\mathbb{C}} = (\mathbb{C} \setminus \{0\})^2$ defined by f

Theorem

(Baker, 1893) The (geometric) genus of C(f) is bounded by the number of \mathbb{Z}^2 -points in the interior of $\Delta(f)$.

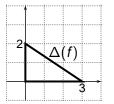
(Khovanskii, 1977) Generically, this bound is attained.

Filip Cools (K.U. Leuven)

< ロ > < 同 > < 回 > < 回 >

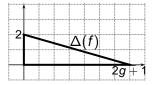
Examples

• $f = y^2 - x^3 - Ax - B$ with $B \neq 0$



 $#(\Delta^{\circ} \cap \mathbb{Z}^2) = 1$ the genus of C(f) is equal to one iff $4A^3 + 27B^2 \neq 0$

• $f = y^2 - h(x)$ with deg h = 2g + 1 and $h(0) \neq 0$



 $#(\Delta^{\circ} \cap \mathbb{Z}^2) = g$ the genus of C(f) is equal to g iff h(x) has no multiple roots

Filip Cools (K.U. Leuven)

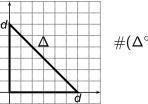
Newton polygons and curve gonalities

TG & CB at Saarbrücken

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

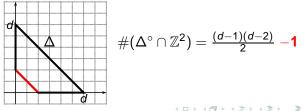
Examples

• f polynomial of degree d: then $\Delta(f)$ is contained in



$$\#(\Delta^\circ \cap \mathbb{Z}^2) = rac{(d-1)(d-2)}{2}$$

If C(f) has a singularity at (x_0, y_0) , then $\Delta(f(x + x_0, y + y_0))$ is contained in



Filip Cools (K.U. Leuven)

Newton polygons and curve gonalities

TG & CB at Saarbrücken

Central question of this talk

Question

Does there exist a similar combinatorial interpretation for the gonality?

- gonality = minimal degree of a non-constant rational map to $\mathbb{P}^1_{\mathbb{C}}$
- hyperelliptic = gonality 2 (by definition)

Central question of this talk

- A lattice polygon is the convex hull in ℝ² of a finite number of Z²-points (also called lattice points).
- The genus of a two-dimensional lattice polygon Δ is the (geometric) genus of the curve defined by a generic Laurent polynomial *f* with Δ(*f*) = Δ.
- Notation: $g(\Delta)$. By the foregoing: $g(\Delta) = #(\Delta^{\circ} \cap \mathbb{Z}^2)$.
- The gonality of a two-dimensional lattice polygon Δ is the gonality of the curve defined by a generic Laurent polynomial *f* with Δ(*f*) = Δ.
- Notation: $\gamma(\Delta)$. Well-defined by a semi-continuity argument.

Question (reformulated)

Does there exist a purely combinatorial interpretation for $\gamma(\Delta)$?

Filip Cools (K.U. Leuven)

Newton polygons and curve gonalities

4190

- Introduction
- An upper bound for the gonality
- Relation with toric surfaces
- Proving sharpness: a geometric attack
- Proving sharpness: a graph-theoretic attack

Some terminology and easy facts

• A \mathbb{Z} -affine transformation is a map

$$arphi: \mathbb{R}^2
ightarrow \mathbb{R}^2: (\textbf{\textit{x}}, \textbf{\textit{y}}) \mapsto (\textbf{\textit{x}}, \textbf{\textit{y}}) \textbf{\textit{A}} + \textbf{\textit{b}}$$

with $A \in GL_2(\mathbb{Z})$ and $b \in \mathbb{Z}^2$.

- Two lattice polygons Δ and Δ' are equivalent if there is a Z-affine transformation φ such that φ(Δ) = Δ'. (Notation: Δ ≡ Δ')
- A \mathbb{Z} -affine transformation φ acts on $\mathbb{C}[x^{\pm 1}, y^{\pm 1}]$ as

$$f = \sum_{(i,j)\in\mathbb{Z}^2} c_{ij}(x,y)^{(i,j)} \quad \mapsto \quad \varphi(f) = \sum_{(i,j)\in\mathbb{Z}^2} c_{ij}(x,y)^{\varphi(i,j)}.$$

• $\Delta(\varphi(f)) = \varphi(\Delta(f))$ and $C(f) \cong C(\varphi(f))$.

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

The lattice width as an upper bound

 The lattice width of a non-empty lattice polygon Δ is the minimal d for which there is a Z-affine transformation φ such that

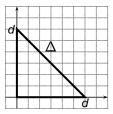
$$\varphi(\Delta) \subset \{(x, y) \in \mathbb{R}^2 \,|\, 0 \leq y \leq d\}.$$

- Notation: $lw(\Delta)$.
- Convention: $lw(\emptyset) = -1$.
- Easy fact: $\gamma(\Delta) \leq \mathsf{Iw}(\Delta)$.
 - Let *f* be a generic Laurent polynomial with $\Delta(f) = \Delta$.
 - Let φ be a ℤ-affine transformation realizing lw(Δ).
 - $C(f) \cong C(\varphi(f))$, so it suffices to deal with $C(\varphi(f))$.
 - Then $C(\varphi(f)) \to \mathbb{A}^1_{\mathbb{C}} \subset \mathbb{P}^1_{\mathbb{C}} : (x, y) \mapsto x$ is of degree at most d.

< ロ > < 同 > < 回 > < 回 > .

Sharp?

Counterexample 1



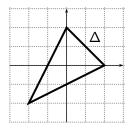
• $\gamma(\Delta) = d - 1$ (Namba, 1979: gonality of smooth plane curves)

• $lw(\Delta) = d$, since every edge contains d + 1 lattice points

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Sharp?

Counterexample 2



- γ(Δ) ≤ 3 (by Brill-Noether Theorem, curves of genus 4 are at most 3-gonal)
- $lw(\Delta) = 4$, because the interior polygon contains an interior \mathbb{Z}^2 -point itself

The interior polygon

 Let Δ be a two-dimensional lattice polygon. The convex hull of the interior lattice points is called the interior polygon of Δ. Notation: Δ⁽¹⁾

Theorem (-, Lubbes & Schicho, 2010)

 $lw(\Delta^{(1)}) = lw(\Delta) - 2$, unless $\Delta \equiv Conv\{(0,0), (d,0), (0,d)\}$ for $d \ge 2$, in which case $lw(\Delta) = d$ and $lw(\Delta^{(1)}) = d - 3$.

- Thus in fact γ(Δ) ≤ lw(Δ⁽¹⁾) + 2. This rules out Counterexample 1 as an exceptional case. Counterexample 2 is more fundamental.
- Algorithm for computing $lw(\Delta)$.

Conjecture

$$\gamma(\Delta) = \text{Iw}(\Delta^{(1)}) + 2$$
, unless $\Delta \equiv \text{Conv}\{(2,0), (0,2), (-2,-2)\}$, in which case $\gamma(\Delta) = 3$.

- An upper bound for the gonality
- Relation with toric surfaces
- Proving sharpness: a geometric attack
- Proving sharpness: a graph-theoretic attack

Toric surfaces

- To each $(i, j) \in \Delta \cap \mathbb{Z}^2$ we associate a formal variable z_{ij} .
- The toric surface

$$\operatorname{\mathsf{Tor}}(\Delta) \subset \mathbb{P}^{\#(\Delta \cap \mathbb{Z}^2)-1}_{\mathbb{C}} = \operatorname{\mathsf{Proj}} \mathbb{C}[z_{ij}]$$

is defined by all homogeneous binomial relations that are 'induced by the combinatorics of Δ '.

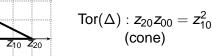
• Example:
$$\Delta = \text{Conv}\{(0,0), (1,0), (0,1), (1,1)\}.$$

 z_{01}
 z_{11}
 z_{11}
 $Tor(\Delta) : z_{10}z_{01} = z_{00}z_{1}$
(hyperboloid)

• Example: $\Delta = \text{Conv}\{(0,0), (2,0), (0,1)\}.$

 Z_{01}

 Z_{00}



Filip Cools (K.U. Leuven)

Newton polygons and curve gonalities

Toric surfaces

Alternatively, Tor(Δ) is the Zariski closure of the image of

$$\mathbb{T}^2_{\mathbb{C}} \hookrightarrow \mathbb{P}^{\#(\Delta \cap \mathbb{Z}^2)-1}_{\mathbb{C}} : (x,y) \mapsto (x^i y^j)_{(i,j) \in \Delta \cap \mathbb{Z}^2}.$$

• Under this map, the curve $C(f) \subset \mathbb{T}^2_{\mathbb{C}}$ with

$$f = \sum_{(i,j)\in\Delta\cap\mathbb{Z}^2} c_{ij} x^i y^j \in \mathbb{C}[x^{\pm 1},y^{\pm 1}]$$

maps to the hyperplane section of $\text{Tor}(\Delta)$ defined by

$$\sum_{i,j)\in\Delta\cap\mathbb{Z}^2}c_{ij}z_{ij}=0.$$

g(Δ) = 'sectional genus' of Tor(Δ).
γ(Δ) = 'sectional gonality' of Tor(Δ).

< ロ > < 同 > < 回 > < 回 >

- An upper bound for the gonality
- Relation with toric surfaces
- Proving sharpness: a geometric attack
- Proving sharpness: a graph-theoretic attack

Filip Cools (K.U. Leuven)

Newton polygons and curve gonalities

TG & CB at Saarbrücken

Proving sharpness: a geometric attack

Proof of conjecture for $lw(\Delta^{(1)}) = -1$

• $\gamma(\Delta) \leq \mathsf{Iw}(\Delta^{(1)}) + 2 = 1 \leq \gamma(\Delta)$

Filip Cools (K.U. Leuven)

Newton polygons and curve gonalities

TG & CB at Saarbrücken

イロト イポト イヨト イヨト

18/36

э

Proof of conjecture for $lw(\Delta^{(1)}) = 0$

- $\gamma(\Delta) \leq \mathsf{Iw}(\Delta^{(1)}) + 2 = 2.$
- On the other hand $\gamma(\Delta) \ge 2$ since $g(\Delta) \ge 1$.

Filip Cools (K.U. Leuven)

Newton polygons and curve gonalities

TG & CB at Saarbrücken 19 / 36

イロト イポト イヨト イヨト

Proof of conjecture for $lw(\Delta^{(1)}) = 1$

•
$$\gamma(\Delta) \leq \operatorname{Iw}(\Delta^{(1)}) + 2 = 3.$$

• By a refined version of Khovanskii's Theorem, the curve *C*(*f*) is canonically embedded by

$$\pi: \boldsymbol{C}(f) \to \mathbb{P}^{\boldsymbol{g}(\Delta)-1}_{\mathbb{C}}: (\boldsymbol{x}, \boldsymbol{y}) \mapsto (\boldsymbol{x}^{i} \boldsymbol{y}^{j})_{(i,j) \in \Delta^{(1)} \cap \mathbb{Z}^{2}}$$

if f is non-degenerate with respect to Δ (generic condition).

• $\mathsf{Iw}(\Delta^{(1)}) = 1 \Rightarrow \Delta^{(1)}$ is two-dimensional \Rightarrow assume that $\{(0,0), (1,0), (0,1)\} \subset \Delta^{(1)}$ $\Rightarrow \mathbb{C}(\pi(C(f))) = \mathbb{C}(C(f)) = \mathsf{Frac}(\mathbb{C}[x^{\pm 1}, y^{\pm 1}]/(f))$ $\Rightarrow g(\pi(C(f))) = g(C(f)) = g(\Delta) > 1$ $\Rightarrow \gamma(\Delta) \ge 3$

□ > < ☐ > < Ξ > < Ξ >
 TG & CB at Saarbrücken

20/36

1

Proof of conjecture for $lw(\Delta^{(1)}) = 2$

•
$$\gamma(\Delta) \leq \mathsf{Iw}(\Delta^{(1)}) + 2 = 4.$$

- Analogously as in the above case, we get $\gamma(\Delta) \ge 3$ (and $\pi(C(f)) \subset \operatorname{Tor}(\Delta^{(1)})$).
- Suppose $\gamma(\Delta) = 3$ and $\#(\partial \Delta^{(1)} \cap \mathbb{Z}^2) \ge 4$.
 - Since #(∂Δ⁽¹⁾ ∩ Z²) ≥ 4, Tor(Δ⁽¹⁾) is generated by quadrics (Koelman, 1993).
 - Since $\gamma(\Delta) = 3$, the intersection of all quadrics containing $\pi(C(f))$ is a surface of sectional genus 0 (Petri, 1923).
 - Hence the sectional genus of $Tor(\Delta^{(1)})$ is zero, i.e. $g(\Delta^{(1)}) = 0$.
 - $\Delta^{(1)(1)} = \emptyset \Rightarrow \mathsf{lw}(\Delta^{(1)(1)}) = -1 \Rightarrow \mathsf{lw}(\Delta^{(1)}) = 1 \text{ or}$ $\Delta^{(1)} \equiv \mathsf{Conv}\{(0,0), (2,0), (0,2)\}$: contradiction.

• Suppose $\gamma(\Delta) = 3$ and $\#(\partial \Delta^{(1)} \cap \mathbb{Z}^2) = 3$.

- $g(\Delta^{(1)}) = 0$: contradiction as above.
- $g(\Delta^{(1)}) > 0 \Rightarrow \Delta^{(1)} \equiv \text{Conv}\{(-1, -1), (1, 0), (0, 1)\}$:

Counterexample 2

イロン 不得 とくほう イヨン 二日 二

Proof of conjecture for $lw(\Delta^{(1)}) > 2$

.?

One naturally bumps into Green's canonical conjecture (a generalization of Petri's theorem).

But:

- Green's conjecture is unproven.
- Even if it were proven, we require a better understanding of the Betti table of π(C(f)) in terms of Δ(f).

22/36

< 同 > < 三 > < 三 >

Introduction

- An upper bound for the gonality
- Relation with toric surfaces
- Proving sharpness: a geometric attack
- Proving sharpness: a graph-theoretic attack

Linear systems on curves

- Let C/\mathbb{C} be a non-singular algebraic curve.
- A divisor on *C* is an element of the free abelian group generated by *C*:

$$\mathsf{Div}(C) = \left\{ \left| \sum_{P \in C} n_P \cdot P \right| | n_P \in \mathbb{Z}, n_P = 0 \text{ for all but finitely many } P \right| \right\}$$

- The degree of a divisor is $\sum n_P$. It is called effective if all $n_P \ge 0$.
- To g ∈ C(C), one can associate a divisor div(g) = ∑_P ord_P(g) · P. It has degree 0.
- Two divisors *D* and *D'* are called equivalent if *D'* − *D* = div(*g*) for some *g* ∈ ℂ(*C*).

TG & CB at Saarbrücken 24 / 36

3

・ロト ・ 同ト ・ ヨト ・ ヨト

Linear systems on curves

- The complete linear system |*D*| is the set of all effective divisors that are equivalent to *D*.
- A complete linear system can be given the structure of a projective space, by identifying *E* ∈ |*D*| with the function *g* for which *D* + div*g* = *E* (well-defined up to a scalar).
- The rank r(|D|) is the dimension of this projective space.
- Alternatively, $r(|D|) = \max\{k \mid \forall E \in \text{Div}_+^k C : |D E| \neq \emptyset\}.$
- Gonality = minimal *d* for which *C* has a complete linear system |*D*| of degree *d* and rank one.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Linear systems on metric graphs

- Let Γ be a metric graph.
- A divisor on Γ ? An element $D = \sum_{P \in \Gamma} n_P \cdot P$ of the free abelian group generated by the points of Γ .
- The degree of a divisor is $\sum n_P$. It is called effective if all $n_P \ge 0$.
- Rational functions on Γ? Continuous map g : Γ → ℝ such that the restriction of g to an edge is piecewise-linear with only finitely many pieces and integer slopes.
- Divisor associated to a rational function $g: \Gamma \to \mathbb{R}$?

$$\operatorname{div}(g) = \sum_{P \in \Gamma} \operatorname{ord}_P(g) \cdot P,$$

where $\operatorname{ord}_{P}(g) \in \mathbb{Z}$ is the sum of the incoming slopes of g at P. Note that it has degree 0.

 Two divisors *D* and *D'* are called equivalent if *D'* - *D* = div(g) for some rational function g on Γ.

Filip Cools (K.U. Leuven)

Linear systems on metric graphs

- Complete linear system |*D*|? The set of all effective divisors that are equivalent to *D*.
- Rank of |D|?

$$r(|D|) = \max\{k \mid \forall E \in \operatorname{Div}_+^k \Gamma : |D - E| \neq \emptyset\}.$$

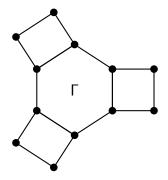
 The gonality of Γ is the minimal *d* for which Γ carries a positive rank complete linear system of divisors of degree *d*.

• Notation: $\gamma(\Gamma)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Linear systems on graphs

• Example : $\gamma(\Gamma) = 3$



Filip Cools (K.U. Leuven)

Newton polygons and curve gonalities

 ✓ □ → ✓ Ξ → ✓ Ξ → Ξ

 TG & CB at Saarbrücken

Specializing linear systems from curves to graphs

- Let 𝔅 be a flat and proper scheme over ℂ[[t]] such that
 - $X = \mathfrak{X} \otimes \mathbb{C}((t))$ is a smooth curve,
 - X_C = X ⊗ C decomposes into a union of smooth curves that intersect each other transversally.
- Then \mathfrak{X} is called a strongly semi-stable arithmetic surface.
- To X̂, one associates a metric graph, by identifying each component of X_C with a vertex and each intersection point with an edge, and by taking all edge lengts equal to one.
- Notation: $\Gamma(\mathfrak{X})$.

Theorem (Baker, 2008)

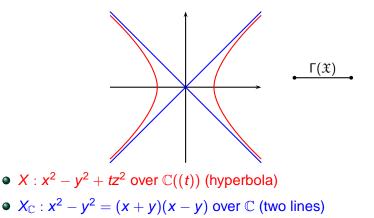
There is a natural degree-preserving way of specializing a divisor D on X to a divisor $\rho(D)$ on $\Gamma(\mathfrak{X})$, such that $r(|\rho(D)|) \ge r(|D|)$.

• Corollary:
$$\gamma(\Gamma(\mathfrak{X})) \leq \gamma(X)$$
.

1

Specializing linear systems from curves to graphs

• Example: $\mathfrak{X} : x^2 - y^2 + tz^2$ over $\mathbb{C}[[t]]$



Newton polygons and curve gonalities

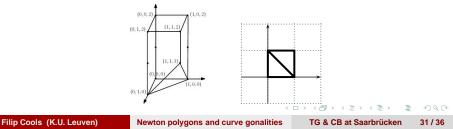
□ > < ☐ > < Ξ > < Ξ >
 TG & CB at Saarbrücken

Consider

$$f\in \sum_{(i,j)\in\Delta\cap\mathbb{Z}^2} oldsymbol{c}_{ij}(t)oldsymbol{x}^ioldsymbol{y}^j \quad\in\mathbb{C}[t][oldsymbol{x}^{\pm1},oldsymbol{y}^{\pm1}]$$

and suppose that it is 'sufficiently generic'.

- Let $\widetilde{\Delta}$ be its 3D Newton polytope ($f \in \mathbb{C}[t, x^{\pm 1}, y^{\pm 1}]$).
- Then the lower facets of $\widetilde{\Delta}$ induce a subdivision $\{\Delta_i\}_i$ of Δ .
- Example: $f = (1 + t^2) + (1 + t^2)x + (1 + t^2)y + (t + t^2)xy$.



- Now f ∈ C[t, x^{±1}, y^{±1}] corresponds to a hyperplane section H̃ of the toric threefold Tor(Δ̃).
- There is a natural morphism $p : \operatorname{Tor}(\widetilde{\Delta}) \to \mathbb{P}^1_{\mathbb{C}}$ such that for all $t_0 \in \mathbb{A}^1_{\mathbb{C}}$ one has
 - if $t_0 \neq 0$ then $p^{-1}(t_0) \cong \operatorname{Tor}(\Delta)$,
 - $p^{-1}(0) \cong \bigcup_i \operatorname{Tor}(\Delta_i).$
- When restricted to (Tor(△̃) \ p⁻¹{∞}) ∩ H̃ this yields a strongly semi-stable arithmetic surface X over C[[t]].
 - X is a hyperplane section of Tor(Δ) over C((t)).
 - X_C decomposes into a union of hyperplane sections of the Tor(Δ_i) over C.
 - Two such components will intersect each other transversally in $#(\Delta_i \cap \Delta_j \cap \mathbb{Z}^2) 1$ distinct points.

- Thus: Γ(𝔅) is fully determined by the combinatorics of the subdivision.
- Namely: each Δ_i corresponds to a vertex v_i , and there are $\#(\Delta_i \cap \Delta_j \cap \mathbb{Z}^2) 1$ edges between v_i and v_j .
- Notation: $\Gamma(\{\Delta_i\}_i)$.
- By Baker's theorem: $\gamma(\Gamma(\{\Delta_i\}_i)) \leq \gamma(X)$.
- A semi-continuity argument and $\mathbb{C}\{\{t\}\} \cong \mathbb{C}$ implies:

Theorem

For every regular subdivision $\{\Delta_i\}_i$ of a two-dimensional lattice polygon Δ , one has $\gamma(\Gamma(\{\Delta_i\}_i)) \leq \gamma(\Delta)$.

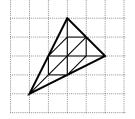
< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• We expect that it is always possible to obtain equality:

Conjecture

There always exists a regular subdivision $\{\Delta_i\}_i$ such that $\gamma(\Gamma(\{\Delta_i\}_i)) = \gamma(\Delta)$.

• Example: our Counterexample 2.



$$\gamma(\Delta) = \gamma(\Gamma(\{\Delta_i\}_i)) = 3.$$

Filip Cools (K.U. Leuven)

Newton polygons and curve gonalities

TG & CB at Saarbrücken

• • • • • • • •

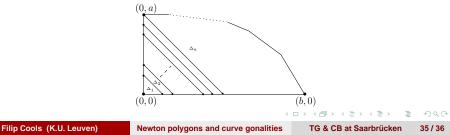
A purely combinatorial conjecture

• A proof of the following combinatorial statement would solve it all:

Conjecture

There always exists a regular subdivision $\{\Delta_i\}_i$ such that $\gamma(\Gamma(\{\Delta_i\}_i)) = \mathsf{lw}(\Delta^{(1)}) + 2$, except if $\Delta \equiv \mathsf{Conv}\{(2,0), (0,2), (-2,-2)\}.$

• Example of a lattice polygon ∆ for which we can prove the above conjecture:



• Thanks for listening!

Filip Cools (K.U. Leuven)

Newton polygons and curve gonalities

 ✓ □ →
 ≤ →
 ≤ →

 TG & CB at Saarbrücken

36/36

э