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Introduction

Introduction

f ∈ C[x±1, y±1]: irreducible Laurent polynomial

∆(f ): its Newton polygon
i.e. if

f =
∑

(i,j)∈Z2

cijx iy j ,

then
∆(f ) = Conv{(i, j) ∈ Z

2 | cij 6= 0} ⊂ R
2

C(f ): curve in T
2
C

= (C \ {0})2 defined by f

Theorem

(Baker, 1893) The (geometric) genus of C(f ) is bounded by the
number of Z

2-points in the interior of ∆(f ).

(Khovanskii, 1977) Generically, this bound is attained.
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Introduction

Examples

f = y2 − x3 − Ax − B with B 6= 0

∆(f )

3

2
#(∆◦ ∩ Z

2) = 1
the genus of C(f ) is equal to one
iff 4A3 + 27B2 6= 0

f = y2 − h(x) with deg h = 2g + 1 and h(0) 6= 0

∆(f )

2g + 1

2
#(∆◦ ∩ Z

2) = g
the genus of C(f ) is equal to g iff
h(x) has no multiple roots
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Introduction

Examples

f polynomial of degree d : then ∆(f ) is contained in

∆

d

d

#(∆◦ ∩ Z
2) = (d−1)(d−2)

2

If C(f ) has a singularity at (x0, y0), then ∆(f (x + x0, y + y0)) is
contained in

∆

d

d

#(∆◦ ∩ Z
2) = (d−1)(d−2)

2 −1
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Introduction

Central question of this talk

Question

Does there exist a similar combinatorial interpretation for the gonality?

gonality = minimal degree of a non-constant rational map to P
1
C

hyperelliptic = gonality 2 (by definition)
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Introduction

Central question of this talk

A lattice polygon is the convex hull in R
2 of a finite number of

Z
2-points (also called lattice points).

The genus of a two-dimensional lattice polygon ∆ is the
(geometric) genus of the curve defined by a generic Laurent
polynomial f with ∆(f ) = ∆.

Notation: g(∆). By the foregoing: g(∆) = #(∆◦ ∩ Z
2).

The gonality of a two-dimensional lattice polygon ∆ is the gonality
of the curve defined by a generic Laurent polynomial f with
∆(f ) = ∆.

Notation: γ(∆). Well-defined by a semi-continuity argument.

Question (reformulated)

Does there exist a purely combinatorial interpretation for γ(∆)?
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An upper bound for the gonality

Some terminology and easy facts

A Z-affine transformation is a map

ϕ : R
2 → R

2 : (x , y) 7→ (x , y)A + b

with A ∈ GL2(Z) and b ∈ Z
2.

Two lattice polygons ∆ and ∆′ are equivalent if there is a Z-affine
transformation ϕ such that ϕ(∆) = ∆′. (Notation: ∆ ≡ ∆′)

A Z-affine transformation ϕ acts on C[x±1, y±1] as

f =
∑

(i ,j)∈Z2

cij(x , y)(i ,j) 7→ ϕ(f ) =
∑

(i ,j)∈Z2

cij(x , y)ϕ(i ,j).

∆(ϕ(f )) = ϕ(∆(f )) and C(f ) ∼= C(ϕ(f )).
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An upper bound for the gonality

The lattice width as an upper bound

The lattice width of a non-empty lattice polygon ∆ is the minimal d
for which there is a Z-affine transformation ϕ such that

ϕ(∆) ⊂ {(x , y) ∈ R
2 |0 ≤ y ≤ d}.

Notation: lw(∆).

Convention: lw(∅) = −1.

Easy fact: γ(∆) ≤ lw(∆).
Let f be a generic Laurent polynomial with ∆(f ) = ∆.
Let ϕ be a Z-affine transformation realizing lw(∆).
C(f ) ∼= C(ϕ(f )), so it suffices to deal with C(ϕ(f )).
Then C(ϕ(f )) → A1

C
⊂ P1

C
: (x , y) 7→ x is of degree at most d .
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An upper bound for the gonality

Sharp?

Counterexample 1

∆

d

d

γ(∆) = d − 1 (Namba, 1979: gonality of smooth plane curves)

lw(∆) = d , since every edge contains d + 1 lattice points
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An upper bound for the gonality

Sharp?

Counterexample 2

∆

γ(∆) ≤ 3 (by Brill-Noether Theorem, curves of genus 4 are at
most 3-gonal)

lw(∆) = 4, because the interior polygon contains an interior
Z

2-point itself
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An upper bound for the gonality

The interior polygon

Let ∆ be a two-dimensional lattice polygon. The convex hull of the
interior lattice points is called the interior polygon of ∆.
Notation: ∆(1)

Theorem (–, Lubbes & Schicho, 2010)

lw(∆(1)) = lw(∆) − 2, unless ∆ ≡ Conv{(0, 0), (d , 0), (0, d)} for d ≥ 2,
in which case lw(∆) = d and lw(∆(1)) = d − 3.

Thus in fact γ(∆) ≤ lw(∆(1)) + 2. This rules out Counterexample 1
as an exceptional case. Counterexample 2 is more fundamental.

Algorithm for computing lw(∆).

Conjecture

γ(∆) = lw(∆(1)) + 2, unless ∆ ≡ Conv{(2, 0), (0, 2), (−2,−2)}, in
which case γ(∆) = 3.
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Relation with toric surfaces

Toric surfaces

To each (i , j) ∈ ∆ ∩ Z
2 we associate a formal variable zij .

The toric surface

Tor(∆) ⊂ P
#(∆∩Z2)−1
C

= Proj C[zij ]

is defined by all homogeneous binomial relations that are ‘induced
by the combinatorics of ∆’.

Example: ∆ = Conv{(0, 0), (1, 0), (0, 1), (1, 1)}.

z10

z11z01

z00

Tor(∆) : z10z01 = z00z11

(hyperboloid)

Example: ∆ = Conv{(0, 0), (2, 0), (0, 1)}.

z10 z20

z01

z00

Tor(∆) : z20z00 = z2
10

(cone)
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Relation with toric surfaces

Toric surfaces

Alternatively, Tor(∆) is the Zariski closure of the image of

T
2
C ↪→ P

#(∆∩Z2)−1
C

: (x , y) 7→ (x iy j)(i ,j)∈∆∩Z2 .

Under this map, the curve C(f ) ⊂ T
2
C

with

f =
∑

(i ,j)∈∆∩Z2

cijx
iy j ∈ C[x±1, y±1]

maps to the hyperplane section of Tor(∆) defined by
∑

(i ,j)∈∆∩Z2

cijzij = 0.

g(∆) = ‘sectional genus’ of Tor(∆).

γ(∆) = ‘sectional gonality’ of Tor(∆).
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Proving sharpness: a geometric attack

Proof of conjecture for lw(∆(1)) = −1

γ(∆) ≤ lw(∆(1)) + 2 = 1 ≤ γ(∆)
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Proving sharpness: a geometric attack

Proof of conjecture for lw(∆(1)) = 0

γ(∆) ≤ lw(∆(1)) + 2 = 2.

On the other hand γ(∆) ≥ 2 since g(∆) ≥ 1.
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Proving sharpness: a geometric attack

Proof of conjecture for lw(∆(1)) = 1

γ(∆) ≤ lw(∆(1)) + 2 = 3.

By a refined version of Khovanskii’s Theorem, the curve C(f ) is
canonically embedded by

π : C(f ) → P
g(∆)−1
C

: (x , y) 7→ (x iy j)(i ,j)∈∆(1)∩Z2

if f is non-degenerate with respect to ∆ (generic condition).

lw(∆(1)) = 1 ⇒ ∆(1) is two-dimensional
⇒ assume that {(0, 0), (1, 0), (0, 1)} ⊂ ∆(1)

⇒ C(π(C(f ))) = C(C(f )) = Frac(C[x±1, y±1]/(f ))
⇒ g(π(C(f ))) = g(C(f )) = g(∆) > 1
⇒ γ(∆) ≥ 3
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Proving sharpness: a geometric attack

Proof of conjecture for lw(∆(1)) = 2

γ(∆) ≤ lw(∆(1)) + 2 = 4.

Analogously as in the above case, we get γ(∆) ≥ 3 (and
π(C(f )) ⊂ Tor(∆(1))).

Suppose γ(∆) = 3 and #(∂∆(1) ∩ Z
2) ≥ 4.

Since #(∂∆(1) ∩ Z2) ≥ 4, Tor(∆(1)) is generated by quadrics
(Koelman, 1993).

Since γ(∆) = 3, the intersection of all quadrics containing π(C(f ))
is a surface of sectional genus 0 (Petri, 1923).

Hence the sectional genus of Tor(∆(1)) is zero, i.e. g(∆(1)) = 0.

∆(1)(1) = ∅ ⇒ lw(∆(1)(1)) = −1 ⇒ lw(∆(1)) = 1 or
∆(1) ≡ Conv{(0, 0), (2, 0), (0, 2)} : contradiction.

Suppose γ(∆) = 3 and #(∂∆(1) ∩ Z
2) = 3.

g(∆(1)) = 0 : contradiction as above.
g(∆(1)) > 0 ⇒ ∆(1) ≡ Conv{(−1,−1), (1, 0), (0, 1)} :
Counterexample 2
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Proving sharpness: a geometric attack

Proof of conjecture for lw(∆(1)) > 2

?
One naturally bumps into Green’s canonical conjecture (a
generalization of Petri’s theorem).

But:

Green’s conjecture is unproven.
Even if it were proven, we require a better understanding of the
Betti table of π(C(f )) in terms of ∆(f ).
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Proving sharpness: a graph-theoretic attack

Linear systems on curves

Let C/C be a non-singular algebraic curve.

A divisor on C is an element of the free abelian group generated
by C:

Div(C) =

{
∑

P∈C

nP · P

∣∣∣∣∣ nP ∈ Z, nP = 0 for all but finitely many P

}
.

The degree of a divisor is
∑

nP . It is called effective if all nP ≥ 0.

To g ∈ C(C), one can associate a divisor div(g) =
∑

P ordP(g) · P.
It has degree 0.

Two divisors D and D′ are called equivalent if D′ − D = div(g) for
some g ∈ C(C).
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Proving sharpness: a graph-theoretic attack

Linear systems on curves

The complete linear system |D| is the set of all effective divisors
that are equivalent to D.

A complete linear system can be given the structure of a
projective space, by identifying E ∈ |D| with the function g for
which D + divg = E (well-defined up to a scalar).

The rank r(|D|) is the dimension of this projective space.

Alternatively, r(|D|) = max{ k | ∀E ∈ Divk
+C : |D − E | 6= ∅}.

Gonality = minimal d for which C has a complete linear system |D|
of degree d and rank one.
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Proving sharpness: a graph-theoretic attack

Linear systems on metric graphs

Let Γ be a metric graph.

A divisor on Γ? An element D =
∑

P∈Γ nP · P of the free abelian
group generated by the points of Γ.
The degree of a divisor is

∑
nP . It is called effective if all nP ≥ 0.

Rational functions on Γ? Continuous map g : Γ → R such that the
restriction of g to an edge is piecewise-linear with only finitely
many pieces and integer slopes.

Divisor associated to a rational function g : Γ → R?

div(g) =
∑

P∈Γ

ordP(g) · P,

where ordP(g) ∈ Z is the sum of the incoming slopes of g at P.
Note that it has degree 0.

Two divisors D and D′ are called equivalent if D′ − D = div(g) for
some rational function g on Γ.

Filip Cools (K.U. Leuven) Newton polygons and curve gonalities 26/36TG & CB at Saarbrücken 26 / 36



Proving sharpness: a graph-theoretic attack

Linear systems on metric graphs

Complete linear system |D|? The set of all effective divisors that
are equivalent to D.

Rank of |D|?

r(|D|) = max{ k | ∀E ∈ Divk
+Γ : |D − E | 6= ∅}.

The gonality of Γ is the minimal d for which Γ carries a positive
rank complete linear system of divisors of degree d .

Notation: γ(Γ).
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Proving sharpness: a graph-theoretic attack

Linear systems on graphs

Example : γ(Γ) = 3

Γ
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Proving sharpness: a graph-theoretic attack

Specializing linear systems from curves to graphs

Let X be a flat and proper scheme over C[[t]] such that
X = X ⊗ C((t)) is a smooth curve,

XC = X ⊗ C decomposes into a union of smooth curves that
intersect each other transversally.

Then X is called a strongly semi-stable arithmetic surface.

To X, one associates a metric graph, by identifying each
component of XC with a vertex and each intersection point with an
edge, and by taking all edge lengts equal to one.

Notation: Γ(X).

Theorem (Baker, 2008)

There is a natural degree-preserving way of specializing a divisor D on
X to a divisor ρ(D) on Γ(X), such that r(|ρ(D)|) ≥ r(|D|).

Corollary: γ(Γ(X)) ≤ γ(X ).
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Proving sharpness: a graph-theoretic attack

Specializing linear systems from curves to graphs

Example: X : x2 − y2 + tz2 over C[[t]]

Γ(X)

X : x2 − y2 + tz2 over C((t)) (hyperbola)

XC : x2 − y2 = (x + y)(x − y) over C (two lines)
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Proving sharpness: a graph-theoretic attack

Toric degenerations

Consider

f ∈
∑

(i ,j)∈∆∩Z2

cij(t)x
i y j ∈ C[t][x±1, y±1]

and suppose that it is ‘sufficiently generic’.

Let ∆̃ be its 3D Newton polytope (f ∈ C[t , x±1, y±1]).

Then the lower facets of ∆̃ induce a subdivision {∆i}i of ∆.

Example: f = (1 + t2) + (1 + t2)x + (1 + t2)y + (t + t2)xy .
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Proving sharpness: a graph-theoretic attack

Toric degenerations

Now f ∈ C[t , x±1, y±1] corresponds to a hyperplane section H̃ of
the toric threefold Tor(∆̃).

There is a natural morphism p : Tor(∆̃) → P
1
C

such that for all
t0 ∈ A

1
C

one has

if t0 6= 0 then p−1(t0) ∼= Tor(∆),

p−1(0) ∼=
⋃

i Tor(∆i ).

When restricted to
(

Tor(∆̃) \ p−1{∞}
)
∩ H̃ this yields a strongly

semi-stable arithmetic surface X over C[[t]].

X is a hyperplane section of Tor(∆) over C((t)).

XC decomposes into a union of hyperplane sections of the Tor(∆i )
over C.

Two such components will intersect each other transversally in
#(∆i ∩ ∆j ∩ Z

2) − 1 distinct points.
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Proving sharpness: a graph-theoretic attack

Toric degenerations

Thus: Γ(X) is fully determined by the combinatorics of the
subdivision.

Namely: each ∆i corresponds to a vertex vi , and there are
#(∆i ∩ ∆j ∩ Z

2) − 1 edges between vi and vj .

Notation: Γ({∆i}i).

By Baker’s theorem: γ(Γ({∆i}i)) ≤ γ(X ).

A semi-continuity argument and C{{t}} ∼= C implies:

Theorem

For every regular subdivision {∆i}i of a two-dimensional lattice
polygon ∆, one has γ(Γ({∆i}i )) ≤ γ(∆).
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Proving sharpness: a graph-theoretic attack

Toric degenerations

We expect that it is always possible to obtain equality:

Conjecture

There always exists a regular subdivision {∆i}i such that
γ(Γ({∆i}i)) = γ(∆).

Example: our Counterexample 2.

γ(∆) = γ(Γ({∆i}i)) = 3.
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Proving sharpness: a graph-theoretic attack

A purely combinatorial conjecture

A proof of the following combinatorial statement would solve it all:

Conjecture

There always exists a regular subdivision {∆i}i such that
γ(Γ({∆i}i)) = lw(∆(1)) + 2, except if
∆ ≡ Conv{(2, 0), (0, 2), (−2,−2)}.

Example of a lattice polygon ∆ for which we can prove the above
conjecture:

(0, 0) (b, 0)

(0, a)

∆1

∆2

∆a
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Thanks!

Thanks for listening!
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