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Abstract

There are three kinds of singularity in the Tolman model: the big bang and big crunch are the
standard cosmological singularitites that begin and end the spacetime; shell crossings, or caustics,
are the result of the breakdown of the assumptions of the model, and are not expected to occur in
reality; and the ESC singularity, which appears instantaneously at the centre of symmetry at the big
crunch in certain models, and can violate current formulations of cosmic censorship.

The thesis consists of three principal investigations of these singularities. Firstly, the redshift
from the bang and shell crossing surfaces is determined, secondly, the conditions that guarantee no
shell crossings will occur in a model are derived, and lastly, a description of the behaviour of the ESC
singularity is attempted.

The redshift from the big bang in the standard model is always infinite, but in inhomogeneous
cosmological models infinite blushifts are also possible. To avoid such divergent energy fluxes, it is
required that all realistic cosmological models must not display infinite blueshifts. This requirement
is applied to the Tolman model, using the geometrical optics approximation, and assuming that the
geodesic tangent vectors may be expanded in power series. It is concluded that the bang time must
be simultaneous. The stronger requirement, that only infinite redshifts from the bang may occur,
does not lead to a stronger condition on the metric. Further consequences of simultaneity are that no
decaying mode fluctuations are possible, and that the only acceptable model which is homogeneous
at late times is the Robertson-Walker model.

Regular maxima are a necessary feature of all closed spherically symmetric models, but shell
crossings are undesirable for physically realistic situations. The necessary and sufficient conditions
which ensure no shell crossings will arise in Tolman models are derived, and it is shown explicitly that
a Tolman model (in general, with a surface layer) may contain both elliptic and hyperbolic regions
without developing any shell crossings and without the hyperbolic regions recollapsing. This finding
is contrary to the hypothesis of Zel’dovich and Grishchuk.

The ESC singularity, reported separately by Eardley and Smarr in a numerical study, and later
by Christodoulou in an existence proof, is a single point in standard coordinates, and appears at the
centre of symmetry on the crunch surface, yet it emits an infinite set of light rays. If the dust cloud
of the Tolman model is joined to a Schwarzschild exterior, then some of those rays can reach future
null infinity, and it can be seen for a finite length of time. The conditions under which this singularity
occurs are generalised and approximate forms for the rays emerging from it are derived. The paths
of the light rays in the vicinity of this singularity are integrated numerically for a particular case, and
a conformal diagram is also calculated numerically for this same case. The conditions for existence
agree with those of Eardley and Smarr, but the conformal diagram is different in one respect. Some
preliminary calculations for more general cases are presented. The calculation of the orientation of
the crunch surface at the ESC singularity is found to be heavily dependent on the path chosen to
approach that point. Further points of investigation are suggested. Lastly, a reasonable continuity
condition is put forward which is not satisfied by models containing an ESC singularity. The condition
is that the derivative of the density with respect to the mass at constant time must be zero at the
origin.
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Chapter 1

INTRODUCTION

The standard big bang model of the universe is based on the Robertson-Walker metric. This metric
is derived from Einstein’s equations by assuming that the universe is completely homogeneous and
isotropic. The metric is written in spherical polar coordinates, and the coordinates are synchronous
and comoving. The former means that the time coordinate is the proper time for any observer
remaining at constant spatial coordinates, and the latter means that the spatial coordinates are
attached to the particles of matter, so that any given particle always remains at constant radial and
angular positions. With this choice, the Einstein equations reduce to the Friedmann equations and
there is only one undetermined metric function — the scale factor, which depends on time only,
and expresses the expansion or contraction of space. These equations relate the scale factor to the
density and pressure. The Robertson-Walker model assumes that the matter is a perfect fluid, but
the equation of state, giving the relation between the pressure and the density, may be freely chosen.
Given this equation, the Friedmann equations may be solved for the scale factor.

While the assumptions of homogeneity and isotropy seem to agree well with observations on
the largest scales, and the model has led to several important successes, such as the production
of the correct helium abundance, and the existence of the cosmic background radiation, it cannot
describe any of the universe’s smaller scale features. The Tolman metric represents a distribution
of pressureless matter (dust) that is characterised by spherical symmetry, but is inhomogeneous in
the radial direction. Like the Robertson-Walker model, it is expressed in synchronous, comoving
coordinates, but, in order to make the Einstein equations tractable, the pressure is set to zero, thus
specifying the equation of state. The resulting equations of motion are closely analogous to the
Friedmann equations for a dust Robertson-Walker model, save only that the total time derivatives
become partial. The solutions are also very similar, except that the constants of integration become
arbitrary functions of the radial coordinate. The function that is solved for is not the scale factor,
but the areal radius, the coefficient of the angular terms in the metric. It is a function of both the
radial and time coordinates, but, for a given particle, it plays the role of a scale factor.

A restricted form of the metric was first presented by Lemaitre (1933 a and b) in a pair of
short papers in Comptes Rendus, without an explicit solution for the evolution of the model. Later
that year he wrote down the general metric in a large paper in the Annals of the Brussels Scientific
Society (1933c), discussing this and several other cosmological models. Using a particular choice of
coordinates, he provided the full solution for all models with a closed geometry, including a non zero
cosmological constant. He also discussed the relation between the relativistic and classical equations,
as well as noting the breakdown of the results when shell crossings developed. He then used the
model, together with the assumption that clusters of galaxies have been in equilibrium since the
static Einstein universe was disturbed, to derive an estimate of the degree of expansion that has

1



CHAPTER 1. INTRODUCTION 2

subsequently occurred.

Tolman’s paper of the following year (1934) in the Proceedings of the National Academy
of Sciences, actually cited Lemaitre’s third paper, but derived the model from scratch anyway, also
using a non zero cosmological constant. In this paper he does not give a solution of the equations
of motion, except in the form of an integral. What he does do is examine the time derivatives of
perturbations from known homogeneous cosmologies, and demonstrate that enhancements continue
to grow while rarefactions become more pronounced, thus revealing an instability in those models.

The model was discovered a third time by Datt (1938) in Calcutta. Writing in Zeitshrift
fur Physik, he derived the metric, and solved the equations of motion for all models with an open
geometry and zero cosmological constant. Unfortunately, his solution is not correct, though his
specific examples are. (In that paper he also provides a (correct) solution for Kantowski-Sachs
models.)

The most cited paper for the Tolman metric is one by Bondi (1947) in Monthly Notices. He
refers to Tolman’s paper, and to a 1931 paper by Lemaitre, but omits mention of any of Lemaitre’s
1933 papers. This may be why the model is now known as the Tolman model, and sometimes as
the Tolman-Bondi model1. Bondi’s paper consists of a thorough derivation and review of the model
(with zero cosmological constant in the solution, though not in most of his discussion), and includes
sections on the comparison with classical equations, the luminosity distance, the redshift, and the
apparent horizon. He also discusses an “impenetrable barrier” in the model, which is in fact only a
coordinate problem, and corresponds to the regular maximum defined in the next chapter.

The Tolman metric has often been used to model the development of density fluctuations, and
even to model specific clusters of galaxies. For epochs later than recombination, and regions of low
density, its dust equation of state is quite realistic, so that its lack of rotation is the major deficiency.
For early times, or high densities the pressure becomes significant in the real universe, and so the
model is a lot less reliable here. In particular, the divergent densities that occur at singularities in the
Tolman model cannot be considered realistic when the pressure remains zero. Nevertheless, there are
no inhomogeneous models with non zero pressure that are of comparable generality to the Tolman
model. Thus the Tolman model is used in this thesis to study some properties of singularities in an
inhomogeneous cosmology. Since the differences between singularities in homogeneous models with
and without pressure are purely quantitative, it is reasonable to suppose that the properties found in
the Tolman model will hold qualitatively for more general equations of state.

Chapter two describes the Tolman model in some detail and also introduces the remaining
chapters.

1Following Krasinski (1997) [“Inhomogeneous Cosmological Models”, Cambridge U P], I recommend calling it
the Lemâıtre-Tolman model.



Chapter 2

THE TOLMAN MODEL

As already mentioned, the Tolman model represents a distribution of pressure free matter (dust) that
is spherically symmetric, but inhomogeneous in the radial direction. It is written in synchronous,
comoving coordinates, so that gtt = −1, and gti = 0 (i = 1, 2, 3), and the tangent vector of the
particles of matter is uα ≡ (1, 0, 0, 0), which means that the coordinate time, t, is also the proper
time of the particles. The cosmological constant, Λ, will be neglected throughout this thesis. In
addition, geometric units such that G = 1 and c = 1 will be used throughout. Thus the metric is,

ds2 = −dt2 +
R′2(r, t)

1 + f(r)
dr2 +R2(r, t) dΩ2 , (2.1)

where dΩ2 = dθ2 + sin2 θ dφ2, ′ ≡ ∂/∂r, and ˙≡ ∂/∂t will be used below. The evolution of the areal
radius, R(r, t), is found from the Einstein equations with Λ = 0, which give

Ṙ2 =
F (r)

R
+ f , (2.2)

and has the following parametric solutions;

hyperbolic, f > 0

R =
F

2f
(cosh η − 1), (sinh η − η) =

2f 3/2(t− a)

F
; (2.3)

parabolic, f = 0

R =

[

9F (t− a)2

4

]1/3

; (2.4)

elliptic, f < 0

R =
F

2(−f)
(1 − cos η), (η − sin η) =

2(−f)3/2(t− a)

F
. (2.5)

There is also a particular solution for the case F = 0, f > 0,

R = f 1/2(t− a) , (2.6)

3



CHAPTER 2. THE TOLMAN MODEL 4

which is the same as the late time behaviour of all hyperbolic models. This last solution is in fact
Minkowski space, and is discussed further below.

The three types of time evolution of these models, given by eqs (2.3) to (2.5), are equivalent
to those of the hyperbolic, parabolic and elliptic Robertson-Walker models, and for any given point,
a dust Robertson-Walker model with identical evolution can be found. They all emerge from the big
bang at t = a(r) with a positive expansion rate, Ṙ > 0, so that the areal radius of the shells of matter
at r = const is increasing. In hyperbolic models, the expansion continues indefinitely, while elliptic
models eventually reach a maximum size and then start collapsing, terminating in a big crunch. The
parabolic models are the borderline cases, since their expansion asymptotically decreases to zero at
infinite time. The time reversed parabolic and hyperbolic cases, obtained by writing (a − t) instead
of (t − a), are also valid solutions, though they are no good as cosmological models. Unlike the
Robertson-Walker models, the bang does not necessarily occur simultaneously everywhere, neither
are the times of the crunch or maximum expansion simultaneous in general. The hyperbolic and
elliptic cases can easily be shown to reduce to the parabolic form for η → 0, i.e. as t → a, so that
all three cases have the same behaviour at very early times. Similarly, near the big crunch in elliptic
models, when η → 2π, the behaviour approaches that of a collapsing parabolic model. It is entirely
possible for all three types of evolution to obtain within different regions in the same model.

The density is given by

8πρ =
F ′

R′R2
, (2.7)

and the Kretschmann scalar is (e.g. Bondi 1947)

K = RαβγδRαβγδ =
12F 2

R6
− 8FF ′

R5R′
− 3F ′2

R4R′2
, (2.8)

where Rαβγδ is the Riemann tensor.

The functions, F , f , and a, are all arbitrary functions of the coordinate radius r, which allow
a coordinate choice, plus the specification of two physically independent quantities. Nevertheless,
they all have a physical meaning. The local time at which R = 0 is a(r), and, in the region t ≥ a,
it is the time of the big bang, while for t ≤ a it is the time of the big crunch. The function F (r) is
twice the effective gravitational mass, M , within coordinate radius r (see Bondi 1947), which can be
defined by

2M

R
= Rφ

θφθ

(Cahill and McVittie 1970). The third function, f(r), determines both the type of time evolution,
and the local geometry. A local value of π can be defined in terms of the rate of change of areal
radius, on some constant time slice, with1

Π(r) =
π (∂rgθθ)√

grr
= π

√

1 + f(r) . (2.9)

However, the local geometry in an elliptic Tolman model is not necessarily analogous to that of an
elliptic Robertson-Walker model. In the latter, where f = −εr2, the ε = +1 case has a positively
curved spatial geometry, so that its constant t, θ = π/2 sections have the geometry of a sphere. A

1Erratum: The printed version had

Π(r) =
π (∂rgθθ)

2

grr

= π[1 + f(r)] .
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similar local geometry only occurs in elliptic Tolman models if f ′ < 0 as well as f < 0. Similarly, the
hyperbolic Tolman models only have a saddle like geometry, similar to the ε = −1 Robertson-Walker
models, if f ′ > 0 as well as f > 0. Also, f(r) may be regarded as a local energy constant. For
hyperbolic and parabolic regions, the expansion rate at late times is given by Ṙ = f 1/2, while in
elliptic regions, the “mean speed”, defined by dividing the radius, Rmax, at maximum expansion by
the time from bang to Rmax, is just 2(−f)1/2/π. In fact, these three functions cannot be chosen
completely arbitrarily. Since F is proportional to the mass, it must be everywhere positive,

F ≥ 0 , (2.10)

and the condition
f ≥ −1 , (2.11)

must hold for a Lorentzian manifold. Further restrictions on the arbitrary functions will be derived
below and in chapter 5.

A scale radius and a scale time can be defined for each particle of the fluid (except where
f = 0) by

p(r) =
F

(±f)
, and q(r) =

F

(±f)3/2
, (2.12)

respectively, where the upper sign is for f > 0, and the lower one for f < 0. Obviously, they are both
positive. In elliptic regions they have a particular meaning, since the value of R(r, t) at maximum
expansion (η = π) is just p(r), while the time from bang to crunch is πq(r).

For all three cases, the radial derivative of the areal radius is given by,

R′ =

(

F ′

F
− f ′

f

)

R−
[

a′ +

(

F ′

F
− 3f ′

2f

)

(t− a)

]

Ṙ , (2.13)

It is quite possible for one model to contain adjacent elliptic and hyperbolic regions. At the boundary,
where f = 0, it can be seen from the second parts of eqs (2.3) and (2.5) that, for finite (t − a),
η → 0 on the boundary and the evolution smoothly approaches the parabolic type from either side.
This means that, in the t-r plane, the surfaces of constant η, diverge towards t = ∞ here, so on
either side of the boundary η is a different parameter. Expanding (2.3) or (2.5) in powers of f , and
remembering that f ′ 6= 0 in general, gives, after some manipulation,

R′

R
=

F ′

3F
− 2a′

3(t− a)
+

3f ′

10

[

2(t− a)2

3F 2

]1/3

+O(f) , (2.14)

which is valid for sufficiently small f in both f > 0, and f < 0 regions, and is exact for f = 0. For
an extended parabolic region, where f ′ = 0, eq (2.14) becomes the derivative of eq (2.4). (It is also
possible for f ′ to be zero only at the point where f = 0.) The derivatives of R with respect to t and
r can be expressed as series in powers of R, by performing a Taylor expansion on the trigonometric
functions in eqs (2.3) and (2.5);

Ṙ =

√

F

R

√

1 +
fR

F
, (2.15)

R′ =

(

F ′

F
− f ′

f

)

R− a′
√

F

R

√

1 +
fR

F

+

(

F ′

F
− 3f ′

2f

)(

F

f

)

[

∞
∑

i=1

(2i)!

(i!)2(2i+ 1)

(

−fR
F

)i(

1 +
fR

F

)i+1
]

, (2.16)



CHAPTER 2. THE TOLMAN MODEL 6

and a further expansion is implied wherever powers of [1 + (fR/F )] occur. The above are series in
half and whole powers of R, whose coefficients are functions of r only and are thus well behaved near
R = 0. Equations (2.15) and (2.16) are valid for all f . These expansions will be needed in chapter
3.

For particular choices of the arbitrary functions, the Tolman metric reduces to some other
standard metrics. All models with F = 0 are flat and empty, as one might expect. Thus the form
(2.1) with solution (2.6) can be obtained from Minkowski space,

ds2 = −dT 2 + dR2 +R2 dΩ2 ,

using the transformations (2.6) and
T = x(r)t+ y(r) ,

where

x = (1 + f)1/2 , y = y0 −
∫

(f ′a+ 2a′f)

2(1 + f)1/2
dr .

The case when both F and f are zero gives R = R(r) as the solution of (2.2), and is obviously
Minkowski space. The Robertson-Walker metric is generated by setting a = 0, F ∝ r3, and f ∝ ±r2,
or more generally, a = 0 and F ∝ f 3/2. Any Tolman region in which F = const, has zero density,
and is a section of Schwarzschild space. In order to produce the complete Kruskal manifold, however,
it is necessary to chose an elliptic model, with f = −1 at r = 0, say, and rising asymptotically to 0
in both directions. The function a must be monotonically decreasing in either direction from r = 0,
the simplest choice being

a = − πF

2(−f)3/2
,

and of course F is a constant. This was first done by Novikov (1963), and is described on pp 319-20
of Landau and Lifshitz (1975).

2.1 The Origin and the Topology

An origin occurs at r0 if R(r0, t) = 0 (i.e. gθθ = 0) for all t. Normally at the origin, F and f both
go to zero, but this does not necessarily mean that the time evolution is parabolic. Suppose that,
near the origin in an elliptic or hyperbolic region, (t− a) remains finite, F → 0, and

f → f0F
s , s > 0 . (2.17)

As long as both functions go smoothly to zero at the same point, this will be a valid approximation.
Then η will remain finite and non zero along any spacelike slice that does not include the bang or
crunch, provided

s = 2/3 . (2.18)

This constitutes a regular origin, because the density remains finite and the type of time evolution
does not change as F → 0.

Now suppose s > 2/3. Then, for constant (t − a), η → 0 as F → 0, so the time evolution
does become parabolic at the origin, and η obeys

η ∼ F (s/2−1/3) ,

while R obeys
R ∼ F 1/3 ,
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as expected. The density is finite here and the behaviour is entirely equivalent to f = 0 elsewhere.

For the case s < 2/3, η diverges as F → 0, giving instantaneous evolution, so that, in elliptic
models, the bang and crunch surfaces touch here, while in hyperbolic models the late time behaviour
is reached immediately. The volume expansion rate, Θ = ∇αu

α, of a volume element centered on
r = 0 is, for very early times (small η),

Θ2 =
9Ṙ2

R2
= 9

(

2

3(t− a)

)4/3
[

(

2

(t− a)

)2/3

+ f0F
s−2/3

]

. (2.19)

Approaching F = 0 along constant η, with s < 2/3, (t − a) goes to zero, so all terms in eq (2.19)
diverge. At later times in the hyperbolic model however, i.e. for η large and for all2 t − a > 0, the
expansion rate becomes

Θ2 =
9

f0(t− a)2

[

F 1−3s/2

f
1/2
0 (t− a)

+ f0

]

, (2.20)

so Θ remains finite right up to the origin. (This last expression is not valid for s > 2/3 because
large η is never attained.) The behaviour is equivalent to f → ∞ elsewhere in hyperbolic models.
However, R now goes as eq (2.6) near the origin, so the density goes to zero here. In elliptic models
f must not be less than −1, so F = 0 is the only point where the time from bang to crunch can
be zero. Along a constant η curve, R goes as F 1−s, and of course the density diverges. It is even
possible to have s = 0 so that f is finite as F goes to zero. In elliptic models the bang and crunch
touch here also, and there is an effective origin. For hyperbolic models s = 0 has quite a different
meaning. At such a point the areal radius R is finite, indicating there is no origin here. Since the
density is finite but the mass is zero, the only possible interior is Minkowski space, eq (2.6). One
cannot have F going negative, because, even if the negative mass is ignored, eq (2.2) then gives an
imaginary value for Ṙ for small R.

Inspection of eq (2.13) shows that problems with R′ going negative could be encountered
with s 6= 2/3, or with a or a′ divergent. This will be considered in detail in chapter 5, and certain
conditions at the origin will be disallowed.

If the time of the big bang, a(r), is a decreasing function of r, so that the outer shells of
matter emerge first, and the origin emerges last, then there is initially a singular origin to the space,
of finite but decreasing mass. Similarly, the crunch surface can form a singular origin of growing
mass. If the model consists of a hyperbolic region surrounding an elliptic region, then at late times
the origin develops a singularity whose mass asymptotically approaches a maximum value.

The terms ‘elliptic’, ‘parabolic’, and ‘hyperbolic’ are here defined to indicate only the local
type of time evolution (i.e. f < 0, f = 0, and f > 0, respectively). The terms ‘open’ and ‘closed’
refer only to the topological properties of the model, so that, for spherically symmetric metrics, closed
models have two values of r where R = 0, while open models have only one (or conceivably none).

If a model is closed, it must necessarily have a region where F ′ < 0 and R′ < 0 near the
second origin, unless the radial coordinate is badly behaved, as it is in the closed Robertson-Walker
model with the usual coordinates (see eq (3.2)). The density will be well behaved everywhere only if
R′ = 0 and F ′ = 0 are coincident, which means that R′ = 0 must remain at fixed r. This point was
made clear by Zel’dovich and Grishchuk (1984). Any point where R′ passes through zero, but where
the density remains positive and finite, is a regular extremum, and not a shell crossing as described
below. Regular extrema will be discussed further in chapter 4.

2Erratum: The printed version had t > 0.
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2.2 Singularities

There is no accepted definition of a singularity in General Relativity (Tipler, Clarke, and Ellis 1979)
but, loosely speaking, a singularity is a point or locus of points where the Einstein equations break
down, and which is often associated with divergences in quantities like the density and the Kretchmann
scalar. Therefore, since nothing can be said about singular points themselves, the study of a singularity
is actually the study of the limiting behaviour as the singular point is approached.

There are two hypersurfaces where the density and the Kretschmann scalar, given by eqs (2.7)
and (2.8), diverge; the loci of R = 0, and of R′ = 0. All Tolman models have a big bang singularity,
or a big crunch singularity, or both, and these surfaces will be designated by Σ0. They occur at η = 0
in all models, and also at η = 2π in elliptic models, and are characterised by R = 0. For the region
t ≥ a, η = 0 is the bang, while for t ≤ a, it is the crunch. These surfaces can be shown to be
spacelike everywhere by considering the η = const surfaces. For the hyperbolic case, these surfaces
have an (unnormalised) normal vector,

nα ∝
(

2f 3/2

F
,

[

(sinh η − η)

(

3f ′

2f
− F ′

F

)

− 2f 3/2a′

F

]

, 0, 0

)

, (2.21)

so that the contraction of nα is

nαnα ∝ −f +
(1 + f)

[

(sinh η − η)
(

3f ′

2f
− F ′

F

)

− 2f3/2a′

F

]2

(cosh η − 1)2
[

F ′

F
(1 − φ4) + f ′

f

(

3
2
φ4 − 1

)

− 2f3/2a′

F
φ5

]2 . (2.22)

Clearly, this is negative for η → 0, so that the surface is spacelike. A similar argument applies for the
elliptic case, taking both η → 0, and η → 2π, while for the parabolic case the surfaces of constant
(t − a) must be used. It would not help to consider surfaces of constant R, since R = 0 along the
origin, which is timelike, as well as on the bang and collapse surfaces.

If our universe really does contain singularities, the big bang must be one of the most certain
to exist (Hawking and Ellis 1968, 1973), at least in classical relativity. In the standard model, the
big bang is a spacelike hypersurface, and it is connected to later observers by timelike geodesics,
but it is not visible since its redshift is infinite. However, in inhomogeneous models, the bang is not
necessarily simultaneous, so the redshift is not necessarily infinite. In fact, infinite blueshifts can occur
along radial rays in the Tolman model (e.g. Dyer 1979; Szekeres 1980). The divergent energy fluxes
implied by these infinite blueshifts are physically unacceptable. Therefore in this work all realistic
inhomogeneous cosmological models are required to exhibit no infinite blueshifts from the big bang.
The stronger requirement, that only infinite redshifts be generated, would ensure that the bang is
completely invisible. In chapter 3, a general result for the redshift structure of the bang surface in
Tolman models is derived, and the consequences of applying the above requirements are investigated.

The second type of divergence is the shell crossing, R′ = 0, so called because the spherical
shells of matter appear to be trying to pass through each other here. These surfaces will be designated
by Σ1. Though some authors (e.g. Bonnor 1974, Szekeres 1980) treat these surfaces as if they were
part of the big bang or big crunch, shell crossings are in fact different in a number of ways. Firstly,
on the bang or collapse surfaces gθθ and gφφ both go to zero, and grr either goes to zero or diverges,
while on the shell crossing surfaces only grr goes to zero. Another difference is that shell crossings
are timelike everywhere. The normal to the surface R′ = const is

nα ∝ (Ṙ′, R′′, 0, 0) , (2.23)
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or, writing the locus of the surface as t = b(r), then

nα ∝ (1,−b′, 0, 0) , (2.24)

so that
R′′ = −bṘ′ (2.25)

and nαn
α > 0 gives b′2 > R′2/(1 + f), which implies b′ may have any value on R′ = 0, except zero.

Other differences will be shown in chapters 3 and 4. I believe that shell crossings are not serious
physical singularities, but rather, they occur due to the breakdown of the basic assumptions of the
Tolman model. These assumptions are that the matter can be represented by comoving coordinates
and a single particle four-velocity at each point. Furthermore, Lake (1984a) has pointed out that the
metric is C1, but not C2 at a shell crossing, and so the Einstein equations are not valid there. (At
Σ0, the metric is not even C1.) Although there may be a way of resolving this problem, it cannot
be dealt with in the context of the Tolman model. It is worth noting that the theorems which use
the Raychaudhuri equation (1955 and 1957) to predict a divergence in the density, fail to distinguish
shell crossings from more serious physical singularities. As Seifert (1979) has pointed out, even when
the origin of a singularity is really hydrodynamic, the Einstein equations ensure that a curvature
singularity also appears. Since shell crossings can also occur in non relativistic hydrodynamics, this
may be the real source of the problem.

The function a(r) not only determines the bang time, but also the relationship between Σ0

and Σ1. At points where a′ = 0, it is evident from eq (2.13) or (2.16) that R′ = 0, whenever R = 0,
so Σ1 and Σ0 intersect at a′ = 0. Thus, if a(r) = const, the two surfaces are coincident. In eq (2.16)
and its time derivative, the leading terms near Σ0 are

R′ = −a′
√

F

R
and Ṙ′ =

a′F

2R2
(2.26)

(Ṙ is positive so the positive root of F/R must be chosen). Thus, where a′ is positive, R′ is negative
and increasing in t, and where a′ is negative, R′ is positive but decreasing. Also the first three terms
in eq (2.16) are

R′ = −a′
√

F

R

(

1 +
fR

2f

)

+
RF ′

3F
+ · · · . (2.27)

If a′ = 0 at r = r0, then for small values of R and (r − r0), the location of Σ1 is given by

RΣ1
≈ F

(

3a′

F ′

)2/3

, (2.28)

for a′ positive, but there is no solution for a′ negative, because in this case Σ1 occurs in t < a, where
Ṙ is negative. So, for t > a, Σ1 only exists near Σ0 where a′ is positive, but it may extend indefinitely
into the future, depending on the functions a(r) and f(r).

In general, the density calculated from eq (2.7) is negative on one side of a shell crossing
surface, so that, even if the singularity is not truly physical, it is serious enough to make the metric
unusable beyond it. Thus, unless one is interested in studying shell crossings, it is of interest to find
the conditions that will ensure no shell crossings will form in a Tolman model. These are derived in
Chapter 5.

Another kind of singularity in some Tolman models was found by Eardley and Smarr (1978) in
a numerical study, and more recently by Christodoulou (1984) in a mathematical proof of a violation
of cosmic censorship in a particular class of models. Cosmic censorship is the hypothesis, put forward
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by Penrose (1969) which states that, starting from reasonable initial conditions, no singularities which
are visible from arbitrarily large distances may form (global censorship), so that all singularities must
be clothed by the formation of an event horizon. In a later discussion (e.g. Penrose 1979) he extended
the protection of the cosmic censor to all observers, arguing that singularities should not be visible
from anywhere, even inside a horizon (local censorship). This means that timelike singularities are not
allowed. In a collapsing Tolman model, if the crunch singularity occurs first at the origin, then, given
some apparently reasonable conditions, it can be shown that this single point on the crunch surface
emits light rays, and is therefore naked, at least locally and sometimes globally. This singularity is
considered in some detail in chapter 7.



Chapter 3

THE REDSHIFT

In this chapter an approximation is used in order to determine the behaviour of the redshift from the
big bang “seen” by later observers. The restrictions on the redshift behaviour mentioned at the end
of the last chapter will then be applied. This work has already appeared in the Astrophysical Journal
(Hellaby and Lake 1984).

To calculate the redshift, the motions of the emitting particle, the light ray, and the observing
particle are needed. If their tangent vectors are vµe , k

µ, and vµo , respectively, the redshift of the
geometrical optics approximation, z, is given by the standard formula

(1 + z) =
χe
χo

, (3.1)

where χe = vµe kµ and χo = vµo kµ. The tangent vector to the light ray is, of course, geodesic, and
the emitter is also assumed to be geodesic. All that is assumed about the observer is that χo is finite
and non zero, which will be the case for any timelike motion at any regular point in spacetime.

As a preliminary, the results for the standard model will be briefly summarised. The Robertson-
Walker metric is

ds2 = −dt2 + P 2(t)

(

dr2

1 − εr2
+ r2 dΩ2

)

, (3.2)

with scale factor P , obeying the usual Friedmann equations. It has timelike and null geodesic tangent
vectors,

vµe ≡
(

√

γ2

P 2
+ 1 , ±

√
1 − εr2

P 2

√

γ2 − h2
e

r2
, 0,

he
P 2r2

)

(3.3)

and

kµ ≡
(

1

P
, ±

√
1 − εr2

P 2

√

1 − h2
n

r2
, 0,

hn
P 2r2

)

, (3.4)

where [(γ2/P 2) + 1]1/2 is the dimensionless energy per unit mass in the comoving frame, so γ is an
energy parameter, and he and hn are the effective impact parameters for the timelike and null vectors
(the emitter and the light ray) respectively, and all three are constants of the motion. In general, the
orbits of the emitter and of the light ray will not be coplanar (though both are stably planar). In this
case, however, the orbits have been chosen to lie in the plane θ = π/2, since allowing vµe a non zero
θ component does not qualitatively change the behaviour of χe. The contraction of eqs (3.3) and
(3.4) is then

χe =
1

P 2

[

−
√

γ2 + P 2 ±
√

(

1 − h2
n

r2

)(

γ2 − h2
e

r2

)

+
hehn
r2

]

, (3.5)

11
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where the second term in brackets is positive if vµe and kµ are both incoming or both outgoing,
and negative otherwise. For comoving emitters, γ = 0 and he = 0, so χe = −1/P and the redshift
becomes infinite as P → 0. For general geodesic emitters, however, an infinite redshift (χe ∝ −1/P 2)
is not found for all cases. There are also “forward rays” which give a finite redshift. The light ray
which is emitted straight ahead (i.e. vφe /v

r
e = kφ/kr, which implies he = γhn, with the positive sign

in eq (3.5)) has χe → −1/2γ as P → 0, giving a finite z. From the observer’s point of view, this
corresponds to the emitter coming straight at him, and it can be explained by noting that the local
proper speed of any geodesic with γ 6= 0 approaches c as P → 0.

3.1 The geodesic equations

In this and the next section kµ will be used for any geodesic tangent vector, null or timelike. The
quantity kµ is governed by the geodesic equation

kµ∇µk
ν = 0 , (3.6)

and the null or timelike condition
kµkµ = ε , (3.7)

where ε = 0 or −1, respectively. Because the Tolman metric is spherically symmetric, there is no loss
of generality in choosing θ = π/2, so the θ and φ components of eq (3.6) give

kθ = 0 , and kφ =
h

R2
, (3.8)

where h is the constant effective impact parameter. Eq (3.7) and the remaining components of
eq (3.6) are written out explicitly for the Tolman metric below. There are only two independent
equations, though eq (3.11) must be one of them. The indices here refer to particular coordinates,
and there is no summation.

kt∂tk
t + kr∂rk

t +
R′Ṙ′kr2

y2
+
h2Ṙ

R3
= 0 , (3.9)

kr∂rk
r + kt∂tk

r +

(

R′′

R′
− y′

y

)

kr2 +
2Ṙ′ktkr

R′
− h2y2

R′R3
= 0 , (3.10)

kt
2

=
R′2kr2

y2
+
h2

R2
− ε , (3.11)

where1

y2 = 1 + f

Using eq (3.11) to eliminate kt, eq (3.10) becomes

(

R′2kr2

y2
+
h2

R2
− ε

)

(

∂tk
r +

2Ṙ′kr

R′

)2

=

[

kr∂rk
r +

(

R′′

R′
− y′

y

)

kr2 − h2y2

R′R3

]2

, (3.12)

and this can be written
(

R′2kr2

y2
+
h2

R2
− ε

)[

∂t

(

2R′2kr

y2

)]2

=

[

∂r

(

R′2kr2

y2
+
h2

R2

)]2

. (3.13)

1Erratum: In the printed version, the variable f was used instead of y, so that f had a different meaning
from this point till the end of this chaper. This change of meaning was, unfortunately, not pointed out.
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This version is more useful than the equivalent equation in kt, since, in the asymptotic forms that
will be used, kt can be found unambiguously from eq (3.11), given kr, whereas the reverse is not
necessarily true.

Equations (3.6) and (3.7) can be solved only for a few metrics with high symmetry (e.g. static
spherically symmetric metrics). If the spacetime admits a conformal Killing vector, ξµ (such that ξµ
satisfies ∇νξµ = (1/2)∇αξ

αgµν), then some components of the null vector, but not the timelike
vector, are easily found, because the contraction ξµk

µ is constant along the geodesic. In the Tolman
metric, the Killing vectors of spherical symmetry immediately give the θ and φ components of the null
vector. The r and t components can only be found if a conformal Killing vector is assumed to exist
in the r-t plane. For an investigation of the redshift properties of the big bang, this approach is not
general enough. In the next section a series expansion of kµ, valid only in the vicinity of Σ0, is used.
While this does not give a complete solution, it does give the limiting behaviour of kµ, which is all
that is needed. Though a series expansion does not cover all conceivable possibilities, it is certainly
valid for a much wider class of solutions than the assumption of a conformal Killing vector allows.

3.2 Expansions of the tangent vectors near Σ0

It is now assumed that, near Σ0, the t and r components of the tangent vectors can be expanded as
series in powers of R, with coefficients that are functions of r only, in analogy with the expansions
of Ṙ and R′ in eqs (2.15) and (2.16):

kt =
∞
∑

i=1

AiR
αi , kr =

∞
∑

i=1

BiR
βi , (3.14)

where Ai = Ai(r) and Bi = Bi(r) are finite and non zero, and α1 < α2 < · · · , and β1 < β2 < · · · .
Though equations (2.15) and (2.16) are valid for any small R, eqs (3.14) are only required to

be valid in the limit as R → 0. Since the series for Ṙ and R′ contain only half and whole powers of
R, the α’s and β’s are also expected to be multiples of 1/2, as indeed is found. These expansions will
then be applied to the geodesic equation, (3.13), and it is required that the equations be satisfied by
the coefficients of each power of R separately. In fact just the leading terms will be retained, as only
the limiting behaviour near Σ0 is of interest.

Some functions, such as ln(R) and exp(1/R), while diverging at R = 0, cannot be ap-
proximated by any power law in the limit. It is possible, then, that kt and kr behave like these
functions, but it is not very likely when Ṙ and R′ show no such behaviour, and these are the only
other R-dependent functions in eq (3.13).

3.3 Calculation of the tangent vectors

Because only the leading terms in R are being kept, several different cases have to be considered
separately. In particular, the leading term in equation (2.16) is different in the two cases a′ = 0, and
a′ 6= 0; and eq (3.13) is sensitive to whether or not h = 0. Since the approach is essentially the same
for each case, the calculations will be presented for the a′ 6= 0 case only and all the results will be
tabulated in the next section.
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When a′ 6= 0, the leading terms in Ṙ, R′, and kr (eqs (2.15), (2.16), and (3.14)) are

Ṙ =

√

F

R
, R′ = −a′

√

F

R
, and kr = BRβ , (3.15)

where the subscript “1” on B and β has been dropped. Combining these with eq (3.13) leads to

(

a′2FB2

y2
R2β−1 − ε+ h2R−2

)[

∂t

(

2a′2FB

y2
Rβ−1

)]2

=

[

∂r

(

h2R−2 +
a′2FB2

y2
R2β−1

)]2

,

(3.16)
and evaluation of the derivatives, using equations (3.15), gives

(

a′2FB2

y2
R2β−1 − ε + h2R−2

)[

2a′2F 3/2B(β − 1)

y2
Rβ−5/2

]2

=

[

2h2a′F 1/2R−7/2 − a′3F 3/2B(2β − 1)

y2
R2β−5/2

]2

,

which simplifies to

(

a′2FB2

y2
R2β−1 − ε + h2R−2

)[

2a′FB(β − 1)

y2
Rβ

]2

=

[

2h2R−1 − a′2FB(2β − 1)

y2
R2β

]2

.

(3.17)

It may appear that, when β = 1, the leading term given in eq (3.17) for the time derivative
in eq (3.16) does not exist. However, the time derivative in the earlier eq (3.13) is in fact the sum
of two terms,

∂t

(

2R′2kr

y2

)

≡ 2

y2

[

R′2∂r(k
r) + 2R′kr∂t(R

′)
]

both of the same order in R. This form of eq (3.13) also leads to eq (3.17) when the expressions
(3.15) are applied, but β = 1 now indicates the two terms cancel exactly.

Consider first the case when h = 0, that of radial motion. Eq (3.17) simplifies to

(

a′2FB2

y2
R2β−1 − ε

)

(β − 1)2 =

[

a′B(2β − 1)

2
Rβ

]2

. (3.18)

Now if ε = 0, the lowest power of R on the left hand side is 2β − 1, while the lowest on the right is
2β. The requirement that the coefficients of R2β−1 satisfy eq (3.18) yields

a′2FB2(β − 1)2

y2
= 0 . (3.19)

Neither of the functions B(r) or F (r) is zero in general, and a′ = 0 is not yet being considered, so
the only possibility is that β = 1. Next take ε = −1. If β < 1/2, the leading term in (3.18) does
not contain ε, so eq (3.19) is obtained once again, and this cannot be satisfied for β < 1/2. Even
if β ≥ 1/2, the power of R on the right is always higher than that on the left. In these cases the
lowest power is always R0, and the coefficient equations become

(

a′2FB2

y2
+ 1

)(

−1

2

)2

= 0 ,
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when β = 1/2, which cannot be satisfied for any real value of B, or

(β − 1)2 = 0 ,

when β > 1/2, and here again the result is β = 1.

Turn now to the case of non radial motion, h 6= 0. In eq (3.17), the term h2R−2 is always of
lower order than ε, so the asymptotic forms of kr for the timelike and null vectors must be identical.
Set ε = 0. Suppose β < −1/2, then the lowest power in eq (3.17) is 4β − 1 on the left hand side,
and the coefficient equation is again (3.19), which does not allow β < −1/2. If β = −1/2, the
lowest power is R−3 on the left and the coefficient equation,

(

a′2FB2

y2
+ h2

)[

2a′FB(β − 1)

y2

]2

= 0 ,

cannot be satisfied. Lastly, if β > −1/2, then eq (3.17) becomes

(

h2R−2
)

[

2a′FB(β − 1)

y2
Rβ

]2

= 4h4R−2 .

Clearly β = 0 is the only possibility, and this leads to

B = ±hy
2

a′F
. (3.20)

There must of course be a constant of integration in the solution to eq (3.6). In the h = 0 case, the
function B(r) contains this constant and so is not determined, while in the h 6= 0 case, B(r) is fully
determined, so the constant must appear in higher order terms.

In summary, when a′ 6= 0, it has been found that the leading term of the r component of the
geodesic tangent vector is independent of whether ε 0 or −1, and is given by

h = 0 : kr = B(r)R , (3.21)

and

h 6= 0 : kr = ±hy
2

a′F
, (3.22)

for the radial and non radial cases respectively.

The leading terms of kt are easily found by applying eqs (3.14) and (3.15) to (3.11) as follows:

A2R2α =
a′2FB2

y2
R2β−1 +

h2

R2
− ε ; (3.23)

and the results, eqs (3.21) and (3.22), can then be inserted. Since both kr and kφ may be of either
sign, it makes sense to choose only the positive root of eq (3.23), so that kt is future oriented:

h = 0, ε = 0 : kt =

∣

∣

∣

∣

a′B

y

√
FR

∣

∣

∣

∣

; (3.24)

h = 0, ε = −1 : kt = 1 ; (3.25)

h 6= 0 : kt =

∣

∣

∣

∣

h

R

(

1 +
Ry2

2F

)
∣

∣

∣

∣

. (3.26)

The two terms given in eq (3.26) are required because, when the redshift is calculated for h 6= 0, the
leading terms exactly cancel. Fortunately, this does not require a higher order calculation of kr.

The argument for the case when a′ = 0 (whether at a point or for all r) is similar, except that
the expression for R′ in eq (3.15) is replaced by R′ = F ′R/3F .
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3.4 Shell crossing surfaces

The calculation of the tangent vectors near Σ1, where R′ = 0, will only be outlined, as the method
is quite similar to that given above. It is assumed that eq (2.25), which holds for R′ = 0 identically,
is also the dominant relationship between Ṙ’ and R′′ near Σ1, and it is further assumed that, near
Σ1, the geodesic tangent vectors can be written

kt =

∞
∑

i=1

CiR
′γi , kr =

∞
∑

i=1

DiR
′δi , (3.27)

with the same conditions as for (3.14). Only the case when R 6= 0 is considered, since the case with
both R′ = 0 and R = 0 occurs when a′ = 0 and R = 0, and has already been dealt with. Thus Ṙ,
Ṙ′, and R′′ are also finite. So now eq (3.13) becomes, to lowest order in R′,

(

D2R′2δ+2

y2
+
h2

R2
− ε

)[

∂t

(

2DR′δ+2

y2

)]2

=

[

∂r

(

D2R′2δ+2

y2
+
h2

R2

)]2

, (3.28)

and evaluating the derivatives gives

(

D2

y2
R′2δ+2

+
h2

R2
− ε

)

[

2D(δ + 2)Ṙ′

y2
R′δ+1

]2

=

[

D2

y2

(

2D′

D
− 2y′

F

)

R′2δ+2 − D2(2δ + 2)b′Ṙ′

y2
R′2δ+1 − 2h2

R3
R′

]2

. (3.29)

To solve the lowest order equation, each of the cases δ < −1, δ = −1, −1 < δ < 0, δ = 0, and
δ > 0 is tried separately. The only viable solution is δ = −1. (The case δ = 0 leads to the condition

D =

√

h2

b′2R2
− ε

b′2
±
√

h2

b′2R2
− ε

b′2
+

h2y2

2b′Ṙ′R3
,

which is not acceptable since the second root becomes imaginary when b′/Ṙ′ is large and negative.)
Thus for any h,

kr =
D

R′
(3.30)

and, from eq (3.11),

kt =

√

D2

y2
+
h2

R2
− ε . (3.31)

3.5 General results for the redshift

In this section, vµe will be used for the timelike tangent vectors of the emitters once again, and kµ

will be kept for the null tangent vectors (light rays). The subscript e indicates parameters belonging
to vµe , and n indicates those belonging to kµ. In the calculations above it was assumed that both
the emitter and the light ray lie in the plane θ = π/2. In general, however, there will be an angle ψ
between the planes of the two orbits. So the null orbit is taken to lie in the θ = π/2 plane and the
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emitter’s tangent vector is given a rotation, remembering that the emitter must be instantaneously
at θ = π/2 to emit a light ray in that plane. Thus (3.8) is replaced by

vθe =
he sinψ

R2
, vφe =

he cosψ

R2
, (3.32)

the other components remaining unchanged. The modulus sign will be dropped because vµe will be
contracted with kµ, and it is possible to specify both he and hn to be positive, choosing cosψ to
be negative when the emitter and the light ray are revolving in opposite directions. The limiting
behaviour of the null and timelike geodesic tangent vectors is given in table 1. For the sake of brevity

ω =
F ′

3Fy
(3.33)

has been used.

TABLE 1. Limiting behaviour of the null and time-
like vectors near Σ0

Case Leading terms in kµ Leading terms in vµe

a′ 6= 0,
h 6= 0

kt = hn

R

(

1 + Ry2

2F

)

vte = he

R

(

1 + Ry2

2F

)

kr = ±hny2

a′F
vre = ±hey2

a′F

kφ = hn

R2 vφe = he cosψ
R2

a′ 6= 0,
h = 0

kt =
∣

∣

∣

a′Bn

y

√
FR

∣

∣

∣
vte = 1

kr = BnR vre = BeR

a′ = 0,
h 6= 0

kt = 1
R

√

ω2B2
n + h2

n vte = 1
R

√

ω2B2
e + h2

e

kr = Bn

R2 vre = Be

R2

kφ = hn

R2 vφe = ±he cosψ
R2

a′ = 0,
h = 0

kt = 1
R
|ωBn| vte = 1

R
|ωBe|

kr = Bn

R2 vre = Be

R2

Note that the lowest order solutions for a′ = 0 become exact for the Robertson-walker case.
(For the a′ = 0, h 6= 0 case, there appears to be a second solution with kr ∝ R−3/2 and A2 = h2.
This solution is rejected because, although it also appears in the series analysis of the dust Robertson-
Walker case to lowest order, it does not satisfy the higher order coefficient equations.)

The last step in finding the redshift is the calculation of the contraction χe (= gµνk
µvνe ).

Since χo in equation (3.1) is assumed finite, the redshift, z, obeys

(1 + z) ∝ χe . (3.34)
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The results are summarised in table 2 for comoving emitters [vµe ≡ (1, 0, 0, 0)], and in table 3 for
general geodesic emitters. The fact that χe becomes zero (or infinite) as R → 0 does not mean that
the emitted frequency is infinite (or zero), but that the observed frequency is zero (or infinite). Both
χe and χo are expected to be negative.

TABLE 2. Limiting behaviour of χe for comoving
emitters, and the resulting redshift from Σ0

Case Leading terms in χe Behaviour of (1 + z)

a′ 6= 0,
hn = 0

−
∣

∣

∣

a′Bn

y

√
FR
∣

∣

∣
→ 0

a′ 6= 0,
hn 6= 0

−hn

R
→ ∞

a′ = 0,
hn = 0

− |ωBn|
R

→ ∞

a′ = 0,
hn 6= 0

− 1
R

√

ω2B2
n + h2

n → ∞

It is clear from table 2 that, with comoving emitters, the models with a′ = 0 everywhere have
well behaved (i.e. infinite) redshifts, while those with a′ 6= 0 in general have divergent energy fluxes
in the radial direction. The situation is basically the same when the emitting particles are geodesic,
except that finite redshifts occur along those rays emitted in the direction of the particle’s motion
(the forward direction), as they do in the Robertson-walker case (beginning of this chapter). The
cases which include forward rays are noted in table 3, and the last term in each of the expressions for
χe in these cases was obtained by combining equations (3.7) and (3.1) with the known behaviour of
kr.

Such an infinite blueshift along radial rays has been calculated for a particular a(r) by Szekeres
(1980), and for the self similar Tolman model by Dyer (1979). It should be emphasised that, unlike
the the case of the past Schwarzschild singularity, this is not a forward ray effect. It occurs along
radial rays from radial emitters only, and even occurs for comoving emitters, which do not approach
light speed near Σ0.

Lastly, the redshift near Σ1 can be given for all cases by a single expression:

χe = −
√

(

D2
n

y2
+
h2
n

R2

)(

D2
e

y2
+
h2
e

R2
+ 1

)

+
DnDe

y2
+
hnhe cosψ

R2
, (3.35)

and this is always finite. So, although ρ and K both diverge on Σ1, its redshift behaviour is quite
regular.

3.6 Discussion

The principal result of this investigation is as follows. The requirement of no infinite blueshift from
the big bang is only satisfied if the bang time, a(r), is constant everywhere, i.e. if the bang is
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simultaneous. The stronger requirement, of only infinite redshifts, does not result in a stronger
condition than a′ = 0 if one considers only comoving emitters. The finite redshifts that do appear
along forward rays from non comoving emitters appear also in the Robertson-Walker case. Since they
only occur along a single direction from each emitting particle, they do not yield a finite amount of
energy to be received by later observers, so cosmic censorship is not violated in this case either, and
a′ = 0 will still suffice. Therefore the stronger redshift requirement is unnecessary.

TABLE 3. Limiting behaviour of χe for geodesic emitters, and the resulting redshift from Σ0

Case Leading terms in χe Behaviour of (1 + z)

a′ 6= 0,
he = 0,
hn = 0

−
∣

∣

∣

a′Bn

y

√
FR
∣

∣

∣
→ 0

a′ 6= 0,
he = 0,
hn 6= 0

−hn

R
→ ∞

a′ 6= 0,
he 6= 0,
hn = 0

−he
∣

∣

∣

a′Bn

y

√

F
R

∣

∣

∣
→ ∞

a′ 6= 0,
he 6= 0,
hn 6= 0

−hehn

R2 (1 − cosψ) − hehny2

R
(1 ± 1) − hn

2he
→ ∞∗

a′ = 0,
he = 0,
hn = 0

− ω2

R2 (|BnBe| − BnBe) − ω2
∣

∣

∣

Bn

Be

∣

∣

∣
→ ∞∗

a′ = 0,
he = 0,
hn 6= 0

− 1
R2

(

ω2Be

√

B2
n + h2

n

ω2 − ω2BeBn

)

→ ∞

a′ = 0,
he 6= 0,
hn = 0

− 1
R2

(

ω2Bn

√

B2
e + h2

e

ω2 − ω2BnBe

)

→ ∞

a′ = 0,
he 6= 0,
hn 6= 0

− 1
R2

[

√

(ω2B2
e + h2

e) (ω2B2
n + h2

n) − ω2BnBe − hehn cosψ
]

− hn

2he
→ ∞∗

∗ Except along the forward rays, see the text.

This result, that a′ = 0, leads to three further conclusions: (a) It is this very condition which
eliminates decaying mode fluctuations in the Tolman metric (which cause divergences in the density
contrast and the curvature contrast on Σ0), leaving only the growing modes (Silk 1977). (b) Fur-
thermore, in the classification scheme of the velocity dominated singularities of irrotational comoving
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dust metrics given by Eardley, Liang, and Sachs (1972), Σ0 is a [2/3, 2/3, 2/3], or Friedmann-like,
singularity if a′ = 0, and it is a [2/3, 2/3,−1/3], or Heckmann-Schucking-like, singularity other-
wise. (Σ1 is a [0, 0, 1] singularity.) The three numbers are the powers of (t − a) that dominate
the behaviour of the metric components along three perpendicular spacelike directions, the third one
being the radial direction in this case. Clearly the condition a = const is a significant one. (c) It
has been shown by Bonnor (1974) that all parabolic Tolman models approach homogeneity at late
times, and that a class of hyperbolic models also become asymptotically homogeneous. The only
models which satisfy both a′ = 0 everywhere, and the condition of asymptotic homogeneity are the
flat and open dust Robertson-Walker models. For the elliptic model, the nearest equivalent of the
asymptotic homogeneity condition is that the crunch time be simultaneous. Then once again only the
Robertson-Walker model satisfies both conditions. However, the homogeneity condition is concerned
with the observed homogeneity of the universe and is therefore only applicable on the very large scale,
whereas a′ = 0 applies on all scales. Since there are only growing modes in a′ = 0 models, it is
concluded that, in the context of the Tolman models, the universe is homogeneous at all times on
very large scales, while the bang time is constant on all scales (above the Planck length). Thus the
Robertson-Walker model is the only good large scale model.



Chapter 4

SURFACE LAYERS AND REGULAR

EXTREMA

Although none of the material presented here is original, it seems appropriate to review it before
continuing. A surface layer occurs if there is a discontinuity in the physical properties of a spacetime
on some three dimensional hypersurface, Σ, but the metric components are not badly behaved there.
In fact, part of one spacetime may be joined to another with a surface layer at the junction between
them (Israel 1966). Neither the bang nor shell crossing surfaces, Σ0 and Σ1, qualify as the location of
a surface layer, as the metric is badly behaved at both of them, however another difference between
these two singular surfaces may be seen by examining the surface stresses. The former has a divergent
surface stress, while the latter does not.

4.1 Surface layers

The procedure for calculating a surface layer in spherical symmetry was detailed recently by Lake
(1984b). Consider a timelike or spacelike spherically symmetric hypersurface, Σ, separating two
manifolds, V + and V −, where V + has a Tolman metric, (2.1), and V − has some spherically symmetric
metric, in which r is everywhere a spacelike coordinate. The intrinsic metric of Σ is

ds2 = −εdτ 2 +R2(τ)dΩ2 , (4.1)

where ε = +1 for timelike surfaces, and −1 for spacelike surfaces. Suppose Σ follows the path

r = r(τ) , t = t(τ) ,
∗
t
2

=
R′2

1 + f

∗
r
2

+ε , (4.2)

where
∗≡ ∂/∂τ . The unit normal to the surface is

nα ≡ κ
R′

√
1 + f

(

− ∗
r,

∗
t, 0, 0

)

, nαn
α = ε (4.3)

where κ = ±1, chosen so that nα always points towards r increasing i.e. nr > 0. (If nr = 0, then
nt > 0 can be chosen.) Thus κ = +1 where R′ > 0, and −1 where R′ < 0. The extrinsic curvature,
or second fundamental form of the surface is defined by

Kij = nα;βei
αej

β , (4.4)

21
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where ei
α are the base vectors of the surface expressed in the coordinates of the enveloping manifold.

Specifically,

eτ
t =

∗
t , eτ

r =
∗
r , eθ

θ = 1 , eφ
φ = 1 . (4.5)

Equations (4.3), (4.4) and (4.5) give the extrinsic curvature as

Kθθ = κ

[

−R
(

CṘ
∗
r +

1

C
R′

∗
t

)]

, (4.6)

Kφφ = Kθθ sin2 θ , (4.7)

Kττ = κ

[

2C
(

∗∗
r

∗
t −

∗∗
t

∗
r
)

+

(

2Ċ
∗
t
2 ∗
r +C ′

∗
t
∗
r
2
−C2Ċ

∗
r
3
)]

, (4.8)

where C = R′/
√

(1 + f) . Now if there is a jump in the values of Kij across the surface Σ such
that

γij = K+
ij −K−

ij 6= 0 , (4.9)

then Σ is a surface layer whose surface stress energy tensor is defined by

8πSij = ε (γgij − γij) , (4.10)

where gij is the intrinsic metric tensor of Σ, given by eq (4.1), and γ = gijγij (Israel 1966). The
surface density, σ, is defined by the eigenvalue equation

Siju
i = −σuj ,

and yields the surface mass, M , of the shell

M = 4πR2σ = −εγθθ . (4.11)

If the surface is ideal, i.e.
Sij = ε(σ + P )uiuj + Pgij ,

then the surface tension, −P , is given by

8πR2(−P ) = R2γττ − εγθθ . (4.12)

If all components of γij are zero, then there is no surface stress, and Σ is called a boundary surface,
since the discontinuity across Σ is of higher order.

It is clear from eqs (4.6) to (4.8) that Kij is finite even on a shell crossing surface (R′ =

C
√

(1 + f) = 0), so that the surface mass, the surface density and the surface tension are finite for
any reasonable interior, V −, as they are when Σ is not a shell crossing (Lake 1984a). However, since
the density diverges as R′ = 0 is approached, shell crossings are not merely surface layers, and this
construction cannot make them well behaved.

For the bang or crunch surfaces Σ is spacelike, ε = −1, and follows t = a(r), so that, in the
limit as R → 0,

∗
r =

(

C2 − a′
2
)−1/2

(4.13)

∗
t = a′

∗
r (4.14)

and, using eqs (2.26), it follows that

Kθθ = κ

[

−R
(

C2 − a′2
)1/2

(

CṘ +
R′a′

C

)

]

, (4.15)



CHAPTER 4. SURFACE LAYERS AND REGULAR EXTREMA 23

and

Kττ = κ
[

−2Ca′′ + 2Ċa′
2
+ C ′a′ − C2Ċ

] 1
(

C2 − a′2
)3/2

. (4.16)

These can be evaluated using the approximate forms for R → 0, of eqs (2.15) and (2.16) and their
radial derivatives. In all cases (4.15) becomes

Kθθ = −κ
√
FR , (4.17)

whereas (4.16), for a′ 6= 0, becomes

Kττ =
κ

2

√

F

R3
, (4.18)

while for a′ = 0, a′′ 6= 0, it is

Kττ = −κ18F 2(1 + f)a′′

R2F ′2
, (4.19)

and for a′ = 0, a′′ = 0, it is

Kττ = −κ
√

F

R3
. (4.20)

In all cases, though, Kθθ goes to zero on Σ0, and Kττ diverges. If it is possible to match an interior
to Σ0 at all, it is obvious that the only way that a divergent surface stress could be avoided is for V −

to have a similar singularity here. Otherwise it is clear from (4.11) and (4.12) that all the surface
stresses diverge on Σ0.

Rather than dealing with surface stresses in the above, which involve the introduction of
another metric and which are therefore not manifestly properties of the metric being considered, it
could merely be pointed out that the second fundamental form diverges at one surface, and not at
the other.

4.2 Regular extrema

A regular extremum (or point of inflection) in R along constant time slices may occur without causing
a shell crossing, provided ρ does not diverge, as was made clear by Zel’dovich and Grishchuk (1984).
By eq (2.7), this implies

F ′ = 0 (4.21)

wherever R′ = 0, and also that the surface R′ = 0 remains at fixed r, say rm. Consider eq (2.13) at
rm. Since the coefficients of a′ and f ′ are different functions of time, then

a′ = 0 (4.22)

and
f ′ = 0 (4.23)

must also obtain at rm. Thus the condition for a regular extremum in R(r, t) is that equations (4.21),
(4.22), and (4.23) all hold at the same r. However, the extrinsic curvature shows a jump in its θθ
component here. For a timelike surface following r = const, the proper time derivatives are

∗
r= 0 ,

∗∗
r= 0 ,

∗
t= 1 ,

∗∗
t= 0 , (4.24)

so that the extrinsic curvature becomes

Kττ = 0 , Kθθ = −κR
√

1 + f . (4.25)
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If the surface is a regular maximum, then R′ changes sign across it, and so κ changes sign. This
means there is at this radius a surface layer with mass

M = 2R
√

1 + f , (4.26)

and whose equation of state is
σ = 2P (4.27)

(Bonnor 1984). Only if f = −1 is there no surface layer. Despite this, F , ρ, and gαβ are all
continuous and finite through the layer, so the metric is well behaved in every other way. Thus this
layer is quite acceptable and is no different from the surface layers that have been used to study the
development of voids in the galaxy distribution recently (e.g. Lake and Pim 1985). For a regular
minimum the surface layer has a negative mass, while an inflection point does not have a surface
layer. In this last case, a coordinate transformation can be found which removes the inflection point
in at least one of the arbitrary functions, and therefore in R.



Chapter 5

THE CONDITIONS FOR NO SHELL

CROSSINGS

In this chapter, the necessary and sufficient conditions which ensure that no shell crossings will occur
in Tolman models will be derived. The argument will consider only the case t ≥ a. The argument and
results for t ≤ a are easily found by replacing t− a with a− t, and a′ with −a′. Shell crossings were
defined in chapter 2 to be surfaces on which R′ = 0, and where the density, ρ, diverges. If R′ = 0
but the density is finite, then there is no shell crossing, just a regular extremum. The conditions for
each type of time evolution will be considered separately.

5.1 Elliptic regions, f < 0

The method used here is somewhat different from the one used previously (Hellaby and Lake 1985),
because a fault in that version was pointed out recently by Bonnor, but the results and conclusions
remain unchanged. The radial derivative of R may be written as

R′

R
=
F ′

F
(1 − φ1) +

f ′

f

(

3

2
φ1 − 1

)

− 2(−f)3/2a′

F
φ2 (5.1)

where

φ1(η) =
sin η(η − sin η)

(1 − cos η)2
, (5.2)

and

φ2(η) =
sin

(1 − cos η)2
. (5.3)

The functions φ1 and φ2 are shown in fig 1 (page 31). For R′ > 0, it is clear from eq (2.7) that

F ′ ≥ 0 (5.4)

is required for positive density. Consider the evolution of eq (5.1) with time, i.e. as η goes from 0 to
2π. At early times (η → 0), φ2 dominates, going to +∞, so

a′ ≤ 0 (5.5)

is required for R′ > 0. At late times (η → 2π), φ1 → 2πφ2, meaning eq (5.1) becomes

R′

R
=

[

−2π

(

F ′

F
− 3f ′

2f

)

− 2(−f)3/2a′

F

]

φ2 , (5.6)

25
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with φ2 going to −∞, so that the third condition for R′ > 0 is found to be

a′ ≥ −πF
(−f)3/2

(

F ′

F
− 3f ′

2f

)

. (5.7)

Of course, conditions (5.4), (5.5), and (5.7) also imply

F ′

F
≥ 3f ′

2f
. (5.8)

To demonstrate the sufficiency of these three conditions, the functions α, β, and φ3 are defined as
follows:

(

F ′

F
− f ′

f

)

= α(r)

(

F ′

F
− 3f ′

2f

)

, (5.9)

(

F ′

F
− 3f ′

2f

)

= −β(r)
2(−f)3/2a′

F
, (5.10)

φ3 =
−φ2

α− φ1
. (5.11)

Examples of the function φ3 are plotted in fig 1 (page 31) for α = 2/3, and in fig 2 (page 31)
for α = 0.1, 0, and −0.3. For all α < 2/3, φ3 has no upper limit, whereas for α ≥ 2/3, φ3 never
exceeds 1/2π (at η = 2π). With these, eq (5.1) takes the form

R′

R
=

−2(−f)3/2a′

F
(β − φ3)(α− φ1) (5.12)

and conditions (5.4) and (5.7) become

α ≥ 2

3
, and β ≥ 1

2π
, (5.13)

while (5.5) remains the same. It is then obvious from (5.5), (5.13) and the figures that R′ is always
positive in eq (5.12). The converse of these conditions must hold for R′ < 0. If both F ′ = 0 and
f ′ = 0, then a′ = 0 follows from (5.5) and (5.7), so R′ = 0. Conditions (5.4) and (5.5) have an
obvious meaning, and (5.7) ensures the crunch time increases with r, wherever R′ is positive. Thus
(5.5) and (5.7) together ensure that q ′ > 0, and therefore p′ > 0, i.e. the time from bang to crunch
and the radius of maximum expansion, defined in eq (2.12), both increase with R.

5.2 Hyperbolic regions, f > 0

It is a bit easier to derive the conditions for no shell crossings in this case. From eq (2.3), the radial
derivative of R is given by

R′

R
=
F ′

F
(1 − φ4) +

f ′

f

(

3

2
φ4 − 1

)

− 2f 3/2a′

F
φ5 , (5.14)

where

φ4 =
sinh η(sinh η − η)

(cosh η − 1)2
, (5.15)
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and

φ5 =
sinh η

(cosh η − 1)2
. (5.16)

The functions φ4(η) and φ5(η) are shown in fig 3 (page 32) . Again consider the evolution of eq
(5.1) as η goes from 0 to ∞. At early times (small η), φ5 dominates, going to +∞, so

a′ ≤ 0 (5.17)

is once more required for R′ > 0. At late times φ5 → 0, and (1−φ4) → 0, so (3φ4/2−1) dominates,
requiring

f ′ ≥ 0 . (5.18)

As before the positivity of the density implies

F ′ ≥ 0 . (5.19)

Since 2/3 ≤ φ4 ≤ 1, it is obvious that conditions (5.17), (5.18), and (5.19) are sufficient as well as
necessary. The converse of these conditions holds for R′ < 0.

An interesting feature of the conditions for elliptic regions is that, unlike the hyperbolic case,
f ′ ≤ 0 is not required for R′ > 0. It was shown in chapter 2 that eq (2.4) gives the early time
behaviour of all models and eq (2.6) gives the late time behaviour of hyperbolic models. Thus in
hyperbolic models, f is not important at early times, but at late times the shells of matter sort
themselves in order of increasing f , so, where f is not an increasing function of r, a shell crossing
will sooner or later develop. Of course the effect of the function f increases with time in elliptic
models also, but, since the lifetime of the models is finite (except where f → 0), it is possible for
f ′ to be positive. Indeed, if f is negative and f ′ positive, condition (5.7) is easier to satisfy, so that
the transition zone from an elliptic region towards a hyperbolic or parabolic region is not hard to
construct.

5.3 Parabolic regions, f = 0

The boundary between an elliptic and a hyperbolic region deserves special consideration since the
parameter η is not valid there. Eq (2.14) for the radial derivative of R is

R′

R
=

F ′

3F
− 2a′

3(t− a)
+

3f ′

10

[

2(t− a)2

3F 2

]1/3

+O(f) , (5.20)

and, since the coefficients of F ′, f ′, and a′ are all different functions of t, it is evident that the
conditions for no shell crossings are the same in this case as for hyperbolic regions. For an extended
parabolic region f ′ = 0, but otherwise the same conditions obtain here also.

Incidentally, it can now be verified that the density remains finite at a regular maximum, rm,
provided there are no shell crossings in the vicinity. Eq (2.13), with conditions (5.17) - (5.19), or
(5.4), (5.5), and (5.7), shows that R′ cannot approach zero faster than F ′ does, so eq (2.7) must
remain finite.

5.4 The origin

There are a few restrictions on the arbitrary functions near the origin that are implied by the require-
ment of no shell crossings.
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It was shown in chapter 2 that the requirement of a regular origin, where the density is finite
and the type of time evolution does not change, implies eq (2.18), given (2.17). If s > 2/3, then
the behaviour becomes parabolic at the origin. This is quite acceptable in a hyperbolic model, but
in an elliptic model it means that the time from bang to crunch must be decreasing as R increases,
since there is no crunch surface in the parabolic case. This is not allowed if shell crossings are to be
avoided.

On the other hand, s < 2/3 causes no problems in elliptic models, as there is nothing wrong
with the time from bang to crunch going to zero at the origin, and the explosive evolution that results
in hyperbolic models does not cause shell crossings either, a result which is perhaps surprising at first.

Turning now to the shape of the bang surface near the origin, it is clear from conditions (5.5)
and (5.17), that a′ → +∞ is not possible at all at the origin, though a′ → −∞ is acceptable. For
the same reason, a→ −∞ at the origin is not allowed. In hyperbolic and parabolic models, a→ +∞
is possible, but in elliptic models, since the time of the crunch increases outwards, a → +∞ implies
that the time from bang to crunch is infinite at finite F , meaning f is zero. Since f is necessarily
zero at the origin, the model is completely parabolic. Clearly, a must be finite at the origin in elliptic
models.

5.5 Other formulations

When the Tolman metric is being used to make realistic models of density fluctuations, it often makes
more sense to give the arbitrary functions in terms of the variation of physical properties along some
initial spacelike surface at some time t0, where t0 > a everywhere in the region of interest. Bondi
(1947) chooses the functions R(r, t0(r)), Ṙ(r, t0(r)), and either M(r) or ρ(r, t0(r)), while Tolman
(1934) sets t0 constant, and specifies ω, ω̇, and ω̈, where eω = R2.

It turns out that the conditions for no shell crossings in terms of these quantities are not at
all simple. The most important reason is that the quantity Ṙ′ is normally negative near the bang,
becoming positive at later times. The procedure to check whether the conditions are satisfied for the
choice of R0(r), Ṙ0(r), and M(r) along a surface of constant t0 is as follows.

Firstly, because t is constant along the surface the partial radial derivative is also the total
derivative along the surface, which affords a considerable simplification. Thus, it can easily be checked
that M ′ ≥ 0 everywhere that R′

0 > 0. Next, f(r) is found from

f = Ṙ2
0 −

F

R0

(5.21)

and f ′ can be compared with R′
0. Thirdly, a(r) is found from

a = t0 −
F

2f 3/2

[

2fR

F

√

1 +
F

fR
− cosh−1

(

2fR

F
+ 1

)

]

, (5.22)

and then differentiated. Since the derivative could be quite long, and since it contains the function
cosh−1, it would be very tedious to check that a′ ≥ 0 everywhere that R′ > 0.

In fact, the case given above is one of the easier ones. If ρ is given at t0 instead of M , then an
integration is needed to get M , and if the initial surface, t0(r), is not constant, then there are extra
terms to convert the derivative from total to partial. Therefore, if it is important that the model
contain no shell crossings, it may well be easier to play with the functions F , f , and a, in order to
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obtain the desired parameters at t0. In practice, a shell crossing to the past of the initial surface may
not be of concern. If so, the easiest way around the problem, is to choose a parabolic or hyperbolic
model and specify Ṙ′ > 0 everywhere on the initial surface, as this will not eliminate many viable
futures. For the elliptic model, it is not so simple in general, but there is one nice possibility, which
is to specify R and M along the surface of maximum expansion, Ṙ = 0. The function q (eq (2.12))
is found from

q(r) =
R3(r, t0(r))

2M(r)
, (5.23)

and the bang and crunch times are

a(r) = t0(r) −
π

2
q(r) , and ã(r) = t0(r) +

π

2
q(r) (5.24)

so it is straightforward to compare M ′, a′, and ã′ with R′. If shell crossings at early times do not
matter, then the calculation of a′ may be omitted. The restriction of choosing the parameters at the
point of maximum expansion need not always be a large problem. For example, if the model is to
start at time t1 = const, with a central region that is expanding more slowly than the surrounding
background, then (t0 − t1) should be chosen to be smaller in the central region. However, t1 should
not be too early, otherwise the central region may be expanding faster than the background.

5.6 Discussion

It is quite common in the literature (e.g. Hellaby and Lake 1984; Landau and Lifshitz 1975, footnote
p 317) to see the conditions for no shell crossings given as R′ > 0, F ′ > 0. These are actually too
restrictive, and they exclude the regular maxima that must occur in closed models with well behaved
coordinate systems. (The usual Robertson-Walker coordinates of eq (3.2) are defective at r = 1 in
closed models.) As far as I know, Zel’dovich and Grishchuk are the first to have explicitly pointed
out that, in a closed model, both R′ and F ′ must be negative near one of the origins.

The conditions derived here, and summarised in table 4, are not particularly restrictive; there is
just one upper or lower bound on the gradient of each arbitrary function at each point. The examples
of Tolman models given in the next chapter are all free of shell crossings.

The considerations of this chapter were motivated by a recent paper by Zel’dovich and Gr-
ishchuk (1984). However, the conclusions arrived at here are different.

First, the initial condition they have chosen at time t0, which results in their equation (5), is
perhaps too restrictive. As they say, wherever R′(r, t0) = 0 (rm, say), this condition requires

f(rm) = −1 , (5.25)

but this will only be true if surface layers are disallowed, which they do not say. Since the function
f(r) must obey eq (2.11), eq (5.21) also implies

f ′(rm) = 0 . (5.26)

Zel’dovich and Grishchuk naturally specify that the density is everywhere finite at t0, so eq (2.7)
further implies

F ′(rm) = 0 . (5.27)

Then, by putting eqs (5.22) and (5.23) in (2.13), it follows that

a′(rm) = 0 (5.28)
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is also required at rm. While eqs (5.22) to (5.24) are all necessary for a regular extremum in R,
(5.21) is not. Eqs (5.22) to (5.24) also ensure that R′(rm, t) = 0 at all times, and (5.21) ensures
that recollapse occurs at rm, which is the result they obtain in their paper. Specific counter examples
to their hypothesis will be given in chapter 6.

To obtain a model with neither surface layers nor shell crossings, however, condition (5.21)
is required, so that the surface mass is zero at rm. It then follows from table 1 that models which
include a hyperbolic or parabolic section cannot be closed. This can be seen by noting that, at the
boundary between an elliptic and a hyperbolic region, where f = 0, the areal radius, R, must be
increasing in the direction of the hyperbolic region. Thus, there may be an origin on the elliptic side,
but no maximum in R is allowed on the hyperbolic side, so there can be no second origin. The same
is true for the boundary between an elliptic and a parabolic region.

TABLE 4. The conditions for no shell crossings.

These are the necessary and sufficient conditions for the Tolman models
which have t ≥ a. The conditions for the case t ≤ a are obtained by
replacing a′ with −a′ below.

f ≥ 0 f < 0

R′ > 0

a′ ≤ 0 a′ ≤ 0

f ′ ≤ 0 a′ ≥ −πF
(−f)3/2

(

F ′

F
− 3f ′

2f

)

F ′ ≥ 0 F ′ ≥ 0

but no more than two but not both F ′ = 0

equalities at once and f ′ = 0 at once

R′ = 0

a′ = 0 a′ = 0

f ′ = 0 f ′ = 0

F ′ = 0 F ′ = 0

R′ < 0

a′ ≥ 0 a′ ≥ 0

f ′ ≤ 0 a′ ≤ −πF
(−f)3/2

(

F ′

F
− 3f ′

2f

)

F ′ ≤ 0 F ′ ≤ 0

but no more than two but not both F ′ = 0

equalities at once and f ′ = 0 at once
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5.7 Figures

Fig 1. The behaviour of the functions φ1(η), φ2(η), and φ3(η, α = 2/3), defined by eqs (5.2), (5.3),
and (5.11). For all values of α ≥ 2/3, φ3 is similar to the curve shown, and, in particular, the upper
limit is always 1/2π.

Fig. 1

Fig 2. The function φ3(η, α) has three possible forms other than the one shown in Fig 1, but
none of them have a finite upper limit. The sample curves shown here are labelled by their values of
α.

Fig. 2
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Fig 3. The behaviour of the functions φ4(η) and φ5(η), defined in eqs (5.15) and (5.16).

Fig. 3



Chapter 6

SOME EXAMPLES

In this chapter a few specific Tolman models will be presented and discussed. Each one illustrates a
particular point.

6.1 A closed hyperbolic model

For the first example, the three arbitrary Tolman functions are chosen to be

F = F0γ
m , (6.1a)

f = f0γ
n , (6.1b)

a = −a0γ
i , (6.1c)

where γ = γ(r) is a positive function of r that goes to zero at r = 0, and m, n, and i are all positive,
as are F0, f0, and a0. Such models are hyperbolic, with no shell crossings, but regularity at the origin
would require 2m = 3n. If, for example,

γ(r) = 3 sin
(πr

λ

)

+ 2 sin

(

3πr

λ

)

, (6.2)

is specified, then for fixed t, R(r, t) has two maxima and one minimum, and it has a second origin
at r = λ, where R(λ, t) = 0. In other words, the model is closed, though everywhere hyperbolic. As
shown in chapter 4, there must be surface layers at these extrema.

6.2 An open elliptic model

The choice of arbitrary functions for the second example is

F =
F0r

m

1 + brn
, (6.3a)

f =
−f0r

n

1 + brn
, (6.3b)

a = −a0r
i
√

1 + brn , (6.3c)

(6.3d)

33
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where the constants m, n, i, F0, f0, and a0 are all positive, and the conditions

a0 ≤
πF0

f
3/2
0

and 2i = 2m− 3n (6.4)

ensure no shell crossings will form. Also 2m = 3n would give a regular origin. In this case there
is only one origin, and the constant t, θ = π/2 sections become conical at large r, so the space is
elliptic, yet open. The original version of this example was defective, since it was not actually free of
shell crossings. This was pointed out by Bonnor, who also gave a valid example (Bonnor 1985).

6.3 A closed hybrid model

The three functions are next defined by

F = F0r
3(λ− r)3 , (6.5a)

f = f0(br
3 − r2)[b(λ− r)3 − (λ− r)2] , (6.5b)

a = a0(r
2 − λr) , (6.5c)

where a0, F0, f0, and λ are all greater than zero, and b > 2/λ. The condition f ≥ −1 puts an upper
limit on f0 in terms of b and λ, which is very long but not very instructive. It is clear that equations
(6.5) cause no shell crossings in the hyperbolic region, and in the elliptic regions it is near the origins
that the conditions for no shell crossings are hardest to satisfy. For small r, condition (5.7) gives

(bλ− 1)5/2

b2
≤ 3πF0

2a0f
3/2
0

. (6.6)

The model then has no shell crossings and consists of a hyperbolic region between two elliptic regions,
each of which contains a regular origin (at r = 0, and r = λ). As above, the maximum at r = λ/2
has a surface layer. There is no hyperbolic region if b ≤ 2/λ. The evolution of the function R(r, t) is
shown in fig 4 (page 35) for a0 = 5, f0 = 1, F0 = 1, b = 3, and λ = 1. This example demonstrates
that a closed Tolman model, containing both hyperbolic and elliptic regions, need not recollapse.
Since no shell crossings form, the hyperbolic region remains and expands indefinitely. This violates
Zel’dovich and Grishchuk’s hypothesis that a closed hybrid model inevitably develops shell crossings
which lead to the eventual recollapse of the model.

6.4 A model with no origin

The last choice of arbitrary functions is

f = −1 +B2 exp

(

2r

r0

)

, (6.7a)

F = A3

(

1 + C exp

[

r

r0

])3

, (6.7b)

a = 0 , (6.7c)

where A, B, C, and r0 are all positive. In this model the whole space emerges from the bang
simultaneously, and without an origin. As r → −∞, the constant t, θ = π/2 sections become
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cylinders, while in the other direction, the space has a fairly normal structure. At r = −r0 ln(B) the
model changes from elliptic to hyperbolic evolution, so at late times there is a singular origin whose
mass increases asymptotically to the limiting value of A3(1 + C/B)3, while the rest of the space
continues to expand indefinitely. There are no shell crossings.

6.5 Figure

Fig 4. The evolution of the function R(r, t) for the metric functions given in section 6(c), with
a0 = 5, f0 = 1, F0 = 1, b = 3, and λ = 1. Successive curves, receding into the page, are the
functions R(r) at successively later times. Before the bang, and after the crunch, R has been set
to zero. The divisions between the central hyperbolic region and the two elliptic regions are marked
along each curve.

Fig. 4



Chapter 7

THE E.S.C. SINGULARITY

Last summer, a very interesting violation of cosmic censorship was published by Christodoulou (1984).
In outline, he took a spherically symmetric dust cloud of finite size, and allowed it to collapse. The
exterior was described by the Schwarzschild vacuum, while the interior consisted of an elliptic Tolman
model, whose arbitrary functions were chosen such that the cloud was initially at rest, and the density
fell to zero at the surface of the cloud. Further, he imposed a strong continuity condition at the
origin, which is important for the proof, but seems entirely reasonable. Specifically, the condition was
that the density must be an even, C∞ function of r, even when r is carried through zero to negative
values. Obviously the intent was to ensure that there is nothing irregular about the origin in the
initial conditions. In this model, the crunch singularity occurs first at the centre of symmetry, r = 0,
and spreads to increasing radius with time, thus ensuring that the model is free of shell crossings.
The crunch singularity joins to the future singularity of the exterior Schwarzschild manifold, and the
apparent horizon, defined as the locus of points where the expansion of the wave fronts of radial
light rays is zero, joins to the Schwarzschild event horizon. Christodoulou then showed that, for a
certain class of models, the first ray to emerge from that initial point on the singularity, could reach
the exterior of the cloud a finite time before the cloud entered the horizon, and escape to infinity,
thus constituting a global violation of cosmic censorship. (A ray is said to emerge from a singularity
if its path can be traced back to arbitrarily small affine distances from that singularity.)

This singularity was first discovered in a study of numerical relativity conducted by Eardley
and Smarr (1978). The primary aim of the paper was to investigate ways of slicing the spacetime
to obtain the best coverage by the numerical grid, whilst avoiding the singularity. Their model was
also a dust cloud surrounded by vacuum, but the interior was a parabolic Tolman metric, and they
calculated a large variety of cases to compare their results with the known analytic solutions. They
too found that, in models where this singularity existed, light could be propagated from the initial
singular point, and could in some cases reach future null infinity. The three conformal diagrams they
drew for these spacetimes are reproduced in fig 5 (page 7.8), and they show respectively no violation
of cosmic censorship, a local violation, and a global violation.

I have chosen to call this central point on the crunch surface, together with its effects, the
ESC singularity, after its discoverers, though Eardley and Smarr named it a shell focussing singularity.
In their paper they comment that this singularity “has hitherto escaped notice in these models for
40 years”, and they find it “surprising that these phenomena occur in the family of Tolman-Bondi
spacetimes, which are thought to be well understood”. In fact, this singularity had not received any
more attention until Christodoulou’s paper came along, and even he was not aware of their work until
the referee drew his attention to it. Perhaps one reason is that Eardley and Smarr give no explanation
of this singularity, other than tabulating which types of model it occurs in, nor do they say how they

36
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came across it, or derived the conditions for its existence. In the analytical treatment, the existence
of rays emerging from this singularity does not become apparent without carefully examining the
geodesic equation. Since no general solution is known, even for the radial null geodesics, this has not
been easy to do.

And indeed the existence of this singularity is surprising, especially since the crunch surface
is spacelike, as was shown in chapter 2. However, more careful examination of the arguments shows
that this result is not valid when both r and η are small simultaneously. The results of chapter 3
also become doubtful at the origin, since it was assumed that the functions Ai(r) and Bi(r) are non
zero, and this may not be valid here. In fact, Christodoulou calculated a discontinuity in the redshift
observed at infinity.

The ESC singularity is investigated in this chapter, with the aim of making it clearer what is
happening physically, and in particular, a conformal diagram is calculated. The emphasis is on the
behaviour of the Tolman model near the ESC singularity, and the question of whether the violation
of cosmic censorship is local or global in a Schwarzschild exterior is not of great concern here. Only
some of the cases of interest have been covered, and so the conclusions are only tentative.

7.1 The light rays

In this case, it is the crunch surface that is of interest, so the region t < a is used. (One merely has
to substitute (a− t) for (t−a), and −a′ for a′ in all the equations of preceding chapters.) Also, since
all the unexpected behaviour happens near the crunch surface, i.e. when η is small, it is sufficient to
use a parabolic Tolman model, as the other types (elliptic and hyperbolic) have the same behaviour
here. Thirdly, it is assumed that the density is not zero anywhere in the neighbourhood of the origin,
so that one may choose the radial coordinate by specifying

F = r3 . (7.1)

Thus the evolution of the function R is given by

R =
rg2

4
, (7.2)

where
g = [12(a− t)]1/3 (7.3)

so that

Ṙ = −2r

g
, (7.4)

and

R′ =
g2

4
+

2ra′

g
. (7.5)

From the metric, eq (2.1), the radial null geodesics obey

dt

dr
= εR′ = ε

(

g2

4
+

2ra′

g

)

, (7.6)

where ε = +1 for outgoing rays, and −1 for incoming rays. This can be converted to an equation in
g as the “time” variable using (7.3),

g3g′ = 4ga′ − ε(g3 + 8a′r) . (7.7)
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It is now necessary to choose a form for the function a(r). Christodoulou chose it to be a series in
even, positive powers of r, in order to fulfil his continuity condition, i.e.

a = a0 + a1r
2 + a2r

4 + · · · .

He found that the violation only occured if a1, the coefficient of r2, was non zero. Consequently, the
form

a = a0 + a1r
m , m > 0 , a1 > 0 , (7.8)

is chosen so that cases with and without a violation can be studied, as well as other values of m,
not considered by him. (If a1 were less than 0, there would be shell crossings.) This is the form
assumed by Eardley and Smarr, though they used only integer values of m. (Their r is not quite the
same, since they defined r by M = F/2 = r3.) The higher order terms are not important for this
investigation, and are omitted here. With this choice, eq (7.7) becomes

g3g′ = 4ma1gr
m−1 − ε

(

g3 + 8ma1r
m
)

. (7.9)

The constant a1 may be removed by the transformations

s =
r

aw1
, q =

g

aw1
, (7.10)

which lead to
q3q′ = 4ma

w(m−3)+1
1 qsm−1 − ε

(

q3 + 8ma
w(m−3)+1
1 sm

)

.

Here the dash indicates the derivative with respect to s, but since q is always a function of s, and g
is always a function of r, no confusion will arise. By setting w = 1/(3−m), the factors of a1 can be
eliminated for all cases except m = 3 (which is the self similar parabolic Tolman model), viz:

q3q′ = 4mqsm−1 − ε
(

q3 + 8msm
)

. (7.11)

For most cases, then, the paths of the radial light rays do not depend on the value of a1, except as
a scaling factor.

Firstly the case studied by Christodoulou will be considered, i.e. m = 2. Eq (7.11) becomes

q3q′ = 8qs− ε
(

q3 + 16s2
)

, (7.12)

but even in this form there is no obvious solution, nor is it listed by Kamke (1944). As a first indication
of the behaviour of this equation, the gradient, q ′, is plotted in the q-s plane as an array of inclined
line segments, in fig 6 (page 7.8). This figure uses the convention that incoming rays are plotted on
the left side of the origin, with negative s values, and outgoing rays are on the right side with positive
s values. The diagram may be thought of as a slice through the origin, showing only the left to right
rays, and it makes clear the fact that light rays do in fact pass through the origin. This convention
will be maintained for all the ray diagrams. From the figure it does appear that there are indeed rays
that emerge from the origin. In order to find the behaviour for small s and small q, series expansions
will once more be resorted to. If there is a ray that passes through the origin at q = 0, then, for s
sufficiently close to zero, it is assumed to follow

q =

∞
∑

i=1

qis
ni , (7.13)

where qi > 0, ni > 0, and ni+1 > ni for all i. The first term of this series is inserted into eq (7.12),

nq1s
4n1−1 = 8q1s

n1+1 − ε
(

q3
1s

3n1 + 16s2
)

, (7.14)
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and the coefficients of the lowest powers are required to cancel. There are only two values of n
which allow this to be done: (i) n1 = 2/3, q1 = 121/3, and (ii) n1 = 1, q1 = 2ε. Both of these
may be extended to higher order. The most practical way to do this is to repeat the calculation
for each higher power in turn, because if more than one extra term in the series is considered at
once, it becomes hard to know how many terms to keep in the calculation, as the powers are not
determined. At each stage the solution is found by requiring that ni > ni−1, and that the coefficient
equation be consistent with previous results. There is always just one case each time that satisfies
these requirements. The results are:

(i) q = qIv
2 − εv3 − q2

I

16
v4 − 4εqI

27
v5 + · · · , (7.15)

where v = s1/3 and qI = 121/3;

(ii) q = 2εs+ 3s2 +
39ε

2
s3 +

387

2
s4 + · · · . (7.16)

In the second case, s would have to be less than about .1 for the series to converge, but otherwise
there is no problem, and they both have the form one would expect from the gradient graph. Also,
only the ε = +1 solution of eq (7.16) lies in the positive q region, so the ε = −1 solution for n = 1
will be ignored. However, neither of these two solutions has an undetermined constant of integration.
One of them, probably (7.15), must be a special case, and would not have a constant, but the other
does need one. Using the transformation

q = bs

to define b as a function of s along the ray, eq (7.12) becomes

db

ds
=

8

b2s2
− 1

s
− 16

b3s2
− b

s
.

Since b is finite as s→ 0, this is approximately

db

ds
=

8(b− 2)

b3s2
,

which has the solution

1

3
(b− 2)3 + 3(b− 2)2 + 12(b− 2) + 8 ln(b− 2) = −8

s
+ 8 ln(C) ,

where C is the constant of integration. As s→ 0, the first term on the right goes to −∞, meaning
the last term on the left must dominate the left hand side, so that

b = 2 + Ce−1/s , (7.17)

and b → 2, as expected. Since e−1/s goes to zero faster than any power of s, it would not appear
in a series expansion. For the same reason, it causes a sharp turn off from the series solution of
(7.16) once it does become significant. Of course eq (7.17) is still only an approximation, but it does
indicate how the constant of integration appears, and demonstrates that there is a whole family of
rays whose limiting form near s = 0, q = 0 is eq (7.16).

Clearly, eq (7.15) with ε = +1 is the very first ray to escape from the singular origin, and it is
the ray that Christodoulou proved to exist. It is effectively the horizon of the ESC singularity, dividing
the region which can be causally affected by it from the region that cannot. I call this the “critical
ray”, all later ones the “post critical rays”, and the point from which they emerge the “critical point”.
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The incoming ray which hits this point is the “incoming critical ray” because it has the form (7.15)
with ε = −1, rather than the form that all the other incoming rays have (see (7.19) below). If eq
(7.15) is put into (7.3), the lowest order term is cancelled, giving

t = a0 +

[

(

3

2
a1

)2

r7

]1/3 [

1 −
(

r

768a1

)1/3

· · ·
]

, (7.18)

and this is the reason for the factor of x7/3 in Christodoulou’s eq (3.37). (In that equation, x ∝ r,
and ζ ∝ t− a0, while θ is being defined there.)

Before proceeding to the numerical integration, an asymptotic form for the behaviour of the
rays near q = 0, when s = s0 6= 0, is needed, and it is found to be

s = s0 −
q4

64s2
0

− q5

160s3
0

− q6

384s4
0

− q7

896s5
0

(

1 − s0

2

)

· · · . (7.19)

Now that the limiting behaviour near q = 0 has been found, the ray paths can easily be calculated
numerically. Given the form of eq (7.12), it is quite easy to find the higher derivatives of q, so a
Taylor series integration is appropriate. The program starts each ray with one of the approximate
expressions derived above, but completes the majority of its path numerically, setting the integration
interval automatically, based on the relative sizes of the terms in the Taylor expansion. The program
is listed in the appendix, and the results are shown in fig 7 (page 7.8) for s-q coordinates, on 3
different scales. The ray paths in the r-t plane are shown in fig 8 (page 7.8), assuming a0 = 0 and
a1 = 1. The limitation on the smoothness of these curves is not the program, but the amount of
data the graph plotting routine can accept.

It should be remembered that q is not the time, but the cube root of the time before the
crunch, and q = 0 corresponds to a surface that is curving upwards in the r-t plane. So in fact the
rays never go backwards in time, though they may get further away from the crunch surface (in time,
or in areal radius) as they go outwards. Given this, the s-q diagram shows the various rays paths
much more clearly than the r-t diagram. In all these graphs, the rays are equally spaced in s on the
crunch surface. Thus the spacing of the rays at earlier times gives an idea of the expansion between
the rays, in the comoving frame. It can be seen that rays which pass through the origin and become
outgoing well before reaching the crunch surface experience an overall compression, while those which
are always incoming and never near the origin have an overall expansion. As the incoming critical
ray is approached from either side, the expansion becomes greater, but occurs later in q. In the r-t
graphs the expansion seems to occur at very roughly the same time for all rays, and appears to be
associated with the “bending over”, or decrease in gradient of the rays. On the other hand, rays
which are distant from the incoming critical ray are not much affected by the presence of the ESC
singularity.

The scaled radius where the outgoing critical ray hits the singularity once again is scrit, and
its value in this particular model is .2602, though this value would change if the model were not
parabolic, or if there were higher terms in eq (7.8) for the shape of the crunch surface. It is the
largest radius which any of the critical rays reach and is therefore the extent of the violation of
cosmic censorship within the model, since nothing outside scrit can be causally affected by the ESC
singularity. If Mcrit = (a1scrit)

3/2 is the total mass affected by the violation, and tcrit = (a1)
3(scrit)

2

is its duration, then the ratio Mcrit/tcrit = scrit/2 is independent of the scale of the model. In order
to produce a global violation, it is necessary to put the boundary of the cloud not just within scrit,
but before the outgoing critical ray crosses the apparent horizon. The apparent horizon is the locus
of points where the expansion of the wave fronts of light is zero, in other words the rate of change
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of the areal radius along the rays is zero, ∇αk
α = 0, and it is given by

g = 2r , or q = 2s , (7.20)

for the outgoing rays. Along this locus g ′ = q′ = −1. Since the asymptotic form of the post critical
rays, eq (7.16), reduces to the apparent horizon at s = 0, it is clear that the rays all fall below this
line before turning upwards and crossing it.

7.2 The conformal diagram

Having integrated the paths of the light rays, the next step is to calculate a conformal diagram. In
such a diagram, the light rays are used as coordinates, so that u is constant along the left to right
rays, and v is constant along the right to left rays. This means that the light rays are just two
perpendicular sets of parallel straight lines, and the causal relationships are then quite obvious.

Before any calculations can be done, a method of choosing the u and v coordinates must be
specified. It is normal to do this by the value of some parameter along a well defined surface. Since
the latest post critical rays exist for a vanishingly short time, only surfaces which pass through the
critical point parallel to the crunch surface will include them. Therefore the simplest choice is to label
each ray by its value of s0 where it hits the crunch singularity. Specifically, left to right rays, such as
in fig 7, are labelled by

u = −s0 , (7.21)

and right to left rays, those in the mirror reflection of fig 7, are labelled by

v = s0 . (7.22)

The diagram is calculated numerically in the following manner. Starting with the s-q plane, a
grid of lines of constant s is set up, as in the sketch below.

From the top of each grid line the light ray which hits the singularity there is selected, and
labelled by its s0 value. The ray is integrated backwards from that point, and every time it crosses
a grid line the s and q values are recorded. In this way, the s-q plane is covered by a new grid of
u and v values. By linear interpolation between these points, it is then possible to calculate a set
of u and v values along any given curve (such as s = const or t = const), which may be plotted in
the u-v diagram. Reference to fig 7 shows that, if the incoming critical ray is approached from the
left, it has to be labelled with u = 0, whereas if it is approached from the right, it appears to be
a continuation of the outgoing critical ray, and must be labelled with u = −scrit. Thus there is a
jump in the value of u across this ray, owing to the later emergence of a whole set of rays between
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these two limits. There is a similar effect for the v coordinate, and both these jumps must be written
into the program. The program as it stands, is the maximum size allowed on the machine without
memory management. Adding this utility would have added considerably to the time required to
produce results. Up to 55 s grid lines could be used, which is less than ideal, but is enough to give
a reasonably reliable picture. The program for this calculation is also given in the appendix.

Various families of curves are shown in the u-v diagram in fig 9 (page 7.8). The most noticeable
feature is the central lozenge which the critical point has become, and which is singular, since ρ and
K diverge there. The jumps in the u and v values have resulted in two furrows which continue out
to infinity. In fact the curves are not discontinuous at these jumps but approach them smoothly,
confirming that they are a real part of the u-v diagram. Nevertheless, the curves are not null in these
furrows. The tangent vectors to the s = const lines or the t = const lines are well defined at these
points. Thus the furrows are really just stretching the spacetime along two null directions, and the
two sides of each furrow should be identified as the same ray. Another feature is that the t = const
lines tend to avoid the ESC singularity, in other words the rate of change of t with respect to u or v
decreases towards the critical point, the lozenge being a single value of t and of r.

The diagrams derived here have one important difference from those drawn by Eardley and
Smarr (fig 5), who have omitted the jump in the u and v values. When only half the diagram is
drawn, this looks alright, but problems become apparent when it is remembered that the light rays
do in fact pass through the origin, and the diagrams must allow a continuation across r = 0. Though
the presence of these jumps may seem to be unsatisfactory, they are an inevitable feature of the u-v
diagram of any spacetime in which a set of rays emerge from a single coordinate point.

Apart from these few features, the conformal diagram is not especially illuminating, and does
not seem to contribute much to a physical understanding of what happens at an ESC singularity.
What it does show most effectively is that the characteristics of the singularity are already beginning
to appear just beforehand, since the various curves go continuously through the furrows.

7.3 The case of general m

For a better understanding of this singularity, it makes sense to compare the above results with a
number of other cases, including those which do not have an ESC singularity, and any borderline case
which may exist. In this section, some preliminary calculations and numerical results are presented.

As noted in the previous section, the case m = 3 is different from the other cases, since the
factor of a1 cannot be transformed away, so it is discussed separately. For m 6= 3, equation (7.11)
obtains, and a first view of its behaviour is given for a range of m values in fig 10 (page 7.8), where
the gradients are plotted as arrays of line segments in the s-q plane.

To find those models for which rays may emerge from a central critical point on the crunch
surface, eq (7.11) may be solved to lowest order in s, using the first term in eq (7.13), and following
the same procedure as above. The results are as follows.

(a) m < 3 , (i) n1 = m/3 , q1 = 121/3 ;

(ii) n1 = 1 , q1 = 2ε ;

(b) m > 3 , (i) n1 = m/3 , q1 = (−8m)1/3 ;

(ii) n1 = 1 , q1 = −ε .
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Since both s and q must be positive, those rays with q1 < 0 may be ignored. Thus for the m < 3
cases, the n1 = 1 solution only exists for ε = +1 (outgoing rays), as in the m = 2 case, while for
m > 3, the n1 = 1, ε = −1 ray is the only one to exist. Therefore there are no outgoing rays from
this point in the m > 3 cases, so they do not have ESC singularities. This is borne out by fig 10.
The series may be extended to higher order terms, as before:

(a)(i)

q = qIs
m/3 − εs− mq2

I

4(6 +m)
s2−m/3 − 2εmqI

27
s3−2m/3 · · · , (7.23)

where qI = 121/3,
(a)(ii)

q = 2εs+
6

m
s4−m +

6ε

m2
(17 − 2m)s7−2m +

12

m3

(

4m2 − 66m+ 245
)

s10−3m · · · , (7.24)

(b)(ii)
q = −εs+ q2s

m−2 + q3s
2m−5 + q4s

3m−8 · · · , (7.25)

where

q2 =
12m

(m− 2)
, q3 =

384εm2

(m− 2)(2m− 5)
,

and

q4 =
192m3(190m− 443)

(m− 2)(2m− 5)(3m− 8)
.

Similarly, an expression is needed for the ray path near q = 0 when s = s0 6= 0. However, since there
are non integer powers of s in eq (7.11), it is not suitable for a series expansion of s in powers of q.
In this case, the first two terms on the right hand side may be neglected if q is small enough, and
integration then leads to

q4 =
32εm

(m + 1)

(

sm+1
0 − sm+1

)

, (7.26)

and this is sufficient for programming purposes.

The numerical integration, using the Taylor series method, has been carried out for a selection
of m values less than 3. In its present form, there are numerical problems which prevent the program
from working for m < 1, and for m > 2.6. For m < 1, the gradient is divergent at s = 0, q 6= 0, and
so another approximate expression is needed to propagate the integration through this point. In the
latter case the problem is less clear, but is most likely due to the smallness of the critical radius, and
thus the smallness of the integration step required to generate accurate results. The results of these
integrations are plotted in figs 11 and 12 (pages 7.8 & 7.8) for four m values, and all the graphs
have been scaled so that the critical radius, scrit, is at the same point in the diagram. Since the
critical ray can be made to reach any desired maximum value of R by adjusting a1, this is the best
way to compare the behaviour in each case. In fact there are no qualitative differences in behaviour
between these four cases, and the only significant quantitative difference is the value of scrit. One
can be confident that the conformal diagrams for these cases will differ from fig 9 in equally subtle
ways.

For comparison of these cases on the same scale, the outgoing critical rays are plotted on one
graph for a variety of m values in fig 13 (page 7.8), while the dependence of scrit on m is shown in
fig 14 (page 7.8). Using the quantities Mcrit and tcrit defined above, then Mcrit/tcrit = (scrit)

3−m/2,
giving scrit a more direct physical meaning that is independent of a1. This ratio is graphed against m
in fig 15 (page 7.8), and over the range that the data exists, it indicates that the ratio is approaching
zero as m goes to 3. Therefore, for an ESC singularity which causes a violation of cosmic censorship
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of a given duration, the amount of mass affected by the singularity decreases as m approaches 3. On
the other hand, for a given affected mass, the duration of the violation increases as m goes to 3. So
it is not clear whether the singularity becomes “stronger” or “weaker” towards m = 3. Because scrit
depends on the behaviour of the arbitrary metric functions away from the origin as well as near it,
this is one aspect that might be made clearer by using higher terms in eq (7.8). Then it would be
possible to vary the behaviour of the central singularity without much affecting the paths of the light
rays at larger radii.

The adaptations of the program to integrate the m > 3 cases have not yet been tested
properly.

7.4 The case m = 3

For this case, eq (7.9) must be used since the factors of a1 cannot be removed. The gradient plots
are shown in fig 16 (page 7.8) for three values of a1.

In fact, a further transformation of this equation with m = 3, casts it in separable form. Let

g = rb(r) , (7.27)

then (7.9) becomes
b3b′r = −b4 + 12a1b− εb3 − 24εa1 , (7.28)

and the solution is
r = r0e

I , (7.29)

where

I =

∫ b

0

b3db

b4 + εb3 − 12a1b + 24εa1
.

The lines of constant b are straight lines in the r-g plane, radiating from the point r = 0, g = 0, and
they may be thought of as “angular coordinates” about that point. The integral is fairly complicated,
and has to be integrated numerically anyway, so it would be much easier to do it by adapting the
Taylor series method already developed, than to write a new program. However, there are some
features which can be demonstrated analytically. The solution (7.29) is not valid for r0 = 0, though
there must be at least an incoming ray that reaches that point. There are some straight line solutions,
b′ = 0, with b given by the roots of the right hand side of eq (7.28), i.e. of

Φ = b4 + εb3 − 12a1b + 24εa1 = 0 . (7.30)

There is always one root, b1, for the incoming rays, ε = −1, but for the outgoing rays, ε = +1, there
are two roots, b2 and b3, only if a1 is large enough, otherwise there are none. The borderline case,
when the two roots are degenerate, has

dΦ

db
= 4b3 + 3εb2 − 12a1 = 0 , (7.31)

and cancelling a1 between (7.30) and (7.31) leads to

b2 − 2b− 2 , (7.32)

which gives the solution

bA = 1 +
√

3 , a1,A =
52 + 30

√
3

12
. (7.33)
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This value of a1 is the minimum for which any ray can emerge from the critical point, and it is in
good agreement with the value calculated by Eardley (1974) and later by Eardley and Smarr. In fact,
b1, b2, and b3 are equivalent to the homothetic Killing horizons found by Eardley (1974) and by Dyer
(1979). (Note that b here is the inverse of Dyer’s parameter u.) Since bA is an exact solution of
(7.28), it extends out to infinity, meaning that it gets further from the crunch surface for all time.
This also means that none of the earlier outgoing rays can reach the crunch surface, so that there is
a future null infinity, as well as a past null infinity in this particular Tolman model. All of the later
rays emerge from the critical point, and eventually hit the big crunch. If a1 is larger than a1,A, then
there are two different roots of (7.30), so there are two straight line solutions for the paths of the
light rays emerging from the critical point. Between these two rays, b2 and b3, it is obvious from
(7.28) that b′ is positive, so the rays are moving away from b2 (smaller b) and towards b3 (larger b).
This is also evident in fig 16(c), where the lines b1, b2, and b3 are drawn in.

In terms of b, the gradient, g′, is

b3g′ = −εb3 + 12a1b− 24εa1 = Ψ , (7.34)

which shows that the gradient of the light rays is constant along lines of constant b. For ε = −1, g ′

is always positive, but for ε = +1, a region of negative gradient is possible between the two roots of
Ψ = 0, b4 and b5, depending on a1. The minimum value for which g ′ can go to zero is the degenerate
root of Ψ = 0, which is found to be at

bB = 3 , a1,B =
9

4
. (7.35)

Since a1,B is lower than a1,A, there is a range of a1 for which g′ may be negative all the way up to
the centre of the crunch surface, yet no rays emerge from that point. Fig 16(b) is an example of this
case, and the lines b1, b4, and b5 are marked on it.

The case which has a1 between these two borderline values is probably the most interesting
to investigate, since its conformal diagram would not contain any jump, while the lines would still
display some of the bending noticed near the jump in fig 9. The case with a1 larger than a1,A is not
amenable to the present method of calculating the conformal diagram, since a whole set of its rays
never reach the crunch surface, and so cannot be labelled by u and v in the prescribed manner. The
case with a1 less than a1,B appears, from fig 16(a), to behave like the m > 3 cases.

7.5 The orientation of the crunch surface

It was shown in chapter 2 that the bang and crunch surfaces are spacelike in the Tolman model,
everywhere except possibly at the origin. The calculation is done specifically for the origin here.

The surfaces of constant (a− t) have a normal vector, nα, which is calculated from

nα ∝ ∂α(a− t) ≡ (1,−a′, 0, 0)

and the condition, nαn
α = ε, where ε = +1, 0, or −1, depending on whether the surface is timelike,

null, or spacelike, respectively. It is found to be

nα = R′

√

ε

a′2 − R′2
(1,−a′, 0, 0) , (7.36)
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where R′ is given by eq (7.5), and it is understood that the term under the square root is set to unity
if ε = 0. The tangent vector, uα, found from uαnα = 0, and uαuα = −ε, is

uα =

√

ε

a′2 − R′2
(a′, 1, 0, 0) . (7.37)

The value of ε is determined by the sign of (a′2 − R′2), but, since a′ must be positive, the surface
is always simultaneous or outgoing in the comoving frame, in the sense that as r increases along the
surface the time never decreases. If the comoving frame is badly behaved near the ESC singularity,
this may not be a useful statement.

The ratio R′/a′ is given by eqs (7.5) and (7.8), as

R′

a′
=
g2r1−m

4ma1
+

2r

g
, (7.38)

and, if its absolute value is larger than 1, the surface is spacelike, while if it is equal to or less than
1, the surface is null or timelike, respectively. Now it is necessary to approach the point r = 0,
g = 0 along some definite path, since both terms of eq (7.38) are otherwise undefined at this point.
Therefore, let

g = brn , n > 0 , (7.39)

where b is now a constant, so that (7.38) becomes

R′

a′
=

b2

4ma1
r2n−m+1 +

2

b
r1−n . (7.40)

The types of behaviour of (7.40) may be conveniently divided up as follows.

(I). R′/a′ → 0, so that the surface is timelike. This is the case if 2n−m + 1 > 0 and 1 − n > 0,
which leads to the conditions

m < 3 , n < 1 , n >
m− 1

2
. (7.41)

(II). R′/a′ → const, which may give all three results for ε. There are three separate conditions for
this case.

(a) 2n−m + 1 = 0 and 1 − n > 0, which implies

m < 3 , n < 1 , n =
m− 1

2
, (7.42)

and the surface is spacelike, null, or timelike, depending on whether b is greater than,
equal to, or less than (4ma1)

1/2.

(b) 2n−m + 1 > 0 and 1 − n = 0, which gives

m < 3 , n = 1 , (7.43)

so that if b is less than, equal to, or greater than 2, then the surface is spacelike, null or
timelike.
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(c) 2n−m + 1 = 0 and 1 − n = 0, yielding

m = 3 , n = 1 . (7.44)

In this case the surface is spacelike if

b3 − 12a1b + 24a1 > 0 ,

and this is the Ψ of eq (7.34). Thus a spacelike surface is the only possibility if a1 < a1,B ,
but otherwise there is a range of b values between b4 and b5 for which the surface is
timelike, or null at the ends of that range.

(III). R′/a′ → ±∞, so that the surface is spacelike. There are two possibilities here.

(a) 2n−m + 1 < 0, in other words

any m , n <
m− 1

2
. (7.45)

(b) 1 − n < 0, implying
any m , n > 1 . (7.46)

These results are summarised in a different order in table 5.

Table 5. Orientation of the crunch surface

for different paths of approach to the origin.

m < 3 n < 1 n < m−1
2

spacelike

n = m−1
2

b2 > 4ma1 spacelike

b2 = 4ma1 null

b2 < 4ma1 timelike

n > m−1
2

timelike

n = 1 b > 2 timelike

b = 2 null

b < 2 spacelike

n > 1 spacelike

m = 3 n < 1 spacelike

n = 1 a1 < a1,B spacelike

a1 = a1,B b 6= bB spacelike

b = bB null

a1 > a1,B b > b4 spacelike

b = b4 null

b5 < b < b4 timelike

b = b5 null

b < b5 spacelike

n > 1 spacelike

m > 3 spacelike
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7.6 Discussion

It is evident then, that the crunch surface is completely spacelike for m > 3, and also for m = 3 and
a1 < a1,B . But for the other cases, there is not a definite answer. What this multiplicity of results
means is not clear, though it does seem to imply more structure than was revealed by the conformal
diagram. This would imply that such diagrams are not sufficient for displaying the full behaviour
of the ESC singularity. The most puzzling point is that the conformal diagram shows there is an
incoming null section to the ESC singularity, from which all the post critical rays emerge, while these
calculations indicate that the crunch surface can only be simultaneous or outgoing. These results can
only be reconciled if the comoving frame becomes incoming null at the critical point.

The conformal diagrams that were calculated have an important difference from those of
Eardley and Smarr in the existence of a jump in the u and v values across the incoming critical ray,
but their conditions for the presence of an ESC singularity have been borne out, and extended to the
case of non integer m. Another difference is that they find the crunch surface is totally spacelike for
all models that are free of an ESC singularity, whereas it was shown above that the orientation of the
crunch surface becomes ill defined for values of a1 which allow g′ to become positive for outgoing
rays, even though there are no critical or post critical rays present.

One thing that this investigation has not succeeded in is providing a possible physical reason
for the appearance of the ESC singularity. It may be that the problem is merely one of insufficient
continuity through the origin, but this would have to be demonstrated at events earlier than the
big crunch. The origin of the value m = 3, is clearly the choice made in eq (7.1) for the form
of the function F (r), so the only obvious physical property that changes on either side of m = 3,
is the rate of accumulation of mass onto the crunch surface, which is easily derived from the two
arbitrary functions, a and F , as dM/dt = F ′/2a′ = 3r3−m/2ma1. Thus for m < 3, the initial rate
of accumulation of mass onto the singularity is zero, for m > 3 it is divergent, and for m = 3 it
is finite. The borderline values, a1,A, and a1,B , yield no special values of dM/dt, however. There
probably is some significance to this point, but it needs some careful thought.

There is still plenty of work to be done before this singularity is understood. It would be useful
to calculate a conformal diagram for some other cases, including a model without an ESC singularity,
to show what features are always present, but particularly the m = 3 case with a1,B < a1 < a1,A,
mentioned above. It would also be of interest to calculate the behaviour of timelike and spacelike
geodesics near ESC singularities, and it should be possible to use the approximate methods presented
here. A further point to investigate is whether there is any similar behaviour near the crunch surface
if a′ passes through zero at points other than r = 0.

7.7 Note Added at Defence

As noted above, one possible cause of the ESC singularity is lack of sufficient continuity at the origin.
A continuity condition can now be given which implies that this is the case. The condition is that, on
some constant time slice, t = const, the density, ρ, expressed as a function of the mass, M , should
be C1 through the origin. In other words, as r → 0,

∂ρ

∂M

∣

∣

∣

∣

t

→ 0 , (7.47)
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and for the model of eqs (7.1) and (7.8), this becomes

∂ρ

∂M

∣

∣

∣

∣

t

= 2
∂ρ

∂F

∣

∣

∣

∣

t

→ 128ma1(4 − 2m+m2)

πg9r3−m
. (7.48)

Satisfing this continuity condition obviously requires

m > 3 , (7.49)

and eliminates all models containing an ESC singularity. This condition is expressed in terms of
invariant physical quantities, and so is not coordinate dependent. More importantly, it applies at
times prior to the crunch, including, for example, the initial conditions.

Although Christodoulou chose his r coordinate to be proportional to the proper radius near
the origin, so that his continuity condition is invariant, it is apparent that the condition is not strong
enough. At the origin, only the leading term in a Taylor expansion of the density is important, so it
does not matter whether ρ(r) is C1 or C∞.

In further support of condition (7.47), it can be pointed out that it holds for any spherically
symmetric distribution in Minkowski space where the density remains finite and non zero at the origin,
and so should hold in the tangent space at the origin of a Riemannian space. If the density goes to
zero at the origin in flat space, then dρ/dM ∼ r−3. It is not known how the Tolman model behaves
in this case. One would need to consider non parabolic models, as a parabolic model cannot have
zero density at the origin unless it also contains shell crossings.

In conclusion, (7.47) is a new condition, whose usefulness may well extend beyond the Tolman
model. It is important to investigate other models that violate it, for behaviour similar to the ESC
singularity.
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7.8 Figures

Fig 5. Reproductions of the conformal diagrams drawn by Eardley and Smarr, for a parabolic Tolman
dust cloud embedded in a Schwarzschild vacuum. In all three diagrams, the shaded region is the Tol-
man interior, the hatched region is the fully causal domain which is unaffected by the ESC singularity,
and the symbols I+, I−, I0, I+, and I− are respectively: future and past timelike infinities, spacelike
infinity, and future and past null infinities. Diagram (a) is the case without an ESC singularity; (b)
is the case with an ESC singularity where the violation of cosmic censorship is local, and the ESC
horizon, HE, (the outgoing critical ray) is inside the Schwarzschild horizon, HS; (c) is the case where
the violation is global, and HE is outside HS.

Fig. 5
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Fig 6. The gradient, dq/ds, of the radial light rays in the s-q plane, as given by eq (7.12).
Each of the line segments gives the direction of the light ray at its central point. Though negative
s (radius) values are not strictly possible, this diagram plots incoming rays on the left of s = 0, and
outgoing rays on the right. Since light rays do pass through s = 0, this gives a realistic picture of a
slice through the origin, except that the right to left rays have been suppressed. All the rays go from
left to right as time increases. This convention is used in all ray diagrams.

Fig. 6
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Fig 7. The paths of the radial light rays near the ESC singularity are shown in the s-q plane,
using the convention of fig 6 for the incoming and outgoing rays. The three diagrams are the same
thing on three different scales.

Fig. 7(a)
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Fig. 7(b)
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Fig. 7(c)
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Fig 8. The paths of the radial light rays near the ESC singularity in the r-t plane. The same
curves as in figure 7 are shown for three comparable scales.

Fig. 8(a)
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Fig. 8(b)

Fig. 8(c)
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Fig 9. The conformal diagram for a parabolic Tolman model with arbitrary functions given by
eqs (7.1) and (7.8) with m = 2, showing the region near the ESC singularity. Diagrams (a) to (e)
show the cuves of constant s, q, t, R, and ρ, respectively in the u-v plane. The light rays follow lines
of constant u or constant v, and the origin is the central vertical line.

Fig. 9a

Fig. 9b
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Fig. 9c

Fig. 9d
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Fig. 9e
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Fig 10. The gradient, dq/ds, of the radial light rays in the s-q plane, given by eq (7.11), for
a variety of values of m, as labelled on each diagram.

Fig. 10(a)
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Fig. 10(b)

Fig. 10(c)
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Fig. 10(d)

Fig. 10(e)
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Fig. 10(f)

Fig. 10(g)
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Fig 11. The paths of the radial light rays near the ESC singularity are shown in the s-q plane,
for several values of m between 1 and 2.5. They have all been scaled so that scrit is the same size in
every diagram.

Fig. 11(a)
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Fig. 11(b)
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Fig. 11(c)
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Fig. 11(d)
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Fig 12. The paths of the radial light rays near the ESC singularity are shown in the r-t plane,
for several values of m between 1 and 2.5. The curves are the same as in fig 11.

Fig 12(a)

Fig 12(b)
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Fig 12(c)

Fig 12(d)
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Fig 13. The outgoing critical rays in the s-q plane for several values of m between 1 and 2.6,
shown on the same scale.

Fig. 13
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Fig 14. The critical radius, scrit, as a function of m, in the range 1 to 2.6.

Fig. 14
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Fig 15. The ratio Mcrit/tcrit as a function of m.

Fig. 15
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Fig 16. The gradient, dg/dr, of the radial light rays in the r-g plane, given by eq (7.9), for
m = 3, and a variety of values of a1, as labelled on each diagram. The line b1 is the incoming critical
ray, which is a straight line in these coordinates. The outgoing critical ray is b3, while b2 is one of
the post critical rays that is also a straight line. The lines b4, and b5 are loci of dg/dr = 0.

Fig. 16(a)
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Fig. 16(b)
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Fig. 16(c)



Chapter 8

CONCLUSIONS

The new work presented in this thesis on the Tolman model is composed of three parts: the calculation
of the redshift structure of the bang surface; the derivation of the conditions for no shell crossings;
and an investigation of the ESC singularity. All of them have to do with singularities in this model, and
all of them have resulted in possible restrictions on the arbitrary functions of the model, depending
on the physical properties that are desired.

The result of chapter ??3 is that divergent blueshifts can indeed occur along the radial direction
if the bang time is not simultaneous, and that the infinite energy fluxes implied by this are physically
unacceptable. This in in good agreement with Silk’s (1977) view that the infinite density and curvature
contrasts that occur at a non simultaneous bang are an ”unattractive property”. Assuming that the
present universe is homogeneous on the very large scale, it is concluded that the only large scale
Tolman cosmology that is stable at early times, and evolves to homogeneity is the Robertson-Walker
form.

The method used to solve the geodesic equations, that of assuming a series expansion for
the tangent vectors, is not completely general, since there are functions that cannot be expressed as
power series near a divergence (e.g. ln(r), e1/r). Nevertheless, it is considerably more general than
assuming the existence of a conformal Killing vector in the r-t plane. Moreover, since the functions
of the Tolman metric can be expressed in the same form, and since the resulting equations do solve
without any problems, it is reasonable to expect these results to hold for all Tolman models. One
caveat should be mentioned, though. If the model contains an ESC singularity, the factor of e−1/r of
eq (??7.17) comes dangerously close to contradicting this assumption. Fortunately this is mitigated
by the fact that this function vanishes, rather than diverging, at R→ 0, and that in the case of the
bang surface, these rays never get very far, being absorbed by the ESC singularity itself.

The equation of state of the Tolman model, that of dust, is particularly simplistic. Again, I
believe this is not an important problem, since the redshift behaviour is due to the fact that Ṙ always
diverges on Σ0, while R′ only diverges if a′ 6= 0. In my opinion, a different equation of state will only
affect the powers of R, and not the qualitative behaviour.

The most serious problem is that the geometrical optics approximation breaks down when
the spacetime curvature becomes comparable with the wavelength of the light, i.e. near Σ0. But,
of course, a more accurate method is also more difficult to solve. These infinite blueshifts may be
regarded as an indication of some kind of unphysical behaviour, for example, a divergent flux of
created particles in the semiclassical approximation.

Lastly there is the question of why, when a′ 6= 0, only the radial rays display this unphysical
behaviour, or why only grr is divergent. To be sure that this is due to a real instability in a′ 6= 0
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models, and not just an artifact of spherical symmetry, it is necessary to investigate models with
less symmetry, for example the Szekeres metrics (Szekeres 1975), which have no Killing vectors in
general, but contain both axially symmetric and spherically symmetric models as special cases. An
even more general possibility is the class of velocity dominated singularities in irrotational comoving
dust, that were studied by Eardley, Liang and Sachs (1972).

In chapter 5 the necessary and sufficient conditions for no shell crossings to occur in Tolman
models were found. It is apparent from the examples of chapter 6 that they are quite easy to satisfy,
and they still allow a large range of physically interesting cases, so shell crossings certainly are not
generic to the Tolman metrics. If one also requires a regular origin at r = 0 (or anywhere else), then
the choice of arbitrary functions near the origin is further limited. The above conclusion, that the
bang must be simultaneous everywhere, is entirely compatible with these conditions.

I agree with Zel’dovich and Grishchuk’s speculation about what must physically happen when
a shell crossing occurs — that separate particles no longer occupy separate points in space, and so
a ”three flow” develops, meaning there are three particle velocities at each point. But without a
technique for dealing with such a process, one cannot say whether the subsequent spacetime expands
or recollapses. However it is found that models which contain both elliptic and hyperbolic regions
can be free of shell crossings, though they do contain surface layers of the kind commonly used to
model inhomogeneities. That some parts continue to expand, while other parts recollapse presents
no real problem as regards cosmic censorship, since the crunch surface is spacelike.

It has also been found that there is no necessary connection between the global geometry of
a model (whether it is open or closed) and its time evolution. Of course, the local geometry is still
related to the time evolution in the familiar manner, so the eventual fate of our part of the universe
may still be determined by measuring the variation of the Hubble constant with distance. On the
other hand, models that are free of surface layers as well as shell crossings, do have to be completely
elliptic if they are closed, though the converse is not true. It is quite possible for such an open model
to contain elliptic regions, or even be completely elliptic, as example ??6(b) shows.

The investigation of the ESC singularity has confirmed and extended the previous results
of Eardley and Smarr for the existence of this singularity, while the conformal diagram calculated
here differs from theirs in having the furrows where the u and v values jump from −scrit to 0. It
has also been shown that the orientation of the crunch surface is ill defined at an ESC singularity,
depending on how that point is approached, though the calculations are not in complete agreement
with the numerical results here. The safest conclusion is that more work is needed to understand this
phenomenon.
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Appendix

FORTRAN program listings omitted. (6 programs in 27 pages plus 1 page of introduction.)
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