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Abstract

Up to now calculations of the interaction of cosmic strings have neglected gravity. We
consider the purely gravitational interactions that occur at large distances, using the conical line
singularity for the gravitational field of a string. We construct spaces with multiple intersecting
conical strings, that are exactly consistent with General Relativity, and which can be covered
in a single Minkowski coordinate patch, using a Regge calculus type construction. We show
that after two such strings pass through each other they remain connected by another string,
and we derive the branching rules which govern the junction of three strings. These rules
apply to conical type strings in any smoothly curved background, whether they are straight
or curved, moving or stationary, and they show that, at the junction, the three strings must
be as coplanar as is possible in such a space. For these results to be matched onto the short
range results of Field Theory calculations, it is suggested that gravitational radiation must be
introduced. This would mean that gravitation is not negligible in these interactions.

1 INTRODUCTION

Some interesting recent calculations have confirmed the hypothesis that colliding (or intersect-
ing) cosmic strings almost always break and reconnect, except at very high relative velocities. These
calculations were done for both global strings [23,25] and local strings [20,21]. For strings of different
winding numbers, however, there remains a connecting string of reduced winding number [14]. In all
cases the initial strings were straight. These cosmic strings are believed, from Field Theory calculations,
to form following the decay of the false vacuum in the early universe [13,27,28,22], and the tendency
for strings to reconnect after colliding is needed to prevent the universe becoming string dominated
[13,27,22]. However these reconnection calculations used a Minkowski space background, which means
that the curvature of space and the gravitational interactions were ignored. Though a typical value
for the deficit angle of a string at rest is only ∼ 10−5 radians, the apparent value for a rapidly moving
string may be anything up to π, and clearly two colliding strings must have a relative velocity. Since
the line density of strings is so large and the deficit angle is constant out to all distances (in the case
of straight strings), this is a potentially serious omission, from the point of view of General Relativity.
Indeed, string reconnections result in strings that are sharply bent, and it has been shown by Unruh et
al. [24], and Clarke, Ellis and Vickers [2], that the gravitational field is not negligible in such cases. It
is therefore of interest to investigate the gravitational interactions of strings.

This paper performs a calculation complementary to those of Shellard, Matzner, Laguna, Mori-
arty et al. (SMLM) [23,20,14,21] in that it concentrates on the gravitational fields of the strings, and
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works in the “intermediate” region, where the space is locally flat. For two colliding strings there is
an interaction region where the string fields may be quite complicated, and which may be somewhat
larger than the effective diameter of isolated strings. Nevertheless, by the time strings are expected
to be colliding, this scale is extremely small compared with any astronomical distances (cf. the initial
separations used by SMLM) and totally negligible compared with the curvature of space, or the cur-
vature of long strings (i.e. open strings or extremely large loops), which is of the order of the horizon
size. Thus we can easily find an intermediate scale which is very small compared with the curvature of
the string, and also very large compared with the interaction distance. As was noted by Matzner [20]
the remote parts of the two colliding strings cannot initially know a reconnection has occurred, so they
keep moving as if it hasn’t, at least until the future null cone of the reconnection passes.

The pure deficit angle or conical line singularity is normally used in General Relativity to represent
the gravitational field of an “isolated” straight cosmic string. (The assumption of “isolation” is strictly
only valid at early times when the particle horizons of forming strings are very small.) The effective
equation of state of the strings, with tension equal to line density, requires this type of metric [26,8,10].
This was confirmed by Garfinkle [6] and more recently by Gregory [9] and Laguna-Castillo and Matzner
[15,16], who showed that, under reasonable assumptions, the Einstein-Yang-Mills equations for the
gravity plus the scalar and gauge fields that are responsible for local strings, produce an asymptotically
conical metric at large radii. (The asymptotic metric of global strings is not always well behaved, but
neither is their flat space energy density.) Other work, primarily intended to show that the external
gravitational field does not uniquely determine the string’s interior matter tensor, and that the deficit
angle is not simply related to the line density, also support the asymptotically conical description [5,7,4].
Even for gently curved strings, it has been shown that the conical approximation is good on scales much
smaller than the radius of curvature [4].

The calculation below gives an exact description of the resulting gravitational field in the in-
termediate distance range defined above, following a collision of two conical strings, regardless of the
details of the string field interactions locally. It will be shown that this description remains valid on
the large scale, but it obviously cannot make predictions about the actual results of string collisions,
as the small scale string field interactions are not considered. Neverthless, the small and intermediate
scales must join up, so the relationship between these results and the small scale interactions derived
from Field Theory alone is subsequently discussed.

2 COLLIDING STRINGS AND GRAVITY

2.1 One String Spaces

A space-time with one straight string is commonly “contructed” by drawing a straight line
with two planes radiating from it at a small angle δ to each other, “extracting” the semi-infinite wedge
shaped region of space between them, and identifying points on the two planes. In Minkowski space,
M4, the planes extend to timelike 3-planes, and since the intrinsic metric and the extrinsic curvature
on the planes are the same, the Darmois matching conditions are satisfied [3,11,1,17], and there is no
discontinuity across the identification 3-surface, the curvature of the space being concentrated into the
conical singularity on the vertex of the wedge, where the identification surfaces are discontinuous. It
is just as easy to make the string move — either by taking out a wedge bounded by moving planes,
or else by boosting to a new frame, extracting a stationary wedge of space, and boosting back again.
The identification surfaces match smoothly, as before, so a string moving through vacuum leaves no
gravitational wake. Only motion perpendicular to a string’s length can be detected, as a string is
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invariant under a boost along its length. The value of the deficit angle predicted from Field Theory is
about 10−5 radians, but the apparent deficit angle of a rapidly moving string may be anything up to π
(cf. Ref. 28).

The metric for such strings is usually written in cylindrical polar coordinates, and of course
has no discontinuous surfaces, but if this space in embedded in M4 the wedge structure can be
recovered. (Obviously there is no preferential direction for drawing the wedge, so the choice is a matter
of convenience.) Though the string space is no longer globally invariant under a boost, the original M4

invariances are preserved locally in any region of space not enclosing the string. Parallel transport of a
tetrad of orthogonal vectors round a loop circling a string, whether moving or stationary, results only
in a spatial rotation of the tetrad. In a frame in which the string is stationary, the temporal vector is
completely unaffected, so we can represent the effect of transport around the string by a 3-d rotation
vector parallel to the string. This representation, as well as the view of the string space as M4 with
a wedge extracted, is used extensively below. These conical line singularities were first considered by
Marder in 1959 [19], long before the advent of cosmic strings.

2.2 Two String Spaces

Any spacetime which is everywhere locally M4, except on a finite number of timelike 2-surfaces,
we call almost everywhere Minkowskian (AEM), and we say a string is straight if it appears straight to
all nearby observers looking along its length.

Constructing a space with two straight strings, starting from M4, merely involves extracting two
wedges (stationary or moving) in one go (see Fig. 1a). (If one wedge is taken out, and the identification
is made before trying to take out the other, it is not so obvious whether this can be done. Doing both
together converts the sliced M4 space directly to a new AEM space.) Provided the two wedges do
not intersect each other, they can have any orientation. To an observer who sees one string behind
the other, the front string looks straight, but the rear one will seem to be bent, since each observer
perceives the space in terms of Euclidean coordinates constructed radially away from himself (Fig. 1b).
This highlights the fact that the relative orientations of distant lines and vectors are path dependent
and therefore ambiguous in AEM spaces.

If the two strings are now given an initial velocity, so that they eventually intersect, one may
ask what happens at and after the collision. Presumably, the two strings bend each other by their
respective deficit angles, but it turns out that is not all. We give a stationary model below, and leave
the case of relative motion till later.

2.3 Two Strings After Colliding

This section determines the geometry of a two string space after the strings have collided,
using parallel transport round equivalent loops. The same answer may be obtained by a more simple
minded argument, that considers the geometry of intersecting wedges. Although the methods are quite
independent, the wedge argument is presented first in order to set up coordinates on the space, and also
because the interpretation and visualisation of the results is much harder using the parallel transport
method alone.

We again start from M4, and for simplicity we take out two stationary wedges of space at
right angles, so that the extracted wedges intersect, as shown in Fig. 2a, and the deficit angles are δ1
and δ2. (In other words, the wedges of Fig. 1a have been moved into each other.) (To the observer
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who sees one string behind the other, the front string appears bent and the rear one appears straight
(Fig. 2b), so if he were watching them pass through each other, there would be no change of apparent
orientations.)

Once the identifications have been made, the strings obviously have slight bends, or kinks, as
shown in Fig. 3, and there is a four-fold identification along a line joining the two bending points. (This
line, as well as the two parts of each string, are essentially the same as the “struts” of Regge calculus,
which is used for the numerical approximation of curved space-times, though here the curvature of
the space really is discontinuous.) If the original Minkowski coordinates are retained, then there are
coordinate discontinuities along two semi-infinite surfaces, as shown, which intersect only along the
connecting strut.

The total angle round this connecting strut can be calculated using spherical trigonometry.
A perpendicular circle round the strut consists of four sections, separated by the four surfaces of
discontinuity. Refer back to Fig. 2a, showing the wedges before the identifications were made. In each
section, a quarter loop may be constructed as a circular arc in the spacelike plane orthogonal to both
wedge surfaces, and calculation of the angle of this arc yields
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with appropriate sign changes for each quadrant. The derivation is given in Appendix B.

This same result is now derived from arguments of parallel transport. Let there be an AEM
space that only contains two straight perpendicular non-intersecting strings. Parallel transport around
any loop that does not circle a string results in no change. We choose a loop that lies between the
strings. The loop may be deformed into any shape without affecting the result of parallel transport,
provided it is not made to cross any strings. So, as the two strings are moved together until they
intersect and pass through ech other, the loop must be deformed into the shape of a tennis ball seam
to avoid being crossed. (This loop is drawn in Fig. 2a for the foregoing choice of coordinates embedded
in M4, and it still lies entirely in a single connected M4 coordinate patch.) The loop can again be
continuously deformed (to the one shown in Fig. 3) without crossing any strings, so that it touches
itself (e.g. at the two surfaces of coordinate discontinuity) at a total of 4 points. Thus, there can still
be no rotation of the vector triad around the loop.

Now this loop is equivalent to four closed loops around each side of the two strings, plus one
around the connecting strut, so the sum of the rotations due to transport round the separate loops
must add to zero. Transporting a spacelike vector triad round the upper part of string 2 results in a
rotation by −δ2 in the y − z plane, which we represent in the figure by a vector parallel to string 2,
using the right hand rule. So when this loop is split off, the remaining loop must have a rotation by
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δ2, as shown in Fig. 4a. After all four loops have been split off, the fifth loop has a sequence of four
rotations (Fig. 4b), and the product of the four rotation matrices in the appropriate order gives the net
effect of transport round this fifth loop. Clearly the sense of transport is fixed in relation to the senses
for the other four loops, but there is no obvious starting point.

In order to calculate this matrix product, it is now necessary to choose specific coordinates. We
take the Minkowski-like coordinates of Fig. 2a, mapped onto the two string space. In these coordinates,
the strings remain in the x and z directions even after the collision, so, starting parallel transport from
point A on the fifth loop (Fig. 4b), the net rotation matrix is the product of four perpendicular rotation
matrices, of magnitudes δ2, δ1, −δ2, and −δ1 (Fig. 4b). It is found (with the help of REDUCE) that
the product matrix is a rotation by α, about an axis pointing towards (sin θ cosφ, sin θ sinφ, cos θ),
as calculated in eqs. (2)-(5) above. This direction is exactly the orientation of the connecting strut in
the original coordinates, as viewed from the quadrant that loop 5 started and ended in (both x and z
positive). This result remains true whichever quadrant the starting point is put in. Thus, despite the
ambiguity of the orientation of the strut (that a multiple string space must have), a consistent answer
is obtained. The REDUCE code is given in Appendix A.

It has been shown that parallel transport around the strut is associated with a pure spatial
rotation, and by the right hand rule, the strut is actually a deficit angle string of strength α. The
rotation α is approximately δ1δ2, and consequently in this case the string is quite weak. Nevertheless
it cannot be ignored since we are seeking an exact “Solution” of Einstein’s equations.

2.4 The Junction of Three Strings

From the foregoing, it has become clear that an AEM space can have three deficit angle strings
joining at a point. The construction in Fig. 5 for stationary strings, shows that there must be zero net
rotation of a vector triad around the loop drawn, as it actually encloses no strings and can be contained
in a single M4 coordinate patch. As above, the two end loops around strings 1 and 2 are broken off,
and the appropriate rotation vectors are added in. The third loop contains the negative of rotations 1
and 2, which must necessarily generate the rotation due to string 3. In other words, the three rotation
matrices, due to δ1, δ2, and δ3, must multiply to give the identity. The product of three matrices for
rotations about three arbitrary axes (with orientations θ1, φ1, etc.) is huge, and is impractical to solve
directly, even with REDUCE. An approximation to first order in the δ’s gives (see Appendix C)

δ1 cos θ1 + δ2 cos θ2 + δ3 cos θ3 = 0 , (6)

δ1 sin θ1 cosφ1 + δ2 sin θ2 cosφ2 + δ3 sin θ3 cosφ3 = 0 , (7)

δ1 sin θ1 sin φ1 + δ2 sin θ2 sin φ2 + δ3 sin θ3 sinφ3 = 0 . (8)

Thus the x, y, and z components of the rotation vectors must add to zero, and the vectors must
obviously be coplanar — to first order. Given only δ1, δ2, and χ as in Fig. 5, then by the above
equations,

δ3 =
√

δ2
1 + δ2

2 + 2δ1δ2 cosχ , (9)

sin σ =
δ1 sinχ

δ3
, (10)

sinω =
δ2 sinχ

δ3
. (11)

The above result was derived without reference to any coordinate system, but it is only approx-
imate, and the ambiguity of the strings’ orientations is hidden. (The result here is first order in the δ’s,
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whereas the previous result for α is second order.) It is possible to derive exact equations relating the
strengths and orientations of the three strings (Appendix D), again using spherical trigonometry. Un-
fortunately they are quite messy, but they do reduce to the above results to first order. They also give
an estimate of the degree of non-coplanarity of the junction, as measured in Minkowski coordinates.
The exact expression in the appendix gives to second order:

e =
δ1δ2 sinχ

δ3
, (12)

where e is the angle of the third string above or below the plane of the other two, depending which side
it is viewed from. Although the junction appears concave to any observer, it is necessarily symmetric
and looks the same from both sides, so that it is as coplanar as is possible in such a space, where there
are less than 4π radians round the junction point.

Applying this to the two 3-string junctions that appear following the collision of two straight
strings (Fig. 6), gives the expected values

ω1 =
π

2
+
δ2
2

= σ1 , (13)

α = 2δ1 sin

(

δ2
2

)

= δ1δ2 , (14)

ω2 =
π

2
+
δ1
2

= σ2 , (15)

α = 2δ2 sin

(

δ1
2

)

= δ1δ2 . (16)

The fact that the rotation vectors of the strings must be effectively coplanar and sum to zero at
a three string junction implies that the tensions in the strings will also be exactly balanced, and there
will be no resulting acceleration of the junction point. Thus, in the case of the two strings passing
through each other, the weak connecting string is just enough to prevent acceleration now that the
two original strings have bent each other.

2.5 Moving Strings in Curved Spaces

In general we expect strings to be moving. However, we can always boost to a frame in which
one string is stationary, and then boost along that string so that a given junction point is also stationary,
so consequently all the strings at the junction are stationary in that frame. Thus the above formulas
apply to the junction of any three conical type strings in a space which is everywhere locally flat.

Using the above methods, the result of the collision of moving strings can be calculated, re-
membering that the apparent deficit angle of a moving string may be anything up to π. Although the
actual values of α, and the amount of bending of each string, may be considerably different from the
stationary approximation used here, there must still be a connecting string, whose strength is at least
α, and can be of the same order as δ1 or δ2. The degree of “non-coplanarity” may also be increased
or decreased greatly for a moving junction, depending on the direction of motion.

For slowly moving strings, the three-string formulas generalise as follows. We represent each
string’s world-sheet by a pair of orthogonal vectors, one being the timelike four-velocity of the junction
point, uα, and the other being the orthogonal spacelike vector lying in the string’s world-sheet, nα,
with magnitude equal to the appropriate δ value. Equations (6)-(8) may then be written,

nα

1
+ nα

2
+ nα

3
= 0 (17)

6



However, these formulas only apply for small δ’s, and since the deficit angle of a rapidly moving string
may be anything up to π, the exact equations of Appendix D would have to be used, so it is probably
best to work in the stationary frame.

Moreover we claim that these relations for the junction of three strings apply even in curved
spacetimes, where matter is present. It was noted in the introduction that for expected cosmological
situations, there exists a scale on which the spacetime is virtually flat and the strings are virtually
straight, that is still much larger than the string field interaction scale. On this scale a locally almost
everywhere Minkowskian tangent space can be set up about the junction (provided the junction point is
not also a curvature singularity in the sense that the Kretschmann scalar diverges as it is approached).
An appropriate boost then makes the junction stationary, so the above equations apply in that region
also.

2.6 Reconnections

According to Field Theory, the collision of two strings is most likely to result in the strings
reconnecting to form two sharp elbows, rather than passing through each other, as shown in Fig. 7a,b.
In a strictly AEM space, this is not possible. Starting from two straight strings in AEM space, it
is apparent from the foregoing that after reconnection the two must remain linked by a third string
(Fig. 7c), which has a strength of the same order as the original pair, as the angle at the elbow is of
order 1 in general. Again the tensions balance and there is no acceleration of any of the strings.

Furthermore, there is a causality problem. In order to effect the reconnection, two of the
component strings would have to undergo sudden velocity changes. This change can only propagate
along the strings at light speed, but a curved or kinked string is not possible in an AEM space. Though
it might be possible to arrange a reconnection in a strongly curved space, in general it seems much more
likely that the strings would pass through each other, creating a connecting string. This conclusion
may be modified if the local tangent space is not AEM, as is discussed below.

2.7 Extension to Robertson-Walker Spaces

Since the Robertson-Walker (RW) metrics are conformably flat, it is evident that the above construc-
tions can be transferred directly to the case of models with uniform spatial curvature, but with straight
strings becoming geodesic strings, provided (i) the spatial sections are open, and (ii) the strings are
comoving (as non-comoving strings cause wakes in the matter), which obviously means there are no
collisions. For k = 0 models no modifications are needed, while for k = −1 models, the wedges of
space that are extracted must be bounded by totally geodesic comoving 3-surfaces, so that the intrinsic
metric and extrinsic curvature are identical on both, and the Darmois matching conditions [3,11,1,17]
are satisfied. For more realistic lumpy models that are approximately RW on some scale, there is no
reason why the strings could not move through the matter also, and, provided the density in the matter
wake is not divergent close to a string, the locally AEM assumption then holds, and the above results
are qualitatively unchanged.

The closed k = +1 models are rather more tricky, as all geodesics either link each other or they
intersect. This means that the deficit angle due to any string directly afrects all the others, so although
the above construction works locally, it is not easy to make a rigorous global construction. However
Fig. 8 shows how two comoving geodesic strings can be combined in a spatial 3-sphere. The closed
geodesics are arranged so that each one passes through the centre of the other one and perpendicular
to its plane. Fig. 8a shows the arrangement schematically, and 8b shows the embedding of a spatial 2-
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section that has either string as an “equator”. Geodesic surfaces radiating from either string necessarily
intersect the other one at right angles, and so there is no problem of the strings bending each other
when the “wedges” of space are extracted. The metric for this space is

ds2 = −dt2 +R2(t){dχ2 + (1 − ǫ1)
2 cos2 χ dψ2 + (1 − ǫ2)

2 sin2 χ dφ2} , (18)

where 0 ≤ ψ ≤ 2π, 0 ≤ φ ≤ 2π, 0 ≤ χ ≤ π/2. The axes χ = 0 and χ = π/2 are in fact the
two strings, and, due to the closure of the spatial sections t = const., the surfaces χ = const. are
“cylinders” about both axes, in the sense that they lie at constant distance from them. The deficit
angles of the strings are δi = 2πǫi.

3 DISCUSSION

We have considered the behaviour of the standard conical type cosmic strings in almost ev-
erywhere Minkowskian “solutions” of Einstein’s equations and in open Robertson-Walker spaces, and
derived results that must also apply in curved spaces that are locally AEM. It has been shown that two
straight strings that pass through each other become bent, and must remain connected by another
string, which has just the deficit angle required to prevent acceleration of the bending point due to
string tension. The connecting string is weak if the collision is slow, but may be quite strong for high
speed collisions. Colliding strings cannot reconnect in AEM spaces, and even in strongly curved spaces
this seems unlikely. In any case, an extra connecting string must form. It has also been shown that
the junction of three strings must be as coplanar as is possible in such spaces, and that the angles and
tensions of the strings must satisfy a vector triangle rule, so that the junction point does not accelerate
in this case either.

Thus the only possible result of the collision of two straight line conical singularities, for purely
gravitational interactions, is that they pass through each other, and they remain connected by another
string.

In this scenario, the problem of the universe becoming string dominated remains, since colliding
strings cannot reconnect and accelerate away, so loops cannot form and decay and the number of
strings cannot decrease.

Since the domain of validity of the two sets of results — those presented above for intermediate
scales, and those of Field Theory for small scales — is quite separate, we do not neecessarily have any
contradiction. On the other hand, we do have to consider how the transition between the two might
be achieved, and ultimately prove this is (or isn’t) the case.

3.1 Relationship with Field Theory Calculations

A special case of the above result is the collision of two parallel strings. If the winding sense
of the string fields round the two strings is opposite, then the two strings may annihilate, according
to Field Theory. However, the gravitational field of a string is not altered by its winding sense, so the
field of two parallel strings, provided they are well separated, is independent to lowest order, of whether
they have the same or opposite winding senses. So in both cases the space has a total deficit angle
initially equal (roughly) to the sum of the two separate values. For annihilation to take place, this
global curvature must also be removed. (One string could have an excess angle, i.e. 0 ≤ φ1 < 2π + δ
and 0 ≤ φ2 ≤ 2π − δ, but this requires the “anti-string” to have a negative density and a negative
tension.) Even in this simple case the two approaches do not seem to agree. In contrast, Moriarty,
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Myers and Rebbi’s result [21], that head-on collisions of two parallel strings with the same winding
sense briefly form a doubly wound string which emits a singly wound pair at 90◦ to the original motion,
presents no problem for GR.

It should be remembered that the results of this paper apply to the intermediate and large scales,
that are much larger than the string diameter or interaction range of two strings. Consequently, these
results, though exact and independent of the interacting string fields, do not constrain the local results
of string collisions, for the very reason that they don’t consider them. In other words, the actual result
of a string collision is hidden within the future null cone of the collision event, but the net gravitational
effect of the matter plus expanding radiation inside the null cone must be the same as the two bent
strings plus connecting string described above. The speed of light is relatively slow on astronomical
scales, so it would take time for the information that the universe is not string dominated to diffuse out.
Though it is tempting to relate the purely gravitational results to those of Laguna and Matzner [14],
for strings of different winding number, the connecting strings that result in the two cases occur for
quite different reasons. In the former there is no reduction in the amount of string (length times deficit
angle) whereas in the latter the total amount of string (length times winding number) is reduced by the
“peeling” effect of the collision and partial reconnection. Even when the strengths of the two strings
are the same, there is still a connecting string in the gravitational calculation, but not in the Field
Theory calculation. Nevertheless, it would be interesting to find out whether Laguna and Matzner’s
results also have fixed relationships between the strengths of the strings and the angles at which they
join.

The most likely effect that might reconcile the two sets of results, ignored by both this approach
and those of SMLM, is the emission of gravitational radiation, which may dissipate some of the curvature
from the interaction region. It is obvious from the calculations of Shellard [23] and Matzner [20] that
the string fields do sometimes oscillate briefly after a collision. In fact Khan [12] has shown that Higgs
vortices (strings) cannot interpenetrate unless radiation is emitted. Furthermore, Marder [18] showed
that outgoing cylindrical gravitational radiation, carrying positive energy, could decrease the effective
deficit angle of the exterior space as it passed. Thus the exterior spacetime as calculated above, would
be converted to some other external field as the gravitational radiation passed by, accompanied by
radiation due to other fields. If the curvature due to the connecting string is entirely removed, this
could be a strong source of gravitational radiation, particularly for high velocity collisions. The emission
of this gravitational radiation must be a continuous process. Right after a collision the connecting
string would be very short, so only relatively little radiation need be emitted to remove it, but as the
reconnected strings move away and the null cone expands, the effective connecting string, as felt by
the more distant regions, becomes ever longer, so the radiation needed to eliminate it grows linearly.
The radiation would most likely come from the motion of the curved elbows of the reconnected strings.

Given the small scale results of Field Theory calculations — that colliding strings normally
break and reconnect — then the resulting reconnected strings are initially bent through large angles
in very small distances, and it has been shown by Unruh et al. [24,2] that the gravitational field is
not negligible, and the tidal forces (Weyl Tensor) are then comparable to the internal forces of the
string. Thus gravitation cannot be ignored in such interactions, nor treated in the weak field limit.
Since Matzner’s calculations [20] already needed a super-computer, an attempt to calculate such an
interaction using the full Einstein-Yang-Mills equations would be a major computing project.
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A Program ALFROT-LSP

REDUCE program to calculate the product, a0 , of four rotations — by +delta2 about the z
axis, +delta1 about x, - delta2 about z, and -delta1 about x — by multiplying rotation matrices.
Also calculates the matrix, ah, for a rotation by -alpha about an axis pointing towards (theta, phi),
where alpha, theta and phi are all defined below. The two rotation matrices are exactly the same.

matrix aa, rxp, rxm, rzp, rzm, ah;

matrix r1p, r1m, r2p, r2m, a0;

c3**2 := 1-s3**2; % Identities.

c4**2 := 1-s4**2;

sa4 := s3*a4; % Sin(alpha/4) = sin(delta1/2)*sin(delta2/2).

ca4 := sqrt(1-sa4**2);

ca4**2 := 1-sa4**2;

ca2 := 1-2*sa4**2; % Cos(alpha/2) in terms of sin(alpha/4) etc.

sa2 := 2*sa4*ca4;

ca := 1-2*sa2**2; % Cos(alpha) in terms of sin(alpha/2) etc.

sa := 2*sa2*ca2;

aa := mat((ca,0,-sa), % Rotation by -alpha about y axis.

(0,1,0),

(aa,0,ca));

cp := c4; % Phi = delta2/2. (Phi = 0 on y axis!)

sp := s4;

st := s3*c4/sqrt(1-s3**2*s4**2); % Theta, in terms of delta1.

ct := c3/sqrt(1-s3**2*s4**2); % delta2. (Theta = 0 on y axis!)

rxp := mat((1,0,0), % Rotation by theta about x axis,

(0,ct,-st),

(0,st,ct));

rxm := mat((1,0,0), % and by -theta about x.

(0,ct,st),

(0,-st,ct));

rzp := mat((cp,-sp,0), % Rotation by phi about z axis.

(sp,cp,0),

(0,0,1));

rzm := mat((cp,sp,0), % and by -phi about z.

(-sp,cp,0),

(0,0,1));
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ah := rzp*rxp*aa*rxm*rzm; % Rotation by -alpha about an axis

% at (theta, phi) to the y axis.

c1 := 1-2*s3**2; % Cos(delta1) in terms of sin(delta1/2) etc.

s1 := 2*s3*c3;

c2 := 1-2*s4**2; % Cos(delta2) in terms of sin(delta2/2) etc.

s2 := 2*s4*c4;

r1p := mat((1,0,0), % Rotation by +delta1 about x axis.

(0,c1,-s1),

(0,s1,c1));

r1m := mat((1,0,0), % Rotation by -delta1 about x axis.

(0,c1,s1),

(0,-s1,c1));

r2p := mat((c2,-s2,0), % Rotation by +delta2 about z axis.

(s2,c2,0),

(0,0,1));

r2m := mat((c2,s2,0), % Rotation by -delta2 about z axis.

(-s2,c2,0),

(0,0,1));

a0 := r1p*r2p*r1m*r2m; % Product of the above four rotations,

% in order round the loop.

out aaout; % Save the results.

write aa := aa;

write ah := ah;

write a0 := a0;

write ah-a0 := ah-a0; % Compare a0 and ah. They’re the same.

shut aaout;

end;

B Exact Calculation of α

Here the angle between the wedge planes shown in Fig. 2a is calculated. Fig. 9a shows how these
planes intersect a sphere centered on some point where the two planes meet. Planes parallel to the
x − y and y − z directions are also shown intersecting the sphere. We wish to find λ. In Fig. 9b the
quadrilateral where these 4 great circles intersect is divided into spherical triangles by another great
circle. From the upper right triangle one gets

sin a =
sin(δ2/2)

sin c
= cos

(

π

2
− a

)

(19)

sin b =
sin(δ1/2)

sin c
= cos

(

π

2
− b

)

(20)

cos c = cos

(

δ1
2

)

cos

(

δ2
2

)

(21)

sin2 c = sin2

(

δ1
2

)

+ sin2

(

δ2
2

)

− sin2

(

δ1
2

)

sin2

(

δ2
2

)

, (22)
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where (22) comes from (21), while from the lower left triangle

cos(π − λ) = − cos
(

π

2
− a

)

cos
(

π

2
− b

)

+ sin
(

π

2
− a

)

sin
(

π

2
− b

)

, (23)

which then leads to

cosλ = sin

(

δ1
2

)

sin

(

δ2
2

)

= sin
(

π

2
− λ

)

. (24)

The angle π/2− λ is the deficit for one quarter of the loop, i.e. α/4, and the same is derived for each
quadrant, so eqs. (1) & (2) follow.

C Program ROT3A-LSP

REDUCE program to find the product of three small rotations about arbitrary axes by calculating
and then multiplying the rotation matrices of each one. The three rotations are d1, d2, and d3, but
the result is only found to first order in the d’s.

matrix t1p, t1m, p1p, p1a, d1p, r1,

t2p, t2m, p2p, p2m, d2p, r2,

t3p, t3m, p3p, p3m, d3p, r3,

rt, id3;

ct1**2 := 1-st1**2; % Trig relationships.

cp1**2 := 1-sp1**2; % ct1 is cos(theta 1).

ct2**2 := 1-st2**2;

cp2**2 := 1-sp2**2; % sp2 is sin(phi 2), etc.

ct3**2 := 1-st3**2;

cp3**2 := 1-sp3**2;

dl*d2*d3 := 0; % Discard higher order terms.

d1*d2 := 0;

d1*d3 := 0;

d2*d3 := 0;

t1p := mat((ct1,0,st1), % Rotation by theta = t1 about y axis.

(0,1,0),

(-st1,0,ct1));

t1m := mat((ct1,0,-st1), % Rotation by -t1.

(0,1,0),

(st1,0,ct1));

p1p := mat((cp1,-sp1,0), % Rotation by phi = p1 about z axis.

(sp1,cp1,0),

(0,0,1));

p1m := mat((cp1,sp1,0), % Rotation by -p1.

(-sp1,cp1,0),

(0,0,1));

d1p := mat((1,-d1,0), % Rotation by d1 (delta1) about z axis.

(d1,1,0), % to lowest order in d1.

(0,0,1));

r1 := p1p*t1p*d1p*t1m*p1m; % Matrix for rotation by d1
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% about theta = t1, phi = p1.

t2p := mat((ct2,0,st2), % Same for d2....

(0,1,0),

(-st2,0,ct2));

t2m := mat((ct2,0,-st2),

(0,1,0),

(st2,0,ct2));

p2p := mat((cp2,-sp2,0),

(sp2,cp2,0),

(0,0,1));

p2m := mat((cp2,sp2,0),

(-sp2,cp2,0),

(0,0,1));

d2p := mat((1,-d2,0),

(d2,1,0),

(0,0,1));

r2 := p2p*t2p*d2p*t2m*p2m;

t3p := mat((ct3,0,at3), % Same for d3....

(0,1,0),

(-st3,0,ct3));

t3m := mat((ct3,0,-st3),

(0,1,0),

(st3,0,ct3));

p3p := mat((cp3,-sp3,0),

(sp3,cp3,0),

(0,0,1));

p3m := mat((cp3,sp3,0),

(-sp3,cp3,0),

(0,0,1));

d3p := mat((1,-d3,0),

(d3,1,0),

(0,0,1));

r3 := p3p*t3p*d3p*t3m*p3m;

id3 := mat((1,0,0), % Identity matrix.

(0,1,0),

(0,0,1));

rt := r3*r2*r1-id3; % When product of the three rotations

% is zero,the matrix product produces

% the identity, i.e. matrix rt is zero.

out rot3aout;

write r1 := r1; % These are the expressions that must

write r2 := r2; % be set to zero to obtain zero not

write r3 := r3; % rotation. Write them to file.

14



write rt := rt;

shut rot3aout;

end;

D Exact Results for 3-String Junctions

An exact relationship between the strengths and the orientations of three stationary strings
that meet at a point, as in Fig. 5, is derived here.

Suppose we are given two strings, of strengths δ1 and δ2, and the angle between them, χ. The
two strings define a plane, and the deficit wedges may be oriented symmetrically about this plane, so
that they coincide along a pair of lines, as in the front part of Fig. 2b. Identification across the wedges
brings these two lines together, forming the third string. Fig. 10a shows the intesection of these wedges
with a sphere centred on the junction point. The angle between the two upper faces of the wedges is
slightly less than π, and the same between the two lower faces, so there is a deficit angle around this
string, provided

χ < π (25)

If χ > π there is an excess angle, which we disallow, and χ = 0 merely corresponds to one wedge inside
the other, which is effectively a single straight string. By the same argument it follows that σ < π and
ω < π.

Spherical trigonometry for triangle ABX gives

cos(π − λ) = − cos

(

δ1
2

)

cos

(

δ2
2

)

+ sin

(

δ1
2

)

sin

(

δ2
2

)

cos(σ + ω) , (26)

and since
σ + ω + χ = 2π , (27)

and δ3 is defined by
δ3
2

= π − λ , (28)

this becomes

cos

(

δ3
2

)

= sin

(

δ1
2

)

sin

(

δ2
2

)

cos(χ) − cos

(

δ1
2

)

cos

(

δ2
2

)

. (29)

Equation (9) is easily recovered by expanding to second order in the δ’s.

Now considering triangles AXC and BXC separately gives

sin e =
sin σ sin(δ1/2)

sin f1

=
sinω sin(δ2/2)

sin f2

, (30)

cos f1 = sin

(

δ1
2

)

cosσ , (31)

cos f2 = sin

(

δ2
2

)

cosω , (32)

cos

(

δ1
2

)

= sin f1 cos e , (33)

cos

(

δ2
2

)

= sin f2 cos e . (34)
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Inserting (33) and (34) in (30) and substituting for ω in terms of χ and σ from (27) yields

sin σ =
tan(δ2/2) sinχ

√

tan2(δ1/2) + tan2(δ2/2) + 2 tan(δ1/2) tan(δ2/2) cosχ
, (35)

so that

cosσ =
−(tan(δ1/2) + tan(δ2/2) cosχ)

√

tan2(δ1/2) + tan2(δ2/2) + 2 tan(δ1/2) tan(δ2/2) cosχ
, (36)

and similarly

cosω =
−(tan(δ2/2) + tan(δ1/2) cosχ)

√

tan2(δ1/2) + tan2(δ2/2) + 2 tan(δ1/2) tan(δ2/2) cosχ
. (37)

Using these in (31) and (32) then leads to

sin f1 =

√

√

√

√

cos2(δ1/2)(tan(δ1/2) + tan(δ2/2) cosχ)2 + tan2(δ2/2) sin2 χ

tan2(δ1/2) + tan2(δ2/2) + 2 tan(δ1/2) tan(δ2/2) cosχ
, (38)

and

sin f2 =

√

√

√

√

cos2(δ2/2)(tan(δ2/2) + tan(δ1/2) cosχ)2 + tan2(δ1/2) sin2 χ

tan2(δ1/2) + tan2(δ2/2) + 2 tan(δ1/2) tan(δ2/2) cosχ
. (39)

Finally inserting these results in (33) and (34) gives

sin e =
tan(δ1/2) tan(δ2/2) sinχ

√

tan2(δ1/2) + tan2(δ2/2) + 2 tan(δ1/2) tan(δ2/2) cosχ + tan2(δ1/2) tan2(δ2/2) sin2 χ

(40)
which, to second order becomes

e ≈
δ1δ2 sinχ

δ3
. (41)

The angle e is a measure of the deviation of the third string from the plane of the first two, and it is
of order δ. By symmetry it is clear that the three string junction appears to be slightly concave by the
same amount, whichever side it is viewed from.
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E Figures

Fig. 1a. The wedge construction for a two string space. This diagram may also be thought of as an

embedding of the 2-string space in Euclidean (i.e. Minkowski) space. String 1 is in the background and is

parallel to the x-axis, string 2 is parallel to the z-axis, and the deficit angles are δ1 and δ2 respectively. The

wedges of “missing space” are shown finite here but actually extend to infinity in three directions. The two

faces of each wedge are identified as the same set of points, under the obvious isometry. In general the two

strings do not need to be orthogonal or stationary as shown here.

Fig. 1b. A different embedding of the same space, showing it as an observer at X percieves it. Each observer

tends to interpret what he sees in terms of Euclidean coordinates constructed away from himself, so Fig. 1a is

more natural for an observer at O. This diagram may be obtained from 1a by making a cut through the y− z

plane and rotating about string 2, so that the front wedge closes, and a new one opens behind the string.

Thus the oberver at X sees the front string as straight and the rear one as bent. (He can actually see the

bending point twice.)
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Fig. 2a. The wedge construction for two strings after they have passed through each other. The wedges of

Fig. 1a have been moved into each other, and string 2 is now behind string 1. Here they are perpendicular

and stationary, but the diagram is basically the same for moving strings at any angle. The two faces of each

wedge identify into each other, so the lines of intersection of the wedges form a four-fold identification. Since

this diagram also represents the embedding of the actual space in Minkowski space, the curve shown (with

arrows) is a closed loop completely contained in a single Minkowski coordinate patch.

Fig. 2b. How an observer at X perceives the space of Fig. 2a. It is obtained from 2a in the same way as

for Figs. 1a and 1b. In this case the front string appears bent and the rear one appears straight. Clearly, as

the two strings pass through each other, it seems to the observer at X that string 2 stays straight and string

1 stays bent. In a multiple string space, the apparent orientation of a particular line cannot change unless a

string passes across the line of sight.
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Fig. 3. A schematic representation of the space containing two strings after they have passed through each

other, which in equivalent to Fig. 2a after the identifications have been made. The strings are both bent

and the wedges have become semi-infinte surfaces of coordinate discontinuity (in the original M4 coordintes),

which intersect along a finite “strut”. The closed loop of Fig. 2a has been deformed into the one shown,

which touches these surfaces at eight points but doesn’t pass through them.
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Fig. 4a. How the sub-loop round the upper part of string 2 is detached, and the apropriate rotations are

added into both sides. Parallel transport round string 2 results in a spatial rotation through −δ2, which is

represented in the diagram by a vector. The direction is determined by applying the right hand rule to the

sense of transport round the sub-loop. The result of transport around the remaining loop is then the opposite

rotation +δ2, about the same axis.

Fig. 4b. The rotation vector for the five loops after all four sub-loops round strings 1 and 2 have been

detached. If parallel transport round the fifth loop is started and ended at A, then the resultant of the four

perpendicular rotations is the rotation represented by α, which is parallel to the strut as viewed from that

quadrant.
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Fig. 5. A schematic representation of the junction of three strings, and the parallel transport loop that is

used, together with the appropriate rotation vectors. Though it turns out that the three must be effectively

coplanar, this is not assumed in the calculations.

Fig. 6. The angles used to recover the result for two strings after colliding, from the three string junction

result.
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Fig. 7a,b,c. Reconnection of strings that touch is not allowed in AEM spaces. If two strings come together

(a), Field Theory predicts that the strings almost always break and reconnect, forming two elbows that then

accelerate away from each other (b). From the results for 3-string junctions, if this occurred, there must

be a connecting string joining the two elbows (c), which prevents any acceleration. However there is also a

causality problem, due to the sudden change in velocities that is required to effect the reconnection. This

implies the strings must become bent, which in not allowed in a space which is everywhere locally flat.

Fig. 8a,b. It is possible to construct two unconnected geodesic strings in an otherwise closed Robertson-

Walker model. Because of the closed spatial surfaces, the strings must necessarily loop each other (or intersect

twice), and they can be arranged so that each one passes through the centre of the other one (a). The

embedding of a 2-dimensional constant time slice is shown in (b). String 1 loops the “equator” and is cut at

right angles by the “wedge” due to string 2, which only intersects this surface at the poles. The wedge due

to string 1, and the length of string 2 lie in the dimension not shown here. Exactly the same diagram can be

drawn with the two strings interchanged.
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Fig. 9a. The perpendicular angle between the surfaces of the wedges shown in Fig. 2a is found by taking a

unit sphere about a point on the the strut (where the two surfaces intersect each other) and drawing in the

intersection of these surfaces with the sphere, as well as the intersection of planes parallel to the x − y and

y − z directions. (The axes shown here are all displaced from those of Fig. 2a.) Spherical trigonometry is

used to calculate λ.

Fig. 9b. The spherical quadrilateral from Fig. 9a is shown larger, and divided into two spherical triangles.
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Fig. 10a. The wedges due to two strings, BO and OA, not necessarily of the same strength, are shown

intersecting a unit sphere centred on the junction point O, along the curves BC, BC ′, CA, and C ′A. The

wedges have been chosen to be symmetric about the plane defined by AOB, and χ is the angle between the

two strings. The angle between the wedges’ surfaces ACB (or AC ′B) is slightly less than π, and is calculated

from spherical trigonometry.

Fig. 10b. The spherical triangles ABC, AXC, and BXC from Fig. 10a are shown enlarged here.
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