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We investigate quasi-spherical Szekeres models, including the anisotropic generalisation
of the Lemaitre-Tolman wormhole topology. We: (a) derive the conditions for physically
reasonable models, including a regular origin, maxima and minima, and the absence
of shell-crossings; (b)obtain the relations between the local mass dipole, apparent
horizon, light propagation rate, and shell crossings; (c) show non-zero dipole requires
non-zero density, and cannot compensate for the effects of non-vacuum in any direction,
so communication through the neck is still worse than the vacuum case; (d) show
that a handle topology cannot be created by identifying hypersurfaces on either side of
a wormhole, unless a surface layer is allowed. This impossibility includes the vacuum
(Schwarzschild-Kruskal-Szekeres) case.

1. Understanding the Szekeres model

1.1. Lemâıtre-Tolman Model

We start with the simpler and better-known Lemâıtre-Tolman (LT) metric 1,2, which

is spherically-symmetric but inhomogeneous radially:

ds2 = −dt2 +
R′2

1 + f
dr2 + R2(dθ2 + sin2 θ dφ2) (1)

where f(r) is an arbitrary function that determines the curvature of the spatial

(constant t) sections, R(t, r) is the areal radius, and ′ ≡ ∂/∂r. The evolution of R

is determined by

Ṙ2 =
2M

R
+ f (2)

where ˙ ≡ ∂/∂t and M(r) is an arbitrary function representing the gravitational

mass inside the comoving shell at coordinate radius r. Here f acquires a second

interpretation as the energy per unit mass of the matter shell with comoving ra-

dius r. This is actually a Friedmann equation with parameters that depend on r.

1
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The solution for R(t, r) has three cases — ever-expanding, re-collapsing, and the

borderline case, and involves a third arbitrary function, a(r), the time at which

the big bang happens locally. For example, the re-collapsing solution, in terms of

parameter η is

R =
M

(−f)
(1 − cos η) , (η − sin η) =

(−f)3/2(t − a)

M
(3)

The density is

8πρ =
2M ′

R2R′
(4)

1.2. Szekeres Model

The Szekeres (S) model 3,4 is synchronous, comoving, and irrotational, with a dust

equation of state. It is not spherically symmetric, and in fact it has no Killing

vectors 5. The metric is:

ds2 = −dt2 +

(

R′ − RE′

E

)2

ε + f
dr2 +

R2

E2
(dp2 + dq2) (5)

where E = E(r, p, q) and ε = −1, 0, +1. The function R(t, r) has exactly the same

solution as for LT. This might suggest it is an areal radius, and in fact it is for the

ε = +1 case we shall consider here. This metric contains the LT, dust Robertson-

walker and Scwarzschild-Kruskal-Szekeres merics as special cases, the R = R(t)

case is a regular limit, and its null limit is a generalisation of the Kinnersley rocket

metric 8.

1.3. Riemann Projection

To understand this better, we look at the the part of the metric that’s multiplied by

R2, viz (dp2 + dq2)/E2 . This is just the 2-sphere in funny coordinates, obtained

from the Riemann projection:

1

1

\theta

p − P

S

1

p − P

S

For the circle, we have

tan

(

π

2
− θ

2

)

= cot
θ

2
=

q − Q

S
(6)
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and rotation about the projection axis gives a 2-sphere,

p − P

S
= cot

θ

2
cosφ (7)

q − Q

S
= cot

θ

2
sin φ (8)

The Riemann hyperbola works similarly. However, in S, the transformation is r-

dependent,

P = P (r) , Q = Q(r) , S = S(r) (9)

so the transformation from (p, q) to (θ, φ) introduces cross terms in the metric, such

as dr dθ. Of course, if E ′ = 0, this transformation recovers the LT model.

1.4. The Function E

Thus we have:

E(r, p, q) =
S

2

[

(

p − P

S

)2

+

(

q − Q

S

)2

+ ε

]

(10)

where ε determines the shape of the constant (t, r) surfaces:

ε = +1 → sequence of Riemann spheres (11)

ε = −1 → sequence of Riemann hyperboloids (12)

ε = 0 → sequence of Riemann planes (13)

and ε determines the shape of the 2-surfaces that foliate the spatial sections.

Note that grr ≥ 0 requires ε + f ≥ 0, and so

f > 0 → ε = +1, 0,−1 (14)

f = 0 → ε = +1, 0 (15)

−1 < f < 0 → ε = +1 (16)

Clearly, the 3-d geometry determined by f may restrict the possible foliations. For

example, you can’t foliate closed spatial sections with hyperboloids, but you can

foliate a negatively curved space with spheres.

The function E describes a dipole distribution round the 2-sphere at each r

value, (E′/E)max = −(E′/E)min located at antipodal points, and E ′ = 0 on a

great circle mid way between. In particular, varying only p & q (or θ & φ), with t

& r constant,
E′

E grr ρ

max → min min

min → max max

Naturally, the dipole orientation varies with r.



March 15, 2004 12:45 Proceedings Trim Size: 9.75in x 6.5in SZWHTalk

4

1.5. Evolution and Density

The evolution equation is identical to the LT case, eq(2), and R(t, r)) is the only

metric function that depends on time. The density is

8πρ =
2

(

M ′ − 3ME′

E

)

R2
(

R′ − RE′

E

) (17)

1.6. Interpretation

The interpretation (for ε = +1) is that the space sections are geometrically a se-

quence of non-concentric 2-spheres, but the r-dependence of E ensures that the

density, curvature, etc are not uniform on each constant (t, r) sphere.

1.7. Embedding

longer

shorter

We visualise the space sections as embed-

dings, with one coordinate suppressed, θ =

π/2, and we note the distance between

constatnt r shells varies with (p, q), since

E = E(r, p, q)

ds2 = .....

(

R′ − RE′

E

)2

ε + f
dr2.....

1.8. Wormhole Questions

shorter

longer

A) We know light can’t quite

get through the Schwarzschild-

Kruskal-Szekeres (SKS) worm-

hole. But, if a SKS type worm-

hole can be bent round like this,

so one side is shorter than the

other, does that make it easier

for light to get through on the

shorter side?

B) Can the two asymptotic regions be spliced together to make a handle topology?

But first we must look at regularity conditions, as these will be central to an-

swering the first question.

2. Regularity

We here select from 9 only certain key results.
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2.1. Regular Origins

An origin occurs where R(t, ro) = 0 for all t. A closed model would have two such

loci. By insisting that the origin should have finite density and curvature, and have

the same type of evolution as its immediate neighbourhood, we find that the origin

has to be Robertson-Walker like

2.2. No Shell Crossings

Shell crossings are where an inner shell of matter runs into an adjacent outer shell.

(In S, this does not involve the whole shell at once.) The conditions for avoiding

such singularities, over the entire lifetime of the model, can be divided into those

which are identical to the LT case 6, and the extra ones required in S. The one that

will matter most to us is

max

(

E′

E

)

=

√

(S′)2 + (P ′)2 + (Q′)2

S
≤ M ′

3M
(18)

which applies if M ′ ≥ 0.

2.3. Regular Extrema

A closed model must have at least one maximum in R(t = constant, r) between

its two origins. A wormhole must have a minimum. We call these “bellies” and

“necks”. In either case, R′(t, rm) = 0 for all t, and f = −1 is required to avoid a

surface layer.

3. Traversing S Wormholes?

3.1. LT Wormholes

The LT model with M constant can describe the full SKS manifold — two asymp-

totic regions joined by a neck of finite duration — using geodesic coordinates. It is

trivial to add matter into such a model, by making M a function of r. It has been

established 7 that the effect of introducing matter is to split the event horizons and

further reduce the distance through the wormhole that light can travel.

The locus R = 2M becomes an apparent horizon (AH), and the rays go along

the AH where ρ = 0, but fall inside where ρ > 0.

3.2. S Wormholes

3.2.1. Fastest Way Out

Since S is not spherically symmetric, we first need to find the direction for optimum

progress. The null condition

kαkβgαβ = 0 (19)
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in S is
(

R′ − RE′

E

)

ε + f

(

dr

dt

)2

= 1 − R2

E2

[

(

dp

dt

)2

+

(

dq

dt

)2
]

(20)

and we see taht, at any given location, the maximum dr
dt is obtained if dp

dt = 0 = dq
dt .

We call this direction “radial”, and we say “rays” for radial null paths. Note that

rays would not be geodesic in general. We re-write this, for ε = +1, as

t′n =
dt

dr

∣

∣

∣

∣

null

=
±1√
1 + f

(

R′ − RE′

E

)

(21)

and the solution for the ray path would be

t = tn(r) , p = pn(r) , q = qn(r) (22)

but it is tn(r) we are interested in. We find the fastest rays are where E ′/E is

maximum.

3.2.2. Apparent Horizons

The variation of areal radius along a ray is

Rn = R(tn(r), r) (23)

(Rn)′ = Ṙt′n + R′ (24)

and we define the AH as the locus where (Rn)′ = 0, which gives

±
(

±
√

2M
R + f

)

√
1 + f

(

R′ − RE′

E

)

+ R′ = 0 (25)

We find R 6= 2M in general, except

– where E′ = 0

– at maximum expansion at a neck or belly, η = π, f = −1

– near the bang or crunch, η = 0, 2π.

3.2.3. Bendyness versus Density

In terms of parameter η the ray equation is

dt

dr

∣

∣

∣

∣

n

=
1√

1 + f

(

M(1 − cos η)

(−f)
√

1 + f

)

×
{

− sin η

(1 − cos η)2
(−f)3/2a′

M
−

(

1 − 3 sin η(η − sin η)

(1 − cos η)2

)

M ′

M
− E′

E

}

(26)

and the last term, E′/E, is the only non-LT term present. Since the function of

η multiplying M ′/M is ≥ 1, and the no shell crossing conditions require |E ′/E| ≤
|M ′/3M |, this suggests that E ′ 6= 0 gives at most a partial compensation of the

effect of non-vacuum, M ′ > 0.
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3.2.4. Key Argument

We consider the surface

R(t, r) = αM(r) , α constant (27)

determine its slope

dt

dr

∣

∣

∣

∣

R=αM

=
R′ − αM ′

√

2

α + f
(28)

and find where it is null or outgoing timelike. We find

M ′ = 0 → α ≥ 2 (Schwazschild result) (29)

M ′ 6= 0and
E′

E
≤ M ′

M
→ α > 2 (30)

slow ray

fast ray

world line

slow AH

fast AH

R = 2 M

Thus, R = 2M can’t be outgoing time-

like, and this is true along the whole

length of the locus. Since all parti-

cle worldlines pass through R = 2M ,

and in the asymptotically flat regions,

R = 2M goes to the infinite future or

past, thus there is no way for rays to

escape falling into the AH.

Actually we have to check the centre

of the neck, where f = −1, M ′ = 0,

f ′ = 0 and a′ = 0, separately. Taking

the limits carefully, we find that the

same applies.

3.2.5. Result

Where the density is non-zero, M ′ > 0, light travel through wormholes is slower

than in vacuum (SKS), and the the bendyness, E ′ 6= 0, can at most only partially

compensate for this. Therefore the causality structure of S wormholes is qualita-

tively the same as in LT wormholes.

3.2.6. Numerical Example

The (r − t) diagram below is for a time-symmetric S model, and shows the fast

and slow future apparent horizons (fA+ and sA+), and past apparent horizons, the

fast and slow rays that pass through O — the neck at the moment of maximum

expansion — towards r increasing (fR+ and sR+), and rays through O going to-

wards r decreasing, as well as rays going through other points. T is the moment of

time symmetry which is also the simultaneous time of maximum expansion, and N

is the locus of the neck r = 0. Note that fA+ & sA+ are two different intersections
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of the future apparent horizon AH+ in two different radial directions — the fast

& slow poles where E ′/E takes extreme values. Note also that there is no origin

R(t, r = ro) = 0 in wormhole models.
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4. A Handle Topology?

The wormhole topology has two asymptotically flat regions joined by a neck. In S

this may be bent round in the embedding. This suggests the possibility that the

two asymptotic regions may be joined up. We wish to know if this can be done

smoothly? (Of course the embedding is not essential, and the junction does not

have to be where the embedding intersects itself.) The sketch below illustrates the

concept.
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We go about this as follows. We make r = 0 at the neck, where f = −1, and

we make all the arbitrary functions symmetric about r = 0, with forms that create

a wormhole (R′(t, r = 0) a regular minimum for all t). We cut along a timelike

hypersurface Σ,

rΣ = Z(p, q) (31)

and join it to its mirror image at r = −Z(p, q). We use the Darmois junction

conditions, which require continuity of the first and second fundamental forms, and

try to solve for the equations with suitable choices for the surface locus and the

wormhole shape,

Z(p, q) , M(r) , f(r) , a(r) , P (r) , Q(r) , S(r) . (32)

The two surfaces, being mirror images, are identical, except for the direction of

the normal,

n+
α = n−

α (33)

so the first fundamental forms — the intrinsic metrics — are already matched, and

the second fundamental forms — the extrinsic curvatures — have opposite signs,

K−

ij = K+
ij = −K−

ij = 0 (34)

From this we find

Kpt =
Z,p(RṘ′ − ṘR′)

∆
= 0 (35)

Kqt =
Z,q(RṘ′ − ṘR′)

∆
= 0 (36)

∆ =
√

R2(ε + f) + (Z2
,p + Z2

,q)(R
′E − RE′)2 . (37)
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and these require: either R = R(r),

i.e. a static model, or R = R(t), i.e.

a Kantowski-Sachs type model, possi-

bly a torus, or Z = rΣ =constant,

i.e. a bendy torus topology.

The remaining components, Kpp, Kqq , Kpq , are much longer expressions, that

don’t involve Ṙ. Superficially it seems that that they should be solvable at any one

time, but the evolution equations equations don’t preserve the matching.

Thus we conclude a handle topology is not possible.

5. Conculsions

Szekeres (S) models are a generalisation of the spherically symmetric Lemâıtre-

Tolman (LT) models. Both describe inhomogeneous dust distributions, but the

former have no Killing vectors. There are 3 arbitrary functions of coordinate radius

in LT models (M , f & a), and a further 3 in S models (S, P & Q).

For quasi-spherical S models, the conditions for a regular origin, the conditions

for no shell crossings, and the conditions for regular maxima and minima in the

spatial sections have been established.

Like LT models, S models can reproduce the Schwarzschild-Kruskal-Szekeres

topology of a wormhole connecting two universes, but with non-zero density every-

where. Although the S model’s anisotropy makes the proper separation of consecu-

tive shells shorter along certain directions, and null motion faster along those same

directions, this is not enough to compensate for the retarding effect of matter, so

the causal structure of an S wormhole is the same as that of the corresponding LT

model.

On the question of whether the two universes on either side of a wormhole could

be joined across a 3-surface to make a handle topology, it has been shown that

a smooth junction is not possible at any finite distance, as a surface layer would

be created. This conclusion applies to LT models and to the vacuum case — a

Schwarzschild wormhole — too.
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