NOTES FOR SECOND YEAR DIFFERENTIAL EQUATION
PART IV:SECOND ORDER, LINEAR ODES

JESSE RATZKIN

1. INTRODUCTION

In this set of notes we examine linear, second order ODEs, concentrating on
those with constant coefficients. Our ODEs will have the general form

ay” + ary' + apy = g(x);

usually as, a1, ay are constants, with as, # 0, but sometimes we will allow the
coefficients as, aj, ag to depend on x. The right hand side g(z) is a given function.
Notice that the ODE involves two derivatives of y, so we should expect to assign
two initial values for y. In fact, this is the case, and we will generally solve an
initial value problem of the form

ay” + a1y + apy = g(z), y(0) =co, Y(0)=cy,

where ¢y and ¢; are given numbers. At this point, we need to remark on one
important fact:

Theorem 1. Any initial value problem
asy” + a1y’ + agy = g(z), y(0)=co, y'(0)=cy
has a unique solution, at least for x in some small interval containing 0.

This fact follows from the corresponding fact for first order systems, because one
can transform a second order scalar ODE into a 2 x 2 first order system of ODEs.
To transform this single, second order ODE into a first order system, we let

=y Y=y
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We will first concentrate on the homogeneous case, that is when g(x) = 0, and
then describe two methods to solve the non-homogeneous case, when g # 0.

so that
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2. THE HOMOGENEOUS CASE

2.1. Constant coefficients. In this case, we wish to solve
(1) azy” + a1y’ + agy = 0.

We first try to guess a solution. We do know a function which repeats itself
under differentiation: the exponential function. Thus it’s reasonable to guess that
y(x) = € for some number 7. Let’s substitute this in and see what we get:

0 = ax(e™)" 4+ ar(e™) + ape™ = € (ayr® + agr + ag) = 0 = ayr* + a;r + ao.

This is a quadratic equation for 7, so we should find two roots,

ry+ =

—ay + /a2 — 4apay
2(1,2 ’
Example: We consider
y" =5y + 6y =0,
and try to find solutions of the form y(z) = €"*. Substituting in, we see
0= (") —5(™) +6e* =e™“(r*—5r+6)=r*—-5r+6=0=r=2o0rr=3.
So we have two possible solutions, y; = €?" and y, = €3*. Which one do we choose?
The answer is we must choose both.
Theorem 2. Suppose that both y1(z) and ya(x) solve
azy” + ary’ + agy = 0.

Then so does aqy, + aoys for any constants a; and .

This theorem is called the principle of superposition, and it is very important.

We will see that we really only need the ODE to be linear and homogeneous in
order that the principle of superposition holds.

Proof. Let y = a1y1 + aiaye, and observe that

ay" +ay +ay = ax(oayr + aye)” + ai(cay + aoys) + aglarys + aoys)
= o(agy) + ary) + agyr) + ao(asys + arys + agyr) = 0.
]

Corollary 3. Let V' be the set of functions y(x) such that asy” + a1y’ + apy = 0.
Then V is a two-dimensional vector space.

Proof. The principle of superposition tells us that V' is closed under scalar multipli-
cation and addition, so V' must be a vector space (in particular, a subspace of the
vector space of all continuous functions). It remains to find dim(V'), which is really
a count of how many free parameters we get to choose in specifying a solution to
the ODE. We have already seen that the solution to the initial value problem

ay” +ay +ay =0, y0)=co, ¥(0)=c

exists and is unique, so we (always!) get to choose exactly two parameters in
specifying y, namely ¢y and ¢;. Thus dim(V) = 2. O
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We remark that a handy basis of V' might be the solution with y;(0) = 1 and
y1(0) = 0, together with the solution with y2(0) = 0 and y5(0) = 1.
Now we can find the general solution to the ODE
y" — 5y + 6y = 0.
We already have two solutions y;(z) = €** and yox) = €3*, and we know the set
of solutions is a two-dimensional vector space. This means the general solution of
our ODE must have the form
y(x) = ayyi(x) + aoyp(x) = are®® + aqe.
Suppose further that we want to solve an initial value problem, say
y' =5y +6y =0, y(0)=2 y(0)=-L

We know the solution must have the form y(z) = a1e?® + ase3* for some constants
a1 and as, so we match the initial conditions. We have

223/(0) = a1 + Qg, _1:yl(0) :2061+3052:>051 277 0422—5.

We conclude y(z) = 7e* — 5e3*.
Example: We show now that we obtain the characteristic equation after trans-
forming the single equation into a system. Recall that the coefficient matrix is

now ,
=le ] [D]=al0)
o a Y Y

ai as
det(A—)\I):det[__g _Al_a_l } :>\2—i—ﬂ)\—|—@:07

a2 a2

The characteristic polynomial is then

a2 az

which is exactly the same characteristic polynomial we obtain by plugging in y = e"*
to agy” + a1y’ + agy = 0.
We now outline a general theory.

Theorem 4. Let asr? + air + ag be a quadratic with two distinct roots ry # 1.
Then the general solution to the ODE

azy” + a1y’ + apy =0
18
y(x) = e 4+ age™”.

Proof. We try to find solutions to the ODE of the form y(z) = € for some real
number r. Substituting, we have

0 = az(e™)" 4+ ar(e™) + ap(e™) = " (agr?® + ayr + ag) = agr® +arr +ag = 0.

By assumption, this quadratic equation has precisely two roots, namely r = r; and
r = 19, S0 we have now found two linearly independent solutions

y(x) =€, yo(z) = ™.
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Then by the principle of superposition we can write the general solution to our
ODE as a linear combination of y; and y,. In other words, our general solution
must be of the form

y(xr) = ape™® + aze’™”.

Example: We solve the initial value problem
y' =4y +3y=0, y(0)=-2, y(0)=1
Trying solutions of the form y(z) = €™, so that
0= (") —4(e™) +3e™ =™ (r* —dr+3)=e“(r—1)(r—-3)=r=1orr=3.
Thus the general solution to our ODE is
y(z) = are” + aze”.

Matching the initial condition, we have

N W

7
—2=y(0)=a; +az, 1=¢y(0)=a;+3a=a; = —5 =
Thus the solution to our initial value problem is

7 3
y(x) = —56” + 563’”.

Example: We solve the initial value problem

5
y' =y + V=0 y(0)=-1, '(0)=2.

As usual, we try a solution of the form y = €"* to see

5 ) 1
O:(em)"—(em)/—l—ze”:>r2—r+zl:O:>r:§ii.
Our general solution is now
y(z) = ey eV/2H0e e 12702 — 2/2(¢ (cos g4 sin ) 4-c_(cos r—isinz)] = e*/*(ky cos x4k, sin ),

where ky = ¢y + ¢_ and ky = i(c; — c_). Again, we find the constants k; and ks
by matching the initial condition:

—1=y(0) =k, 2=4'(0)= %kl +ky = ko= g
Now our solution in
y(z) = e/ [— cosx + g sinx] :
We have one final case to consider, that of a repeated root in the characteristic

polynomial asr? + a7 + ao.
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Theorem 5. Let asr? +air + ag be a quadratic polynomial with a repeated root r,.
Then the general solution to the ODE

azy” + ary’ + agy =0
18
y(x) = a1e™® + agxe™".

Proof. From our previous analysis, we already know that y;(z) = ™% is one so-
lution to our ODE, so the only thing that remains is to find a second, linearly
independent solution. We try y, = xe™* and see if it works:

ag(ze™ ™) + ai(ze™") + ap(ze™") = ao(2r.e™* + r2xe™®) + ay (" + rwe™) + agre’”
= ze""(agr? + ayry + ag) + € (2a9r, + ay)

= e""(2aary + ay).

Here we have used the fact that we know 7, is a root of the quadratic asr?+ a7 +aq.
However, we still have not used the fact that r, is a double root. This can only
happen if

agr® +air+ag = as(r —r.)? = ay(r®* —2r,r +12) = ay = —2r,ay = 2a,r, +a; = 0.

We conclude that in this special case yo, = xe™® must be a solution, so by the

superposition principle the general solution to our ODE is

y(x) = a1e™® + agxe™".
O
Notice that this proof only works when we have a double root.
Example: We solve the initial value problem
y'+4y +4y =0, y(0)=2, ' (0)=-3.
Again, we try a solution of the form y = € and find
0= (™) +4(e™) +4(e™) =™ (r* +4r +4) = r = 2.
In this case we have a double root of r, = —2, so the general solution has the

form y(z) = aje " + apwe >

conditions. We have

. We find the coefficients by matching the initial

2=y(0)=a1, -3=9(0)=—-201+a=a=T.

Thus our solution is



2.2. General theory. Recall that we can solve the initial value problem

ax(2)y" + ar(x)y + ao(z)y =0, y(0) =co, ¥'(0)=c1
for any choice of initial conditions ¢y, c¢;, which gives us a two-dimensional family of
solutions. By the superposition principle, this two-dimensional family is is a vector
space, and by the uniqueness of the solution to our initial value problem this two-
dimensional vector space is the entire solution space of our ODE. We summarize
what we have found with the following theorem.

Theorem 6. Let as(x),a1(x),ap(x) be continuous functions, with as # 0. Then
there is € > 0 such that the set of solutions of
az(2)y" + a1 (x)y + ao(z)y = 0, —e<z<e
18 a two-dimensional vector space.
At this point, we simplify the notation a little and divide through by as(x), so
that our ODE becomes
ay(r) ,  ao(x) a Qo

0=y"+ y + y=vy" +m@)y +po(x)y, p1=—, pPo=—.
as(x) as(x) as as

We would like to have a simple test to see if two solutions we find span the solution
space. To this end, we let y;(x),y2(z) be solutions and define the Wronskian
determinant of the functions yy, 12 by

() y2(x) } / /
Wy, x)=W(x)=det =y ()Y () — yo(x)y; ().
(o)) = W) = det | U000 | (o) = e )
This is a somewhat familiar object from our work with first order systems of ODEs.
Lemma 7. We have W' = —py(x)W.

Proof. We differentiate our formula for W and use the fact that both y; and ys
solve the original ODE to see
W' = (nys — yaun)

= Y%+ Y1ys — Yoth — Yoy

= Y1Ys — Y2y

= yi(—p1ys — poy2) — Y2(—p1y1 — Povr)

= —piYs + ey = —piW.

O

Theorem 8. The Wronskian of two solutions y, and yo is either always zero or

never zero. In particular, either the functions y, and yo are always independent or
never independent.

Proof. We solve the ODE for W:

w’ d
W'=—-pW = W %IH(W) = —p = W(z) = ce” [P
for some constant z. Since the exponential is never zero, we see that W is either
never zero (if ¢ # 0) or always zero (if ¢ = 0). O
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The importance of this theorem is that we can determine whether y; and g, form
a basis of the solution space by evaluating at a single point, say x = 0. In fact,
we can also use this theorem to find a second linearly independent solution if we’re
given a first one (see the tutorial problems).

We close this section with a parallel between the case of second order, linear
ODE and first order systems. If

as(2)y" + ay(x)y + ap(x)y =0

then we can tranfrom into a 2 x 2 flinear, irst order system by letting z; = y and
29 =7/, so that

! 0 1
r |~ _ 21|
7 = {ZQ ] = { _a(@) i) ] [22 } = A(x)z.

az(x) az(x)

In the case that as,aq,ay are all constant, we can solve the first order system
using eigenvalues and eigenvectors. In this case, the eigenvalues A of the coefficient
matrix A satisfy
0= det(A— AT) = A2+ Py 20
a2 asz
which is exactly the same as the characteristic polynomial we found in Theorem 4.
In this way we recover exactly the same solutions we found before.

3. THE NON-HOMOGENEOUS CASE

Here we consider initial value problems for non-homogeneous equations. We will
discuss two methods, the method of undetermined coefficients, and that of variation
of parameters.

One of our guiding principles is that the general solution of a non-homogeneous
ODE is the sum of the solution to the corresponding homogeneous equation and a
particular solution. We write this as a theorem.

Theorem 9. The general solution of
azy” + a1y’ + aoy = g(z)
has the form
y(r) = yp(x) + aryr (z) + azya(z),

where y, is any solution of the non-homogeneous equation, and a1y, + asys s the
general solution of the corresponding homogeneous equation, asy” + a1y’ + agy = 0.

Proof. Again, we use the fact that the initial value problem

(2) azy” +ary' +aoy = g(v), y(0) =co, y'(0)=c1

has a unique solution. Let y,(z) be any particular solution to the non-homogeneous
ODE, and let by = y,(0) and b; = y,(0). Then y(x) solves the initial value problem
(2) if and only if g(x) = y(x) — y,(x) solves the initial value problem

(3) asy" + a1y + agy =0, F(0) =co—bo, F(0) =cy — 1.
7



We know the general solution of (3) has the form

Y= a1y + a2y

as detailed in the previous section, so we must have

y(r) = yp(2) + §(7) = yp(x) + a1y (v) + azya(z).
OJ

3.1. The method of undetermined coefficients. In this section we outline

the method of undetermined coefficients. Our guiding observation is that some

functions repeat themselves under differentiation. For instance, the derivative of

an exponential function is another exponential, and the derivative of a polynomial

of degree k is another polynomial, of lower degree. If the right hand side g(x) is

one of these functions, we can guess a good form for the particular solution ,,.
Example: Consider the initial value problem

(4) y' + 3y + 2y = € + cos, y(0) = 2, y'(0) = —1.
We start by solving the homogeneous equation
y' 43y +2y = 0.
Guess a solution of the form y(z) = €™ and plug it in to get
0= (") +3(™) +2™ =e™“(r* +3r+2)=e“(r+2)(r+1)=r=-1,-2.
Thus the homogeneous solution is
cre” % 4 coe” ",

The general solution to (4) is a sum of the homogeneous solution listed above and
a particulart solution y,. To find y, we use the method of undetermined coefficients
and guess

Yy, = Ae* + Beosx + Csin .
Plugging this guess into the equation we have
e fcosx = Yo+ 3y, + 2y,
= 9A4¢* — Bcosx — C'sinz + 9A4e*® — 3Bsinx + 3C cosx
+2Ae> + 2B cosx + 2C sin

= 20A¢e* + (B +3C)cosz + (C — 3B)sin .

Matching coefficients of the three different terms we get the three equations
1=204, 1=B+3C, 0=-3B+C,

which have the simultaneous solutions

1 1 3
20’ 10° ¢ 10
Putting this together, we see

1 s, 1 3 . o _
—e” + —CosT + —sInx + c1e ~ + cqe

2x
20 10 10 '
8
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We now use our initial conditions to find ¢; and c3. We have

P S A A

=y _20 10 Cy 02—20 C1 T C2
3 3

— — ! = — _— —

1 y'(0) 50 + TG 2¢9.

These equations have the solution

9 2
C1 = Z, Cy = —g
This general technique works most of the time when the right hand side has a
certain form, but there is an important caveat: the right hand side g(x) cannot be a
solution to the corresponding homogeneous equation. If g solves the homogeneous
equation, we must do something slightly different.
Example: Solve the initial value problem

y' =5y +6y=¢", y(0)=1, ¢(0)=3.

In this case, we know that the associated homogeneous equation, 3" — 5y’ + 6y = 0
has the general solution c;y; + coys = c1€2® + c€3*. In particular, we see that
the right hand side e2* does indeed solve the homogeneous equation, so we cannot
hope to solve the non-homogeneous solution with y, = Ae**. This time we try
yp = Aze?, and plug in our guess. We have

(Aze®)” — 5(Aze®) + 6(Aze®) = ve®*(4A — 10A +6A) + e**(4A — 5A) = —Ae™.

Matching this to the given right hand side, g(x) = €**, we see A = —1, and so
y, = —ze** and our general solution to the non-homogenoue equation is

y = —xe®® 4 12 4 e,
We evaluate y and 3 at = 0 to match the initial conditions, given
l=y0)=ci+c, 3=y (0)=—-14+2c14+3co=>0c1=-1, =2,

and therefore y = —xe?® — e2¥ + 237,

We summarize the possible forms of the particular solution y, in the table below.
Here the model ODE is

ay” + ary' + agy = g(x).

If g has several of the terms listed below then we must include each of the corre-
sponding terms for y,. This table is not quite complete, but it should give you a
good idea of the type to equation you can solving using the method of undetermined

coeflicients.
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term in g(x) corresponding term in y,
aebz Aeb:c
ae? when asb* + a1b+ag =0 Azeb®
ay cos(kx) + ag sin(kz) A cos(kz) + Agsin(kx)
acos(kr) when —ask? + iak + ag = 0 Ayz cos(kx) + Agx sin(kx)
polynomial of degree k polynomial of degree k
p(2)e?®, where p is a polynomical of degree k | ¢(z)e’ where ¢ is a polynomial of degree k
er (Agz® + Az + Ag)e”

3.2. The method of variation of parameters. In the next example we have

y(0) =1,  ¢(0)=2.

The two homogeneous solutions are the same as before, so we can go straight to
finding the particular solution. In this case we can’t use the method of undeter-
mined coefficients (why?) so we use variation of parameters. We start with

ypla) = er(w)e ™ + erlw)e ™,

(5) y' 43y + 2y =

1—2’

We compute

Yy = che " + che T — crem" = 2c9e
We have some freedom in choosing the functions ¢; and ¢y, so we set ¢ e ™ +che 2" =

0. Now we take a further derivative to get

y;f =—dle " — 6/2672z + e 4 dege 2,
Plug all this into (5) to get
1 1/ /
1—z Yp +3Y, + 2yp

= e =2 et e + e — 3eieT" — Bege 2 4 2c1e” " + 200
—dje™" — 2cpe .

We combine this with the equation c¢je™® + che™®* = 0 to get a system of two

equations in two unknows. Add these two equations together to get

1 / 2z / 621 ’ 628
—_— = e Y =y = = Co(T) = ds.
1l—x 2 -1 2(7) 0 s—1

We can evaluate
c2(0) =0, 5(0) = —1.
Next we use our system of equations to find ¢;. Indeed,

_ e’ Toe’
¢ =—e = = = ds.
11—z o 1

Again we can evaluate to get



Finally we use the initial conditions of (5) to find our solution. We have

T s x 2s
y(z) =e " / . C dste / © ds+ae+ be %,
0 0

- S s—1

and we have to find the constants a and b. We evaluate at z = 0 to get
1 = y(0)=a+0
2 = y(0)=—-a—2b

which has the solution a =4 and b = —3.

There is a general recipe for finding solutions to a non-homogeneous ODE using
variation of parameters, and here it is. As always, the ODE we wish to solve is

azy” + a1y’ + agy = g(z).

(1) Find the general solution of the associated homogeneous ODE aoy” + a1y +
agy = 0. This general solution has the form c;y;(x) 4 coyz(x), where ¢; and
co are constants.

(2) Try to find a particular solution of the form y,(x) = ¢1(2)y1 (x) +ca(x)ya(2),
where we replace the constants ¢; and ¢y with unknown functions ¢;(z),
ca(x).

(3) Require additionally that ¢jy; + ¢y = 0, so that now y;, = c1y) + c2ys.

(4) Now evaluate:

agy, + ary, +aoy, = ax(ciy; + chyy + i 4 coyy) + ar(cy) + cayy) + ao(ciyr + caye)
= ax(c1y) + chys) + ai(@) (aoyf + ary + aoyr) + c2()(a2ys + arys + aoye)
= ax(chyy + chyh).

(5) We conclude with the system of first order ODEs

x
o+ =0, o+ g = 20,
Recall that y; and ys are now known functions, so the unknown functions
we wish to find are ¢i(x) and co(x).
(6) We can solve this system of linear ODEs for ¢; and ¢y by hand, and then

write down y,. This in turn gives us the general solution of the non-
homogeneous ODE we are looking for.

We now have two very different methods to solve non-homogeneous, linear, sec-
ond order ODEs with constant coefficients. Each method has its advantages and
disadvantages, and it is not always easy to decide which to use. Here is a good
guideline:

e If the right hand side g(x) appears in the table in the previous section, or is
a linear combination of several of these terms, the method of undetermined
coefficients will be easier, and you should use it.

e Otherwise you should use variation of parameters, and (if necessary) leave
the ¢;(z) and co(z) as integrals.
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