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1. Definitions

Recall that a finite sequence has the form {yn}Nn=0 and an infinite sequence has
the form {yn}∞n=0. A difference equation of order m has the form

(1) yn+m = F (n, yn, yn+1, . . . , yn+m−1),

where F is a given function. In general, our task will be to solve the initial value
problem

(2) yn+m = F (n, yn, yn+1, . . . , yn+m−1), y0 = c+ 0, y1 = c1, . . . , ym−1 = cm−1

for a given right hand side F . Notice that we should assign m initial conditions
for a difference equation of order m. Another way to think of this is to say that
when we’re picking solutions of a difference equation of order m, we must make m
choices (each of which is an initial condition). In this way, we should imagine the
space of solutuons to (1) as being m-dimensional. For instance,

yn+1 = nyn, yn+1 =

(
1

2

)n
yn

are both difference equations of order 1, i.e. first order difference equations. It
might be instructive to stop reading right now and write out the first several terms
of both of these sequences, if we take y0 = 1.

A solution to a difference equation is a sequence of number {yn}∞n=0 such that

yn+m = F (n, yn, yn+1, . . . , yn+m)

for all n = 0, 1, 2, 3, . . .
Difference equations come in several different varieties, which we start to list

now. If the index n does not appear in the formula for F , then we call the equation
autonomous; otherwise it is non-autonomous. If F is a linear function in the
variables yn, yn+1, . . . , yn+m−1, then we say the difference equation is linear, and
otherwise we say it is nonlinear. Notice that a linear difference equation need not
be linear in the n variable. For instance,

yn+2 =
1

n2
+ yn − yn+1
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1



is a linear, second order, non-autonomous difference equation. A linear difference
equation has coefficients in front of each of its terms, which can either be con-
stant (with respect to the index n), or variable (i.e. nonconstant). Finally, if the
sequence {yn = 0}∞n=0 is a solution to the difference equation, then we say it is
homogeneous, and otherwise we say it is non-homogeneous. Notice that all of
these descriptions of the difference equation depend only on the function F , and
make no reference at all to the initial value y0.

One of the main themes we will see is that linear difference (and differential)
equations are much easier to solve than nonlinear equations. In fact, we will see
that we can often write down solutions to linear difference equations, very explicitly,
whereas we often have no hope of writing out an explicit solution to a nonlinear
difference equation. This phenomenon persists to differential equations.

2. Some basic examples

It will be worthwhile to consider some examples before we continue. You’re
already familar with the arithmetic and geometric sequences from MAM1000. A
sequence of numbers {yn}∞n=0 is arithmetic if the difference yn+1−an = d is the same
for all n. For instance, if d = 2 and y0 = 0 we obtain the sequence of non-negative
even integers:

y0 = 0, y1 = 2, y2 = 4, y3 = 6, · · · , yn = 2n, · · · .

This sequence is a solution to the difference equation

yn+1 = yn + 2

with the initial condition y0 = 0. In this way, we can say the sequence {0, 2, 4, 6, . . . }
solves the initial value problem

yn+1 = F (n, yn) = yn + 2, y0 = 0.

This is a linear, first order, non-homogeneous, autonomous difference equation with
constant coefficients.

A sequence {yn}∞n=0 is geometric if the ratio yn+1/yn = r is the same for all n.
For instance, the sequence

y0 = 1, y1 =
1

2
, y2 =

1

4
, y3 =

1

8
, · · · , yn =

1

2n
, · · ·

is a geometric sequence with common ratio r = 1/2. We can recognize this sequence
as a solution to the initial value problem

yn+1 = F (n, yn) =
1

2
yn, y0 = 1.

This is a linear, first order, homogeneous, autonomous difference equation with
constant coefficients.

Another example you may have seen before is the Fibonacci sequence, which
solves the intial value problem

yn+2 = F (n, yn, yn+1) = yn + yn+1, y0 = y1 = 1.
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The first several terms of the solution are

y0 = y1 = 1, y2 = 2, y3 = 3, y4 = 5, y5 = 8, y6 = 13, y7 = 21, y8 = 34, y9 = 55, y10 = 89, . . .

This is a linear, second order, homogeneous, autonomous difference equation with
constant coefficients. We see that the terms of the Fibonacci sequence grow very
rapidly.

Here are some more complicated examples of difference equations. The equation

yn+2 = F (n, yn, yn+1) = ynyn+1

is second order, nonlinear, homogeneous, and autonomous. The equation

yn+1 = F (n, yn) =
1

n
y2n

is first order, nonlinear, non-autonomous, and homogeneous. The equation

yn+2 = F (n, yn, yn+1) = n− ynyn+1.

is second order, nonlinear, non-autonomous, and non-homogeneous. It can be much
more difficult to solve an initial value problem for these latter difference equations!

3. First order, linear, constant coefficient difference equations

We will begin with the simplest difference equations: those which are first order,
linear, with constant coefficient. We can write the general form of this difference
equation as

(3) yn+1 = F (n, yn) = ayn + g(n),

where a is a constant and g is a function. We will first treat the case g(n) = 0 for
all n; this is the autonomous and homogeneous case. Then we have a geometric
sequence, which we can compute explicitly.

Proposition 1. Let a and c be real numbers with a 6= 0. The solution to the initial
value problem

(4) yn+1 = F (n, yn) = ayn, y0 = c

is yn = can. On the other hand, if a = 0 then the solution to the same initial value
problem is y0 = c, and yn = 0 for n ≥ 1.

Observe that, regardless of what a is, the trivial sequence {yn = 0}∞n=0 is the
solution to the initial value problem with c = 0.

Proof. We use induction. Suppose that we already know

y0 = c, y1 = ca, y2 = ca2, . . . , yn = can

and we wish to find yn+1. Then by our difference equation we have

yn+1 = ayn = a(can) = can+1,

which satisfies our rule. Since we already have y0 = c (the base case of our induc-
tion), this completes the proof. �

We pause here to notice some key differences between solutions, depending on a.
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• If a > 0 then all the terms in the solution have the same sign (and the same
sign as c).
• If a < 0 then yn and yn+1 have opposite signs. That is, the terms in the

solution flip sign from positive to negative, and back again.
• if |a| < 1 then, regardless of what c is, we have

lim
n→∞

|yn| = lim
n→∞

|can| = |c| lim
n→∞

|a|n = 0.

• On the other hand, if |a| > 1 then

|yn| = |c||a|n →∞,

and the terms in the solution sequence very quickly become large.
• If |a| = 1 then |yn| = |c||a|n = |c|, and the terms in the solution sequence

all have the same size. (Notice that this does not mean the solution is the
constant sequence!)

Example: Let a = 1/3 and c = 2. Then the solution to the inital value problem

(5) yn+1 =
1

3
yn, y0 = 2

is given by yn = 2 · 3−n.
This example is very simple, but we can actually use it to find many other

solutions. Let’s look at an example to make this concrete. Suppose we wish to
solve

(6) yn+1 =
1

3
yn +

1

2
, y0 = c,

where c is a general, undetermined, number. This difference equation is first order,
linear, and non-homogeneous. We begin by trying to find some particular solu-
tion to the difference equation, without trying to match the initial condition y0 = c,
and in this regard the simplest possible solution would be constant: (yp)n = α for
all n. Let’s plug this in and see what α must be:

α = (yp)n+1 =
1

3
(yp)n +

1

2
=

1

3
α +

1

2
⇒ α =

3

4
.

Now we have a particular solution (yp)n = 3/4 for all n. It might be useful to verify
this really is a solution, which we can check with the computation

1

3
(yp)n +

1

2
=

1

3
α +

1

2
=

1

3
· 3

4
+

1

2
=

1

4
+

1

2
=

3

4
= α = (yp)n+1.

Attached to (6) we have the associated linear homogeneous difference equation,
which we get by setting the non-homogeneous part to 0:

(7) (yh)n+1 =
1

3
(yh)n, (yh)0 = c̄.

First notice that we did not choose the same initial conditions for (7) and for (6);
we’ll get to why we did this in a bit. Next, notice that we already know the solution
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to (7), namely (yh)n = c̄3−n. An interesting thing happens when we add these two
solutions together. Indeed, if we let yn = (yh)n + (yp)n then we see

yn+1 = (yh)n+1 + (yp)n+1 =
1

3
(yh)n +

1

3
(yp)n +

1

2
=

1

3
[(yh)n + (yp)n] +

1

2
=

1

3
yn +

1

2
.

Here we have used

(yp)n+1 =
1

3
(yp)n +

1

2
.

It remains only to relate c and c̄ to match the initial condition. We have

c = y0 = (yh)0 + (yp)0 = c̄+ α⇒ c̄ = c− 3

4
.

What we have just done might seem a little arcane, but in fact this trick always
works!

Theorem 2. Consider the initial value problem

(8) yn+1 = ayn + b, y0 = c.

If a 6= 1 then the solution is given by

(9) yn = an
(
c− b

1− a

)
+

b

1− a
.

Proof. We adapt exactly the same method we used for the previous example. First
we look for a particular solution to (8) which does not depend on n. We set
(yp)n = α for all n, and then

α = (yp)n+1 = a(yp)n + b = aα + b⇒ α =
b

1− a
.

Notice that we can solve for α precisely because a 6= 1. Again, we can check this
really is a solution very explicitly:

a(yp)n + b = aα + b = a · b

1− a
+ b =

ab+ b(1− a)

1− a
=

b

1− a
= α = (yp)n+1.

Next we associate to (8) the homogeneous equation

(yh)n+1 = a(yh)n, (yh)0 = c̄,

which we already know has the solution (yh)n = anc̄. Again, we get the solution to
(8) by summing to get yn = (yh)n + (yp)n. We now have

yn+1 = (yh)n+1 + (yp)n+1 = a(yh)n + a(yp)n+ b = ayn + b,

and so we do indeed have a solution to our difference equation. It remains to find
the constant c̄. Evaluating at n = 0 we have

c = y0 = (yh)0 + (yp)0 = c̄+ α = c̄+
b

1− a
⇒ c̄ = c− b

1− a
.

Summing everything together, we obtain exactly (9). �

We must treat the case of a = 1 separately, but we can still write out the solution
of (8) in this case.
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Theorem 3. The solution of the initial value problem

(10) yn+1 = yn + b, y0 = c

is given by

(11) yn = c+ nb.

Proof. We begin by writing out the first several terms of the sequence {yn}∞n=0,
which we compute explicitly by using (10) over and over, starting with y0 = c
(which is given). We have

y0 = c, y1 = c+ b, y2 = c+ b+ b = c+ 2b, y3 = c+ 2b+ b = c+ 3b, . . .

We see a pattern, which we can verify using induction. Suppose that yn = c+ nb.
Then

yn+1 = yn + b = c+ bn+ b = c+ (n+ 1)b,

which verifies the induction step. �

We now have a complete description of solutions to (8), for all possible values
of a, b, c. It will be useful for us to list some properties of these solutions, and to
make sense of these properties we will first need to define some terms. First notice
that we have some special solutions, which do not depend on n at all.

Definition 1. A solution {yn}∞n=0 is called an equilibrium solution if yn = α for
some number α and for all n. That is, an equilibrium solution does not depend on
n at all.

Corollary 4. If a 6= 1 the equilibrium solution of (8) is{
yn =

b

1− a

}∞
n=0

.

If a = 1 then (10) does not have an equilibrium solution, unless b = 0, in which
case every solution is an equilibrium.

Proof. This follows immediately from (9) and (11). �

We pause here for some applications. First consider a saving account which is
compounded monthly. Suppose we deposit R10, 000 into an account, which earns
interest rate of 3% per month. After n months, how much money is in the account?
We can answer this question by solving an initial value problem for a difference
equation. Let yn be the amount in the account after n months, so that

y0 = 10, 000, yn+1 = yn + .03yn = 1.03yn.

The difference equation says that every month the amount of money in the account
increases by 3% of its present total. We can solve this difference equation to get

yn = (1.03)n10, 000.

We can make this example a little more general, by saying that after the initial
deposit we withdraw R100 per month. Now we change the difference equation to

yn+1 = 1.03yn − 100, y0 = 10, 000
6



which we still know how to solve. The solution to this initial value problem is

yn = 1.03n
(

10, 000− (−100)

1− 1.03

)
+

(−100)

1− 1.03
' (1.03)n(6667) + 3333.

Next suppose we borrow the large sum of R250, 000 from a bank in order to buy
a house. This time, the bank charges 3% interest per month, and each month we
pay some fixed amount b, which we will determine just now. If we want to pay off
the entire loan in 20 years, how much must we pay each month? We set up the
same sort of difference equation as before. Let yn be the amount of money we still
owe after n months, and let b be the (fixed) amount we pay each month. Then we
have

yn+1 = 1.03yn − b, y0 = 250, 000, y240 = 0.

The last displayed equation above says that we pay of the loan entirely in exactly
20 years. Our general solution has the form

yn = (1.03)n
(

250, 000− (−b)
1− 1.03

)
+

(−b)
1− 1.03

,

and so we can solve

0 = y240 = (1.03)240
[
250, 000− b

.03

]
+

b

.03
⇒ b =

(1.03)240 · 7, 500

(1.03)240 − 1
' 7, 506.

A second quick computation reveals that over the life of the loan we end up paying
a grand total of R1, 801, 500, which is much more than the original amount we
borrowed.

4. General first order difference equations

A general first order difference equation has the form

yn+1 = F (n, yn),

where F is a function. We will devote this section to a special case, when the
system is autonomous. This means we have

(12) yn+1 = F (yn).

4.1. Equilibrium solutions. It is worthwhile to first think of an example:

(13) yn+1 = yn − 4y3n.

We will not find the general solution to this difference equation, but we can easily
find the equilibrium solutions. These have the form yn = α for all n, and so we
must have

α = yn+1 = yn − 4y3n = α− 4α3 = α(1− 4α2)⇔ α = 0,±1

2
.

In general, we have the following Proposition.

Proposition 5. The difference equation

yn+1 = F (yn)

has {yn = α}∞n=0 as an equilibrium if and only if α = F (α).
7



Proof. If α = F (α) then we have

yn+1 = α = F (α) = F (yn),

and so {yn = α} is an equilibrium solutions. In the other case, α 6= F (α), and we
begin our difference equation with the initial condition y0 = α. Then y1 = F (α) 6=
α, and so {yn = α} is not a solution. �

4.2. Stability of equilibria. By themselves, equilibria (this is the plural or equi-
librium) are not very interesting; they don’t ever change at all. However, it is very
interesting to understand the behavior of solutions to a difference equation of the
form (12) near an equilibrium solution. In fact, this is often the most we can do.

Definition 2. Let {yn = α} be an equilibrium solution of the difference equation
(12), so that α = F (α). This solution is stable if y0 close to α implies yn is
close to α for all n. More precisely, for every positive ε there is a δ > 0 such
that |y0 − α| < δ implies |yn − α| < ε for all n. More strongly, an equilibrium
is asymptotically stable if for y0 close to α we must have limn→∞ yn = α. In
more formal language, this says that there is a δ > 0 such that |y0−α| < δ implies
limn→∞ yn = α.

Notice that asymptotically stable implies stable. If an equilibrium is not stable,
it is called unstable.

Recall that we already found the equilibrium of a linear, first order, difference
equation with constant coefficients. This difference equation has the form

yn+1 = ayn + b,

and (provided a 6= 1) the equilibrium solution is yn = b
1−a

Proposition 6. Provided a 6= 1, the equilibrium of (8) is stable if and only if
|a| < 1, in which case it is asymptotically stable.

Proof. This follows immediately from (9). �

It turns out we can generalize this last proposition to show the following.

Theorem 7. Let α be an equilibrium solution of the difference equation

yn+1 = F (yn),

where F is a differentiable function of y, and F ′(y) is continuous. If |F ′(α)| < 1
then α is an asymptotically stable equilibrimum, while if |F ′(α)| > 1 then α is
unstable. In the case |F ′(α)| = 1 the test is inconclusive.

The proof goes a bit beyondthe level of this course, but it is a very nice use of
the Taylor theorem with remainder.

Again, we discuss some examples here. To begin, we examine the difference
equation

yn+1 = F (yn) = y2n + yn − 1

This has two equilibrium solutions, which we find by setting

α = F (α) = α2 + α− 1⇔ 0 = α2 − 1 = (α + 1)(α− 1)⇔ α = ±1.
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We see that the equilibrium solutions are precisely α = 1 and α = −1, and next
we compute

F ′(α) = 2α + 1, F ′(1) = 3, F ′(−1) = −1.

We see from our theorem that α = 1 is an unstable equilibrium, but the test is
inconclusive for the equilivrium α = −1. However, we can draw a cobweb diagram
(see the next section) to see that α = −1 is stable.

Suppose we want to model the flow of money in a household. We let Yn represent
income, that is the amount of money the members of the household get paid in
their jobs; let Cn be the consumption, that is the total amount the members of the
household spend; and let In be the total amount the members of the household
puts into savings and investments. We have the first relation:

Yn = Cn + In.

Next we suppose that the consumption in month n is a multiple of the income of
the previous month:

Cn+1 = aYn.

We combine these two equations to get

Cn+1 = aCn + In+1.

This is still too general to solve, because we have two unknowns (the consumption
and the investment), but now we make the following simplification: we assume that
we invest a fixed amount b every month. Now we have

Cn+1 = aCn + b,

which is exactly the difference equation (8). Notice that we must have a > 0
because one can only spend a positive amount of money on rent, food, etc. Also
notice that a < 1 because we never be able to spend more than our income. Thus
the present model is always asymptotically stable.

We consider another model which simulates the supply and demand for some
product. Suppose that your new company introduces a product, and after n months
the new product sells for a price of pn. The demand after n months is for dn units,
and at the start of the month you deliver sn units. We suppose that

sn = α + βpn, dn = γ − δpn,

where α, β, γ, δ are all positive numbers. We see that γ is the demand for your
product when it is free, that (because β > 0) you can supply more product when
the price is higher, and that (also because δ > 0) you sell more product when the
price is lower. As a simple model, we set the supply at month n + 1 equal to the
demand at month n, so that

α + βpn+1 = γ − δpn ⇔ pn+1 =
γ − α
β
− δ

β
pn = apn + b.
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Here we have set a = γ−α
β

and b = − δ
β
. We already know that the solution to this

difference equation is given by (9), and that we have an equilibrium solution is

pn =
b

1− a
=
γ − α
β − δ

,

and that this equilibrium is stable if and only if 1 > |a| = |δ/β|, i.e. if and only if
|δ| < |β|.

4.3. The cobweb method. The cobweb method is a method to graph the solution
to a first order, autonomous, difference equation. These difference equations have
the form

yn+1 = F (yn),

where F is a given function. The procedure is as follows:

(1) On your paper, plot the x and y axes, and sketch the graphs y = x and
y = f(x).

(2) Plot the point (y0, 0), and then draw a vertical line connecting it to the
graph y = f(x); this vertical line will meet the graph at the point (y0, f(y0)) =
(y0, y1).

(3) Draw a horizontal line connecting the point (y0, y1) to the graph y = x; this
horizontal line will meet the graph at the point (y1, y1).

(4) Draw a vertical line to connect the point (y1, y1) to the graph y = f(x);
this vertical line will meet the graph at the point (y1, f(y1)) = (y1, y2).

(5) Draw a horizontal line connecting the point (y1, y2) to the graph y = x; this
horizontal line will meet the graph at the point (y2, y2).

(6) Repeat as many times as you please.

We make some comments. First, observe that y = α is an equilibrium solution
if and only if f(α) = α, which happens if and only if the two graphs intersect at
x = y = α. If you happen to pick y0 = α then the sequence of points you get
using the cobweb method will just be (α, α), repeated over and over again. If α
is asymptotically stable, then starting with y0 near α will produce a sequence of
points going towards (α, α).

Exercise: Consider the difference equation yn+1 = y2n, and observe that α =
0,±1 are the equilibrium solutions. Start the cobweb method with both y0 = 1/2
and y0 = 3/4, and see what happens. What happens if you start the cobweb
method with y0 = 1.1?

5. First order, linear, homogeneous systems

Here we study some properties of first order, linear, homogeneous systems of
difference equations with constant coefficients. The general form of this system is

yn+1 = Ayn, yn ∈ RN , A ∈MN×N .
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5.1. The two by two case. In the case d = 2 we can write this as[
xn+1

yn+1

]
=

[
a11 a12
a21 a22

] [
xn
yn

]
.

This system has some very special solutions given by eigenvectors of the coeffi-
cient matrix A. If

v =

[
v1
v2

]
is an eigenvector with eigenvalue λ, this means Av = λv. Then if we start with the
initial condition [

x0
y0

]
=

[
v1
v2

]
we have [

x1
y1

]
= Av = λv = λ

[
v1
v2

]
and [

x2
y2

]
= A(λv) = λAv = λ2v = λ2

[
v1
v2

]
and so on. By induction we see that the solution is[

xn
yn

]
= λn

[
v1
v2

]
.

In fact, this remains true even in the N ×N case: if A ∈MN×N and v ∈ RN is an
eigenvector of A with eigenvalue λ, then yn = λnv solves the difference equation
yn+1 = Ayn.

In the case that the coefficient matrix

A =

[
a11 a12
a21 a22

]
is diagonalizable, we can find two linearly independent eigenvectors

u =

[
u1
u2

]
, v =

[
v1
v2

]
,

which in fact form a basis of R2. (You may want to revise your linear algebra notes
to see this.) Then we can write any arbitrary vector w as a linear combination of
u and v, say w = αu+ βv. We claim the following theorem:

Theorem 8. Let

A =

[
a11 a12
a21 a22

]
have two linearly independent eigenvectors

u =

[
u1
u2

]
, v =

[
v1
v2

]
,

with Au = µu and Av = λv. Also let[
c1
c2

]
= αu+ βv.
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Then the solution to the initial value problem

(14)

[
xn+1

yn+1

]
= A

[
xn
yn

]
=

[
a11 a12
a21 a22

] [
xn
yn

]
,

[
x0
y0

]
=

[
c1
c2

]
is

(15)

[
xn
yn

]
= αµnu+ βλnv.

Proof. We first verify that (15) matches the initial condition. We have[
x0
y0

]
= αu+ βv =

[
c1
c2

]
as desired. Now we apply A to see that (15) solves (14). Indeed,

A

[
x0
y0

]
= A(αu+ βv) = αAu+ βAv = αµu+ βλv =

[
x1
y1

]
.

Continuing, we see[
xn+1

yn+1

]
= A

[
xn
yn

]
= A(αµnu+ βλnv) = αµnAu+ βλnAv = αµn+1u+ βλn+1v,

which proves that (15) does in fact solve (14). �

Here is an example.1 Suppose that during a given year 10% of the people living
in the Cape Town city bowl leave for the suburbs, while the remaining 90% stay
in the city bowl. At the same time, 2% of the people living in the suburbs move to
the city bowl, while 98% of the people living in the suburbs stay. If we let sn be
the number of people living in the suburbs each year, and cn the number of people
living in the city, we have the system of difference equations

sn+1 = .98sn + .1cn, cn+1 = .02sn + .9cn,

which we can rewrite in matrix form as[
sn+1

cn+1

]
=

[
.98 .10
.02 .90

] [
sn
cn

]
= A

[
sn
cn

]
.

With a little bit computuation, we see that the eigenvalues of the matrix A are
λ = 1 and µ = .88, with associated eigenvectors

v =

[
5
1

]
, Av = v, u =

[
−1

1

]
, Au = .88u.

We see by (15) that the general solution to[
sn+1

cn+1

]
=

[
.98 .10
.02 .90

] [
sn
cn

]
is [

sn
cn

]
= α(λ)nv + βµnu = α

[
5
1

]
+ β(.88)n

[
−1

1

]
,

where we must choose the constants α and β to match the initial conditions.

1The statistics in this example are all made up for the purposes of explanation.
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We can notice something interesting if we take a limit as n→∞. In this case, we
see µn = (.88)n → 0, and so only the term αv remains in our solution. Thus, in the
limit, the ratio of people living in the suburbs to people living in the city is always
close to 5 : 1 after long time, regardless of the initial population distribution.

5.2. The N×N case. Now we continue to the case where the coefficient matrix A
is an N ×N matrix. Again, we will only be able to completely solve this when A is
diagonalizable, i.e. when A has N linearly independent eigenvectors. (To describe
the solution in the general case, we would need to write A in Jordan normal form.)

To make the notation a little easier, we write a term in our sequence as a vector
yn, which we think of as a column. Thus when we write yn we really have

yn =


(yn)1
(yn)2

...
(yn)N

 .
As before, we have the system of difference equations

yn+1 = Ayn,

where each yn is a vector in RN (or in CN). As before, we have an easy solution
if we assume that the initial condition y0 is an eigenvector of A with eigenvalue
λ; in this case, the solution is yn = λny0. We can verfy this solves the difference
equation using the fact that y0 is an eigenvector with eigenvalue λ:

Ayn = A(λny0) = λnAy0 = λn+1y0 = yn+1.

The following theorem has exactly the same proof as the previous theorem.

Theorem 9. Let A ∈MN×N be a matrix with N linearly independent eigenvector
v1, . . . , vN , such that Avi = λivi for i = 1, . . . , N . Then the solution to the initial
value problem

(16) yn+1 = Ayn, y0 = c ∈ RN

is given by

(17) yn = a1λ
n
1v1 + a2λ

n
2v2 + · · ·+ aNλ

n
NvN ,

where
c = a1v1 + a2v2 + · · ·+ aNvN .

We consider another example.2 Suppose that UCT wishes to gather statistics on
its MSc sctudents. A typical MSc is a two-year degree, and so there will be students
in their first year, and students in their second year. Students can occasionally take
longer than two years to complete their degrees, and we will group them with the
remaining second year students. Data shows that in a given academic year 40%
of ”second year” MSc students will complete their degrees, 30% will remain in the
programme without finishing, and 30% will quit their degrees without finishing.
Similarly, in a given year, 10% of first year MSc students will finish their degrees,

2The statistics in this example are all made up for the purposes of explanation.
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50% will move on the the second year of their studies, 20% will need to repeat
their first year of studies, and 20% will quit without finishing their degrees. We
can represent this data by writing

yn+1 = Ayn =


1 0.4 0.1 0
0 0.3 0.5 0
0 0 0.2 0
0 0.3 0.3 1

 yn.
Here yn is a column vector with four entries:

yn =


# MSc students graduated in year n

# second year MSc students in year n
# first year MSc students in year n
# MSc students who quit in year n

 .
UCT wants to know (after many years) how many of its MSc students will complete
their degrees and how many will quit without finishing.

With a little bit of work we can diagonalize A:

A =


1 0.4 0.1 0
0 0.3 0.5 0
0 0 0.2 0
0 0.3 0.3 1

 = QDQ−1

=


1 −4 19 0
0 −7 40 0
0 0 8 0
0 −3 13 1




1 0 0 0
0 0.3 0 0
0 0 0.2 0
0 0 0 1




1 4/7 27/56 0
0 1/7 5/7 0
0 0 1/8 0
0 3/7 29/56 1

 .
In this notation, the solution to our difference equation is

yn = Any0 = (QDQ−1)ny0 = QDnQ−1y0.

We can now study the behavior of this system after many years, by taking a
limit as n→∞. We see

L = lim
n→∞

An = lim
n→∞

(QDQ−1)n = Q( lim
n→∞

Dn)Q−1

=


1 −4 19 0
0 −7 40 0
0 0 8 0
0 −3 13 1




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1




1 4/7 27/56 0
0 1/7 5/7 0
0 0 1/8 0
0 3/7 29/56 1

 =


1 4/7 27/56 0
0 0 0 0
0 0 0 0
0 3/7 29/56 1

 .
If we suppose that initially we have the same number of first and second year MSc
students, then we can write

y0 =


0

0.5
0.5

0

 ,
14



and so

y∞ = lim
n→∞

yn = lim
n→∞

(Any0) = ( lim
n→∞

An)y0

= Ly0 =


1 4/7 27/56 0
0 0 0 0
0 0 0 0
0 3/7 29/56 1




0
0.5
0.5

0

 =


59/112

0
0

53/112

 .
Thus we see that, after many years, we would expect that about 52.7% of MSc
students finsh their degrees, and the remaining students quit without finishing.

6. Second order, linear, constant coefficient difference equations

In this section we consider second order, linear, constant coefficient difference
equations, which all have the form

yn+2 = −a1yn+1 − a0yn + g(n),

where a0 and a1 are numbers and g is a function of n. We can rearrange this to
read

(18) yn+2 + a1yn+1 + a0yn = g(n).

Notice that, because we have a second order difference equation, we shoul assign
two initial conditions to solve an initial value problem. In other words, the space
of solutions to this difference equation (without prescribing any of the initial data)
should be two-dimensional.

6.1. The homogeneous case. We begin with the homogeneous case, which oc-
curs when g(n) = 0 for all n. In this case, (18) becomes

(19) yn+2 + a1yn+1 + a0yn = 0.

We guess that a solution has the form yn = rn for some r ∈ R or r ∈ C. Substi-
tuting this into (19) we have

0 = rn+2 + a1r
n+1 + a0r

n = rn(r2 + a1r + a0)⇔ 0 = r2 + a1r + a0.

Thus we see yn = rn solves (19) if and only if

(20) r2 + a1r + a0 = 0.

We call (20) the characteristic equation associated to (19).
Here is a quick example. Consider

yn+2 + 5yn+1 + 6yn = 0.

In this case, the characteristic equation is

0 = r2 + 5r + 6 = (r + 2)(r + 3)⇔ r = −2, r = −3.

Thus we obtain two (linearly independent) solutions

(y1)n = (−2)n, (y2)n = (−3)n.

How do we choose between them? The answer to this question is given by our
choice of initial conditions.

15



Before we go further, we need a quick lemma.

Lemma 10. Let {(y1)n} and {(y2)n} solve the difference equation

yn+2 + a1yn+1 + a0y0 = 0.

Then so does {α(y1)n + β(y2)n} for any pair of real numbers α and β.

Proof. We compute:

0 = α[(y1)n+2 + a1(y1)n+1 + a0(y1)n] + β[(y2)n+2 + a1(y2)n+1 + a0(y2)n]

= α(y1)n+2 + β(y2)n+2 + a1α(y1)n1 + a1β(y2)n+1 + a0α(y1)n + a0β(y2)n.

�

Remark 1. This lemma seems very simple, but it is actually very important. It is
called the principle of superposition.

Suppose we want to solve the initial value problem

yn+2 + 5yn+1 + 6yn = 0, y0 = 1, y1 = 2.

We already know two solutions of the difference equation, (−2)n and (−3)n, and
we know that (by the principle of superposition) yn = α(−2)n + β(−3)n is also a
solution. In fact, because we only a have second order equation, this is a complete
list of all possible solutions to the difference equation. It remains to find α and β
to match the initial conditions. We have

1 = y0 = α + β, 2 = y1 = −2α− 3β ⇒ α = 5, β = −4.

We have just found our solution: yn = 5(−2)n − 4(−3)n.
We have the following general theorem.

Theorem 11. Consider the difference equation

yn+2 + a1yn+1 + a0yn = 0,

and suppose the characteristic equation r2 + a1r + a0 = 0 has two distinct roots r1
and r2. Then the general solution has the form yn = αrn1 +βrn2 , where α and β can
be any numbers you like. In this case one can solve the intitial value problem

yn+2 + a1yn+1 + a0yn = 0, y0 = c0, y1 = c1

by chooing α and β appropriately.

Proof. We have just seen that both rn1 and rn2 solve the difference equation, so by
the superposition principle so does yn = αrn1 + βrn2 . It remains to see that one can
solve any initial value problem, so long as r1 6= r2. Substituting, we have

c0 = α + β, c1 = αr1 + βr2,

which we can rewrite as [
c0
c1

]
=

[
1 1
r1 r2

] [
α
β

]
.
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This matrix equation always has a unique solution precisely when

det

[
1 1
r1 r2

]
= r2 − r1 6= 0.

�

Here is an example. Consider the initial value problem

yn+2 + yn+1 +
5

4
yn = 0, y0 = −1, y1 = 1.

The characteristic equation is

r2 + r +
5

4
⇒ r± =

−1±
√

1− 5

2
= −1

2
± i.

We see that we have two distinct roots, which happen to be complex conjugate
numbers. The general solution is then

yn = α

(
−1

2
+ i

)n
+ β

(
−1

2
− i
)n

,

and we can determine the coefficients α and β from the initial conditions. Substi-
tuting, we see

−1 = y0 = α + β, 1 = y1 = α

(
−1

2
+ i

)
+ β

(
−1

2
− i
)
,

which we can solve to get

α = −1

2
− i

4
, β = −1

2
+
i

4
⇒ yn =

(
−1

2
− i

4

)(
−1

2
+ i

)n
+

(
−1

2
+
i

4

)(
−1

2
− i
)n

.

We can, of course, rewrite all these complex numbers in polar form. Then

r± =

√
5

2
(cos θ + i sin θ), tan θ = −2.

Either way, we obtain the same answer in the end.
We next consider the case when the characteristic equation (20) has a repeated

root, which we call r∗. This means

r2 + a1r + a0 = (r − r∗)2 ⇔ a1 = −2r∗, a0 = r2∗.

In this case, we need to find a second linearly independent, other than rn∗ . We
guess again, this time with nrn∗ . We check that

(n+ 2)rn+2
∗ + a1(n+ 1)r∗ + a0n = (n+ 2)r2∗ − 2(n+ 1)r2∗ + nr2∗ = 0.

We now have two linearly independent solutions, and we can try to write

yn = αrn∗ + βnrn∗ = (α + nβ)rn∗ .

Again, we want to show that we can solve any initial value problem using a linear
combination of these two solutions. Suppose we want to solve

yn+2 + a1yn+1 + a0y0 = 0, y0 = c0, y1 = c1,
17



where r∗ is a double root of the characteristic equation r2 + a1r+ a0 = 0. We look
for a solution of the form

yn = (α + nβ)rn∗ .

Substituting, we see

c0 = α, c1 = (α + β)r∗ ⇔
[
c0
c1

]
=

[
1 0
r∗ r∗

] [
α
β

]
.

This last matrix equation always has a unique solution provided

det

[
1 0
r∗ r∗

]
= r∗ 6= 0.

We consider another example, and solve the initial value problem

yn+2 − 4yn+1 + 4yn = 0, y0 = 2, y1 = 1.

The characteristic equation is

0 = r2 − 4r + 4 = (r − 2)2 ⇒ r∗ = 2.

We see that we have a double root at r∗ = 2, and so the general solution is

yn = (α + nβ)2n.

Substituting our initial conditions we see

2 = y0 = α, 1 = y1 = 2(α + β)⇒ α = 2, β = −3

2
.

The solution is therefore

yn =

(
2− 3

2
n

)
2n.

There is one remaining case to consider, namely r∗ = 0 is a double root of the
characteristic equation. In this case we have

yn+2 = 0, y0 = c0, y1 = c1,

and we can read off that the only solution is {c0, c1, 0, 0, 0, . . . }. We summarize
with the following theorem.

Theorem 12. Consider the difference equation

yn+2 + a1yn+1 + a0yn = 0,

with characteristic equation

r2 + a1r + a0 = 0.

If the characteristic equation has two distinct roots r1 6= r2 then all solutions have
the form

yn = αrn1 + βrn2
for some choice of numbers α and β. If the characteristic equation has a nonzero
double root r∗ 6= 0 then all solutions have the form

yn = (α + nβ)rn∗ .
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Finally, if r∗ = 0 is a double root then the general solution is

{c0, c1, 0, 0, 0, . . . }.

6.2. Nonhomogeneous equations. In general, it is very difficult to solve

yn+2 + a1yn+1 + a0yn = g(n)

when the right hand side g(n) of the equation is nonzero. However, there is one
special case in which we can explicitly write down the solution:

(21) yn+2 + a1yn+1 + a0yn = b,

where b is a constant. In this case, we mimic what we did in the first order case: we
find a particular solution of the nonhomogeneous equation, and write the general
solution as the sum of this particular solution and the solution to the associated
homogeneous equation, which is yn+2 + a1yn+1 + a0yn = 0. The simplest possible
particular solution is a constant, i.e. (yp)n = α for all n. Plugging this in, we have

(22) α + a1α + a0α = α(1 + a1 + a0) = b⇒ α =
b

1 + a1 + a0
.

This is a valid solution if 1 + a1 + a0 6= 0. If 1 + a1 + a0 = 0 then we try to find a
particular solution of the form (yp)n = αn. Substituting we have

b = (yp)n+2 + a1(yp)n+1 + a0(yp)n = α(n+ 2) + αa1(n+ 1) + αa0n

= α[n+ 2 + a1n+ a1 + a0n] = α[n(1 + a1 + a0) + 2 + a1]

= α[2 + a1],

where we have used 1 + a1 + a0 = 0. Thus we have

α =
b

2 + a1
,

which is a valid solution so long as a1 6= −2. If we’re very unlucky, then 1+a1+a0 =
0 and a1 = −2, so we must have a0 = 1. In this case our difference equation reads

yn+2 − 2yn+1 + yn = b,

and we look for a solution of the form (yp)n = αn2. Substituting, we have

b = (yp)n+2 − 2(yp)n+1 + (yp)n = α(n+ 2)2 − 2α(n+ 1)2 + αn2

= α[n2 − 4n+ 4− 2(n2 + 2n+ 1) + n2] = 2α,

and so we have α = b/2 as our solution.This now lists a particular solution of (21)
in all possible cases. As we did before, we can find the general solution to this
difference equation by summing this particular solution we have just found with
the general solution to the associated homogeneous equation:

yn+2 + a1yn+1 + a0yn = 0.
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