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1. Definitions

An ordinary differential equation of order k has the form

(1) F

(
x, y,

dy

dx
,
d2y

dx2
, . . . ,

dky

dxk

)
= 0,

where F is a function of k+2 variables. We will usually write ODE as an abreviation
for ordinary differential equation. A function y(x) is a solution of the ODE (1) in
the interval a < x < b if it satisfies the equation (1) for all x in this interval.

We will usually be interested in solving an initial value problem. For an ODE
of order k, this has the form

F

(
x, y,

dy

dx
,
d2y

dx2
, . . . ,

dky

dxk

)
= 0(2)

y(x0) = c0,
dy

dx
(x0) = c1, . . . ,

dk−1y

dxk−1
(x0) = ck−1.

Notice that, for an ODE of order k, one must prescribe k initial conditions.
It is usual to see some examples.

• One can check that y(x) = 1
2
x2 solves the ODE (y′)2 − 2y = 0.

• One can also check that the function y(x) =
√

1− x2 solves the ODE

d

dx

(
y′√

1 + (y′)2

)
= 1,

at least for −1 < x < 1.
• For any real number k 6= 0, the functions y1(x) = cos(kx) and y2(x) =

sin(kx) solve the ODE y′′ + k2y = 0. The general solution to this ODE is
then

y(x) = a1y1(x) + a2y2(x) = a1 cos(kx) + a2 sin(kx),

and one can solve an initial value problem for this ODE by choosing a1 and
a2 so as to match the initial conditions.
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• For any real number k 6= 0 the function y1(x) = ekx and y2(x) = e−kx solve
the ODE y′′ − k2y = 0. The general solution to this ODE is then

y(x) = a1y1(x) + a2y2(x) = a1e
kx + a2e

−kx,

and one can solve an initial value problem for this ODE by choosing a1 and
a2 so as to match the initial conditions.

As we did with difference equations, we can describe an ODE with various terms.
An ODE is autonomous if the independent variable x does not appear in the
formula for the function F . An ODE is homogeneous if y ≡ 0 is a solution, i.e.
F (x, 0, . . . , 0) = 0. An ODE is linear if it has the form

0 = F

(
x, y,

dy

dx
, . . . ,

dky

dxk

)
= Q(x) + P0(x)y + P1(x)

dy

dx
+ · · ·+ Pk(x)

dky

dyk
,

where Q,P0, . . . , Pk are functions of x. In this case, we will usually assume that
Pk 6= 0, and rearrange this equation to read

q(x) =
dky

dxk
+ pk−1

dk−1y

dxk−1
+ · · ·+ p1(x)

dy

dx
+ p0(x)y(x),

where Here q = −Q/Pk and pj = Pj/Pk for j = 0, 1, . . . , k − 1. In this form we
call p0, p1, . . . , pk−1 the coefficients of the linear ODE, and we say it has constant
coefficients if all of these functions are constants.

For this set of notes we will concentrate on first order ODEs, which (according
to (1)) have the form

F (x, y, y′) = 0.

In an associated initial value problem we prescribe one initial value, namely y(x0) =
c0. According to the descricptions above, a first order ODE is autonomous if it has
the form F (y, y′) = 0 and it is linear if it has the form y′ = p(x)y + q(x).

2. Separable equations

A separable ODE has the form

(3)
dy

dx
=
f(x)

g(y)
.

Notice that we require g(y) 6= 0 in order that (3) makes sense. We can write the
solution of this equation by integrating and using the Fundamental Theorem of
Calculus. Rearange (3) to read

g(y)
dy

dx
= f(x)

and integrate both sides of this equation with respect to x to get

(4)

∫ x1

x0

f(x)dx =

∫ x1

x0

g(y)
dy

dx
dx =

∫ y(x1)

y(x0)

g(y)dy.

Here we have used the chain rule to change variables within the integral.
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The most basic example to consider is

y′ = ky, y(0) = c,

where k 6= 0 is a fixed number and c is also a fixed number. In fact, this is the
most basic differential equation to understand, full stop. We can solve by writing

kx =

∫
kdx =

∫
1

y

dy

dx
dx =

∫
dy

y
= ln y + C.

(You might think there should be a second constant of integration from the integral
on the left hand side of the equation, but we can absorb it into the constant of
integration on the right hand side. After all, the sum of two constants is still a
constant.) Solving for y, we find

y = ekx+C = cekx,

where c = eC . One can even check that this is the correct initial condition:

y(0) = ce0 = c.

Here are some more examples. Consider the initial value problem

y′ =
x

y
, y(1) = 2.

We rewrite the ODE as yy′ = x and integrate (starting from x0 = 1):

1

2
(x21 − 1) =

∫ x1

1

xdx =

∫ y(x1)

y(1)

yy′(x)dx =
1

2
(y2(x1)− y2(1)).

Substituing the initial condition y(1) = 2 and solving for y(x1) we see

y(x1) =
√

2 + x21 − 1 =
√

1 + x21.

Thus we obtain a formula for our solution, namely y(x) =
√

1 + x2. Notice that
this function exists for all values of x, and so, for the initial condition y(1) = 2,
we have a global solution. It is easy to check that we do not get a global solution
for other choices of initial data. For instance, if we change y(1) = 1/2 then the
solution is

y(x) =
√
x2 − 3/4,

which only exists as a sensible function if |x| >
√

3/2.
Next we consider

y′ = xy, y(1) = 1.

Again, we rewrite the equation and integrate, to obtain

1

2
(x21 − x20) =

∫ x1

x0

x =

∫ y(x1)

y(x0)

y′dx

y
= ln y(x1)− ln y(x0) = ln

(
y(x1)

y(x0)

)
.

Using the initial condition y(x0) = y(1) = 1 we see

ln y(x) =
1

2
(x2 − 1)⇒ y = e

1
2
(x2−1).
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We consider

y′ = y2, y(0) = 1.

We separate variables to see

x =

∫
dx =

∫
dy

y2
= −1

y
+ c⇒ y =

1

c− x
.

Matching the initial condition we see

1 = y(0) =
1

c
⇒ c = 1⇒ y =

1

1− x
.

This gives us a well-defined solution so long as x < 1.
As a final example, we consider the model for logistic growth. This is an ODE

which is supposed to model a population in an area which cannot carry more than a
certain number of people/fish/animals/etc. For instance, we might suppose that we
have a pond with a certain number of fish in it, and the pond can only comfortably
hold 10,000 fish. That is, if the number of fish is more than 10,000, they become
over-crowded and start to die. If we let y(t) be the number of fish at time t, then
we must have y′(t) < 0 if y > 10, 000. On the other hand, when the population of
fish is small we expect a linear growth rate for the fish population. For instance,
we might expect something like y′(t) ' 10y when y is small. We can combine these
two phenomenon with the model

y′ = 10y

(
1− y

10, 000

)
.

This is a separable equation, which we can rearrange and integrate to solve, giving

t+ C =

∫
dy

y
(

1− y
10,000

) = ln y − ln

(
1− y

10, 000

)
= ln

(
y

1− y
10,000

)
.

Here we have used partial fractions to integrate. We can solve for y by taking an
exponential. Let c = eC , so that we have

cet =
y

1− y
10,000

⇒ y =
cet

1 + cet

10,000

=
10, 000cet

10, 000 + cet
.

If we set the initial population to 5, 000, then we find

5000 = y(0) =
10, 000c

10, 000 + c
⇒ c = 10, 000⇒ y(t) = 10, 000

et

1 + et
.

We can verify that in this case the population y is strictly increasing, and that it
has a horizontal asymptote at y = 10, 000 (which it never actually reaches).

3. First order linear ODE

As we wrote above, a first order linear ODE has the form

y′ + p(x)y = q(x)
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for two give functions p and q. Let’s actually start with an example, and consider

y′ +
1

x
y = 2.

Multiplying by x, we can rewrite this equation as

xy′ + y = (xy)′ = 2x⇒ xy = x2 + c⇒ y = x+
c

x
.

We can try to mimic this example in general. We start with the ODE

y′ + p(x)y = q(x),

and we’d like to multiply by some factor to make the left hand side into an exact
derivative. We call this integrating factor I(x), and we write

I(x)y′ + I(x)p(x)y = Iq(x).

Ideally, we’d like the left hand side of the equation above to be (Iy)′, so let’s see
what that means. We then must have

(Iy)′ = I ′y + Iy′ = Iy′ + Ipy ⇒ I ′y = Ipy ⇒ I ′

I
= p.

This is assuming that y 6= 0. We can integrate this last equation to get

ln I =

∫
I ′

I
dx =

∫
p(x)dx⇒ I(x) = e

∫
p(x)dx.

There is an integration of constant we’re ignoring, but adding it back in will only
multiply I by a constant factor, so we are in fact safe to ignore it. We now have
multiply our original ODE by the integrating factor I to get

y′e
∫
p(x)dx + p(x)ye

∫
p(x)dx =

d

dx

(
ye

∫
p(x)dx

)
= q(x)e

∫
p(x)dx.

We now integrate with respect to x to solve:

y(x) = e−
∫
p(x)dx

(
c+

∫
q(x)e

∫
p(t)dtdx

)
.

Let’s see some more examples. First consider

y′ + 2xy = x2, y(0) = 1.

The integrating factor is

I(x) = e
∫
p(x)dx = e

∫
2xdx = ex

2

,

so we have (
yex

2
)′

= x2ex
2 ⇒ y = e−x

2

(
c+

∫
x2ex

2

dx

)
.

We might have trouble evaluating this last integral, but in fact we really don’t need
to, at least in order to find c. We evaluate at x = 0 and write the integral as a
definite integral.

1 = y(0) = e−0
2

(
c+

∫ 0

0

x2ex
2

dt

)
⇒ c = 1⇒ y(x) = e−x

2

(
1 +

∫ x

0

t2et
2

dt

)
.
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Notice that we needed in the last formula for y(x) we needed to call the integration
variable something other than x, so we chose t (not that it really matters what we
call the integration variable).

Next consider
y′ − tan(x)y = cosx, y(0) = 2.

This time the integrating factor is

I(x) = e
∫
tanxdx = e− ln cosx =

1

cosx
.

Multiplying by I we now have( y

cosx

)′
= 1⇒ y = cosx(x+ c).

Evaulating at x = 0 we now have

2 = y(0) = cos(0)(0 + c)⇒ c = 2,

and so the solution to our initial value problem is

y(x) = cos x(x+ 2).

Sometimes an ODE which appears to be nonlinear is actually linear. Here is an
example. Consider the initial value problem

y2y′ +
3y3

x
= xy2, y(1) = 3.

This appears to be a nonlinear ODE, because we have verious powers of y involved,
but if we divide through by y2, the ODE becomes

y′ +
3y

x
= x,

which is in fact a nice linear equation. Of course, we should check that we are not
dividing by 0 here. We can see that the ODE is homogeneous, so y ≡ 0 is in fact
a solution, but it does not match our initial conditions. We will see that the other
solutions do our ODE never vanish. Returning to our transformed ODE, we wish
to solve

y′ +
3y

x
= x.

The integrating factor is

I = e
∫
(3/x)dx = e3 lnx = eln(x

3) = x3,

so multiplying by I we now have

(x3y)′ = x4 ⇒ x3y =
1

5
x5 + c⇒ y =

1

5
x2 +

c

x3
.

We finally find c by matching the initial condition. We have

3 = y(1) =
1

5
+ c⇒ c =

14

5
⇒ y =

1

5
x2 +

14

5x3
.

We’ll conclude this section with some applications. First suppose you set up a
saving account towards your retirement. You begin the account with R10, 000, and
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every month you deposity R500. Your account earns 8% per year, compounded
continuously. If we let S(t) be the amount you’ve saved after time t, then the
differential equation for S is

dS

dt
= .08S + 6000, S(0) = 10, 000.

(Notice that the constant on the right hand side is 6000 = 12 · 500 because the
appropriate time period is one year, not one month.) This is an initial value
problem for a linear, first order ODE, and we can find its solution using integrating
factors. The integrating factor is

I = e
∫
(−.08)dt = e−.08t,

and so we have
S = ce.08t − 75, 000.

Using the initial condition we find

10, 000 = S(0) = c− 75, 000⇒ c = 85, 000⇒ S = 85, 000e.08t − 75, 000.

How much money will we have saved up in 20 years? We evaluate:

S(20) = 346, 007.76.

We can compare this to the amount of money we have actually deposited into the
account, which is

10, 000 + 20 · 6, 000 = 130, 000.

Next we look at mortgages. Suppose you’d like to buy a house, and can afford to
spend R7500 per month on mortgage payments. The bank will charge r% annual
interest on our loan, compounded continuously, and we plan to pay off the loan in
20 years. This time, we let S(t) be the amount we owe at time t, and we have the
differential eequation

dS

dt
=

r

100
S − 7500 · 12, S(0) = S0.

Here the initial condition S0 is the amount we can borrow, which is what we wish
to compute. We solve the differential equation as we did before, to get

S(t) = ce
rt
100 +

9, 000, 000

r
.

This time we determine c by using S(20) = 0, namely the fact that we pay off the
loan in 20 years. We have

0 = S(20) = cer/5 − 9, 000, 000

r
⇒ c = −9, 000, 000e−r/5

r
.

Thus the inital amount we can borrow is

S(0) =
9, 000, 000

r
(1− e−r/5).

Finally we plug in some values of r:

r = 6⇒ S(0) = 1, 048, 208.68, r = 9⇒ 834, 701.11, r = 12⇒ 681, 961.54.
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4. Autonomous first order ODE

An autonomous, first order ODE has the form F (y, y′) = 0. We will see in this
section that most such equations are in fact separable, but in this section we will
concentrate on the properties of solutions, rather than formulas.

We begin by revisiting the logistic equation. Before, we wrote this as

y′ = 10y

(
1− y

10, 000

)
,

and it is supposed to model the population of fish in a pond which should only
hold at most 10, 000 fish. We can generalize this idea to model a population which
increases for small numbers, but decreases when the population is larger than some
critical number N , which we call the carrying capacity. We can model this as

y′ = ky
(

1− y

N

)
,

where k > 0 gives the rate of increase of y when it is small. We can in fact
determine everything we want to know about solutions without actually solving
the ODE. First, observe that we have two constant solutions, which correspond to
the zeroes of y′:

0 = y′ = y
(

1− y

N

)
⇔ y = 0 or y = N.

We can analyze the stability of these constant solutions by looking at the sign of y′.
Notice that y′ > 0 for 0 < y < N and y′ < 0 for y > N . Now suppose we start with
an initial condition y0 > 0 which is small. Then y′ > 0, so y will increase, moving
away from the constant solution 0, no matter how small y0 is. On the other hand,
suppose y0 is close to N . If y0 < N then y′ > 0 and so y will increase towards N
(but never actually reach it). Similarly, if y0 > N then y′ < 0 and y will decrease
towards N (but never actually reach it. Thus we see that 0 is unstabel but N is
asymptotically stable, to borrow the terminology we used for difference equations.

At this point, we make some formal definitions. Consider the autonomous ODE
y′ = f(y). The equilibrium solutions of this ODE are the constant solutions.

Lemma 1. The constant function α is an equilibrium of the ODE y′ = f(y) if and
only if f(α) = 0.

Proof. The function y(x) = α, where α is a constant, is a solution of the ODE if
and only if

0 =
d

dx
(α) = y′ = f(y) = f(α).

�

We have a definition of stability which will look very familiar.

Definition 1. An equilibrium y = α is stable if solutions with initial values near
α stay near α for all x. More precisely, for every ε > 0 there is δ > 0 such that if
|y0−α| < δ and we have |y(x)−α| < ε for all x. An equilibrium is asymptotically
stable if solutions with initial value close to α actually limit towards α. More
precisely, there is δ > 0 such that if |y0 − α| < δ then limx→∞ y(x) = α.
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Notice that an equilibrium solution which is asymptotically stable is also stable,
but the reverse may not be true. (In other words, one can find stable equilibria
which are not asymptotically stable.) An equilibrium which is not stable is called
unstable.

We have a familiar looking theorem.

Theorem 2. Let α be an equilibrium solution of the autonomous ODE y′ = f(y)
(i.e. f(α) = 0). This equilibrium is asymptotically stable if f ′(α) < 0, and unstable
if f ′(α) > 0. This test is inconclusive if f ′(α) = 0.

The formal proof of this theorem is a bit beyond the present course, but here
is some intuition for why it is true. If f ′(α) < 0 then f is decreasing near α. We
already know that f(α) = 0, so this implies f(y0) > 0 for y0 < α and f(y0) < 0
for y0 > α. Using the differential equation y′ = f(y), we see this means that y will
be increasing if y0 < α, while y will be decreasing if y0 > α. Thus, we see that if
we start with y0 near α then y(x) will move towards α, both for y0 > α and for
y0 < α, and so we conclude that α is asymptotically stable. The reasoning for the
case f ′(α) > 0 is similar.

As an example, we find and classify all the equilibria of the ODE

y′ = y cos y.

We have

0 = y′ = y cos y ⇔ y = 0 or y =
(2k + 1)π

2
.

We must evaluate a derivative:

df

dy
=

d

dy
(y cos y) = cos y − y sin y.

Evaluating, we see f ′(0) = 1 > 0, and so 0 is unstable. Also,

f ′
(

(2k + 1)π

2

)
= −(2k + 1)π

2
sin

(
(2k + 1)π

2

)
= (−1)k+1 (2k + 1)π

2
.

Thus the remaining equilibria are asymptotically stable if k is even and unstable if
k is odd.

We just saw at the beginning of this section that the logistic equation

y′ = ky
(

1− y

N

)
has two equilibrium solutions: y = 0 and y = N . The solution y = 0 is unstable
and the solution y = N is asymptotically stable. We can adapt this model by
adding in a threshold T with 0 < T < N . Here the interpretation is that if the
population falls below T then it starts to die out (because there are too few animals
to reproduce). Now the differential equation is

y′ = f(y) = −ky
(

1− y

T

)(
1− y

N

)
.
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The equilibrium solutions are the zeroes of f(y), which are easy to find; they are
y0 = 0, y1 = T and y2 = N . What about stability? We take a derivative:

df

fy
= −k

(
1− y

T

)(
1− y

N

)
+
ky

T

(
1− y

N

)
+
ky

N

(
1− y

T

)
.

Now evaluate these at each of our equlibria:

f ′(0) = −k < 0, f ′(T ) = k

(
1− T

N

)
> 0, f ′(N) = k

(
1− N

T

)
< 0.

Here we have used the fact that 0 < T < N . We conclude that y0 = 0 and y2 = N
are asymptotically stable, while y1 = T is unstable.

5. Existence and uniqueness (optional)

In this section we sketch a proof that, under some conditions, a first order initial
value problem always has a unique solution, at least in a small interval around the
initial value. The precise theorem is the following:

Theorem 3. Let F (x, y) be a function of two variables which is continuous and
sucht that ∂F

∂y
exists and is continuous. Then there exists ε > 0 such that the initial

value problem

(5)
dy

dx
= F (x, y), y(x0) = y0

has a unique solution in the interval x0 − ε < x < x0 + ε.

It is worthwhile to consider two examples showing that the hypotheses of this
theorem are as weak as possible. First, consider the initial value problem

y′ = F (y) = 2
√
y, y(0) = 0.

Observe that ∂F
∂y

is not continuous at y0 = 0 (in fact it does not even exist there).

Also, this initial value problem has two solutions, namely y(0) = x2 and y(x) = 0.
This is exactly why we must assume the function F (x, y) is reasonably nice. Second,
consider the initial value problem

y′ = F (y) = y2, y(0) = 1.

This is a separable ODE, and the general solution is y(x) = (c−x)−1, where c is the
constant of integration. Matching the initial condition y(0) = 1, we see c = 1, and
so y(x) = (1 − x)−1. This solution exists only in the interval {x < 1}. Therefore,
even if the right hand side F (x, y) is a very nice function, we cannot expect that
the solution of our initial value problem will exist for all x.

We will prove Theorem 3 in several steps. First we will tranform (5) into an
integral equation, then we will define a sequence of funtions which we would like to
converge to the the solution, and finally we will prove convergence. Along the way
we will need to discuss how one can measure the distance between two functions,
and the contraction mapping principle.
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Lemma 4. A function y(x) solves (5) if and only if

(6) y(x) = y0 +

∫ x

x0

F (t, y(t))dt.

Proof. If y solves (6) then by the Fundamental Theorem of Calculus we have

dy

dx
=

d

dx

∫ x

x0

F (t, y(t))dt = F (x, y(x)),

and

y(x0) = y0 +

∫ x0

x0

F (t, y(t))dt = y0,

which means exactly that y solves (5). On the other hand, if y solves (5) then

y0 +

∫ x

x0

F (t, y(t))dt = y0 +

∫ x

x0

y′(t)dt = y(x0) + y(x)− y(x0) = y(x).

�

For our second step, we define a sequence of functions. Start with y0(x) = y0 for
all x. Then for n ≥ 0 define

(7) yn+1 = y0 +

∫ x

x0

F (t, yn(t))dt = Φ(yn).

Here we are thinking of Φ as a function on the space of function. That is, Φ is an
operation which takes a certain function, yn, and turns it into a new function yn+1.
Things like Φ are usually called functionals. Observe that y solves (6) if and only
if y = Φ(y), so we immediately have the following corollary.

Corollary 5. The function y solves (5) if and only if y = Φ(y).

To complete the proof of Theorem 3 we would now like to show that the sequence
of functions {yn} converges to a fixed point of the function Φ; that is, yn → y∞ =
Φ(y∞). We need some tools.

Definition 2. Let [a, b] = {a ≤ x ≤ b} be a bounded, closed interval, and let y1(x)
and y2(x) be two continuous functions on [a, b]. Then

dist(y1, y2) = ‖y1 − y2‖ = max
x∈[a,b]

|y1(x)− y2(x)|.

Definition 3. Let [a, b] = {a ≤ x ≤ b} be a bounded, closed interval, and let
{yn(x)} be a sequence of continuous functions on [a, b]. We say yn → y pointwise
if for each x we have yn(x)→ y(x). We say yn → y uniformly if ‖yn − y‖ → 0.

Notice that uniform convergence implies pointwise convergence, but the reverse
implication may not be true. A good example to keep in mind for this phenomenon
is {yn(x) = xn} on the interval [a, b] = [0, 1]. We have

y∞(x) = lim
n→∞

yn(x) = lim
n→∞

xn =

{
0 0 ≤ x < 1
1 x = 1.
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It is also true, but a little harder to prove, that y∞ defined above is not the uniform
limit of any sequence of continuous functions. Thus, the sequence {xn} converges
pointwise but not uniformly.

We will need the following result, which we will not prove.

Theorem 6. A sequence of functions {yn} on the closed inteval [a, b] converges
uniformly if and only it satisfies the Cauchy criterion: for all ε > 0 there is N such
that m,n > N implies ‖ym − yn‖ < ε.

Definition 4. A functional Ψ on the space of continuous functions is a contraction
if there is k such that 0 < k < 1 and

‖Ψ(y1)−Ψ(y2)‖ ≤ k‖y1 − y2‖
for all functions y1 and y2.

We sketch a proof of the contraction mapping principle, which is a very useful
theorem.

Theorem 7. Any contraction has a unique fixed point. That is, if Ψ is a contrac-
tion on the space of functions y : [a, b] → R then there is a unique function y∗
which satisfies Ψ(y∗) = y∗.

Proof. Choose any continuous function y0 : [a, b] → R and define the sequence of
functions

y1 = Ψ(y0), y2 = Ψ(y1), . . . , yn+1 = Ψ(yn).

First notice that

‖yn+1 − yn‖ = ‖Ψ(yn)−Ψ(yn−1)‖ ≤ k‖yn − yn−1‖,
so by induction

‖yn+1 − yn‖ ≤ kn‖y1 − y0‖.
Now set M = ‖y1 − y0‖ and use the triangle inequality. For n > m we have

‖yn − ym‖ ≤ ‖yn − yn−1‖+ ‖yn−1 − yn−2‖+ · · ·+ ‖ym+1 − ym‖
≤ kn−1‖y1 − y0‖+ kn−2‖y1 − y0‖+ · · ·+ km‖y1 − y0‖

= M
n−1∑
j=m

kj ≤Mkm
∞∑
j=0

kj =
Mkm

1− k
.

Recall that k < 1, so, once we choose ε > 0, we can choose m large enough so that
Mkm

1−k < ε. This shows {yn} satisfies the Cauchy criterion, so by our theorem above
it converges uniformly to some function y∗. Now apply Ψ to y∗ to see

Ψ(y∗) = lim
n→∞

Ψ(yn) = lim
n→

yn+1 = y∗,

so y∗ is indeed a fixed point. Finally, we prove uniqueness. Suppose there is some
other fixed point y† such that Ψ(y†) = y†. Then

‖y∗ − y†‖ = ‖Ψ(y∗)−Ψ(y†)‖ ≤ k‖y∗ − y†‖ ⇒ ‖y∗ − y†‖ = 0⇒ y∗ = y†.
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Proof of Theorem 3. We first see that we’re done if we show the functional Φ de-
fined by (7) is a contraction on continuous function in the closed, bounded interval
[x0− ε, x0 + ε], for some small positive ε. If Φ is a contraction, then the contraction
mapping principle tells us that it has a unique fixed point y∗ = Φ(y∗), which solves
(5).

To show that Φ is a contraction, we must estimate ‖Φ(u)−Φ(v)‖ for two functions
u and v. First let

M = max

∣∣∣∣∂F∂y
∣∣∣∣ .

Then we have

|Φ(u)(x)− Φ(v)(x)| =

∣∣∣∣∫ x

x0

F (t, u(t))dt−
∫ x

x0

F (t, v(t))dt

∣∣∣∣
=

∣∣∣∣∫ x

x0

F (t, u(t))− F (t, v(t))dt

∣∣∣∣
≤

∫ x

x0

|F (t, u(t))− F (t, v(t))|dt

≤
∫ x

x0

M‖u− v‖dt = M |x− x0|‖u− v‖.

Notice that x ∈ [x0− ε, x0 + ε], so |x− x0| < ε. Now we can choose ε small enough
so that εM ≤ 1

2
< 1, which implies Φ is a contraction, completing the proof. �

The sequence of functions yn = Φn(y0) is usually called the Picard iteration
sequence, and this method is called the Picard iteration scheme. It is named after
the French mathematician Émile Picard, who lived from 1856 to 1941.
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