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1. Introduction

A first order system of differential equations is a system of n first order ODEs.
In general, these can be coupled together. Here are some examples systems of two
ODEs for two unknown functions y1(x) y2(x).

(1) y′1 = y2, y′2 = 2xy1
(2) y′1 = y1 + y2, y′2 = y1 − y2
(3) y′1 = x2y1, y′2 = (1− x)y2

The last example is decoupled, because the ODE for y1 does not involve y2, and
the ODE for y2 does not involve y1. The other two systems are coupled.

At this point we set some notation and state definitions. We will consider a
vector-valued function y of the real variable x, and write

y(x) =


y1(x)
y2(x)

...
yn(x)

 .
We can now write our system of ODEs as

(1) y′ = F (x, y), F : R×Rn → Rn.

In components, (1) looks like

(2)


y1(x)
y2(x)

...
yn(x)


′

=


F1(x, y1, . . . , yn)
F2(x, y1, . . . , yn)

...
Fn(x, y1, . . . , yn)

 .
Now the appropriate intial value is a vector y(0) = y0 ∈ Rn. As before, we say
a vector-valued function y(x) solves (1) if y′(x) = F (x, y(x)) for all x. We say
that (1) is decoupled if each Fj depends only on x and yj, and otherwise, it is a
coupled system. We also have the same definitions as before. An ODE system
islinear if each Fj is a linear function of y1, y2, . . . , yn, otherwise it is nonlinear.
An ODE system is autonomous if none of the Fj’s depend on x. An ODE system
is homogeneous if the vector-valued function y(x) = 0 is a solution.
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The examples we wrote out at the start of this section were all 2× 2 systems of
ODEs. Written in vector notation, they look like

(1) [
y1
y2

]′
=

[
y2

2xy1

]
=

[
0 1

2x 0

] [
y1
y2

]
(2) [

y1
y2

]′
=

[
y1 + y2

y1 − y − 2

]
=

[
1 1
1 −1

] [
y1
y2

]
(3) [

y1
y2

]′
=

[
x2y1

(1− x)y2

]
=

[
x2 0
0 1− x

] [
y1
y2

]
.

These systems we have written out all have something in common: the right
hand side F is always a linear function of y. We have written each system in terms
of matrix multiplication to emphasize the fact that each system is linear.

We can see an example of a nonlinear ODE system, and also a way to turn second
order scalar ODEs into first order systems. Consider the second order, linear ODE

y′′ + p1(x)y′ + p0(x)y = q(x),

and make the substitution

y1(x) = y(x), y2(x) = y′(x).

Then the second order scalar ODE becomes the first order system[
y1
y2

]′
=

[
y2

q − p1y2 − p0y1

]
=

[
0 1
−p0 −p1

] [
y1
y2

]
+

[
0
q

]
.

2. Linear systems

A homogeneous, linear system of ODEs has the form

(3) y′ = A(x)y, y(x) ∈ Rn, A(x) ∈Mn×n.

We refer to the matrix A as the coefficient matrix of the system, and observe that
the entries in A are allowed to be functions in general. Written out in components,
(3) looks like

(4)


y1(x)
y2(x)

...
yn(x)


′

=


a11(x) a12(x) · · · a1n(x)
a21(x) a22(x) · · · a2n(x)

...
...

...
...

an1(x) an2(x) · · · ann(x)



y1(x)
y2(x)

...
yn(x)

 .
Mostly we will write out 2× 2 systems, which look like[

y1
y2

]′
=

[
a11 a12
a21 a22

] [
y1
y2

]
,

and we can illustrate most of the general properties with these examples.
There is an example which is very easy to solve, namely when the coefficient

matrix A is diagonal. In this case, the system decouples completely, and we end
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up with n independent, linear, first order ODEs. More explicitly, if A is diagonal,
then we have

(5)


y1
y2
...
yn


′

=


a11(x) 0 · · · 0

0 a22(x) · · · 0
...

...
...

...
0 · · · 0 ann(x)



y1
y2
...
yn

 ,
which we can rewrite (after multiplying the matrices out) as

(6) y′1 = a11(x)y1, y′2 = a22(x)y2, · · · , y′n = ann(x)yn.

The fact that the system decouples is equivalent to saying y′j depends only on yj,
and not on any of the other y’s. Each of these ODEs is separable (and also linear),
so they are all easy solve. We obtain

(7) y1(x) = c1e
∫
a11(x)dx, y2(x) = c2e

∫
a22(x)dx, . . . , yn(x) = cne

∫
ann(x)dx,

where c1, c2, . . . , cn are constants of integration.
There is one choice of initial conditions for which we can always solve.

Lemma 1. The initial value problem

y′(x) = A(x)y(x), y(0) = 0

has the solution y(x) = 0 for all x.

Proof. Observe that

y′ =
d

dx
(0) = 0 = A(x) · 0 = A(x)y(x).

�

Remark 1. Observe that y = 0 is always an equilibrium solution of the ODE
system y′ = Ay.

Definition 1. The equilibrium solution y ≡ 0 is stable if for every ε > 0 there
is δ > 0 such that |y(0)| < δ implies |y(x)| < ε for all x. In other words, if
you start with initial conditions close enough to 0 then you stay near 0. The
equilibrium 0 is asymptotically stable if there is δ > 0 such that |y(0)| < δ
implies limx→∞ |y(x)| = 0. In other words, if you start with initial conditions close
enough to 0 then the solution in fact limits towards 0. If 0 is neither stable nor
asymptotically stable for the ODE system y′ = Ay then 0 is unstable.

We will see that we cannot solve coupled systems of ODEs in general, but we
can say something about the solutions in many cases. We will also see below a nice
way to characterize when 0 is stable or unstable, at least in the case when A is a
constant matrix.
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2.1. Constant coefficients. In this section we only consider the case when the
coefficient matrix A has constant entries. In other words, we assume each aij is a
constant. The system (3) is now y′ = Ay, where A is a fixed n× n matrix.

We will need some tools from linear algebra. We state the following theorem
without proof.

Theorem 2. For any A ∈Mn×n, the power series

∞∑
k=0

1

k!
Ak = I + A+

1

2!
A2 +

1

3!
A3 + · · ·

converges absolutely. We call the resulting sum the matrix exponential of A, and
write it as eA.

The matrix exponential has many of the nice properties of the usual exponential
function, but not all of them. For instance, eA is always an invertible matrix,
even if A is not invertible, and (eA)−1 = e−A. However, it is not always true that
eA+B = eAeB.

Example: If D ∈Mn×n is diagonal then eD is easy to compute. We have shown
in this case that

D =

 d1 0 · · · 0
...

...
...

...
0 · · · 0 dn

⇒ Dk =

 dk1 0 · · · 0
...

...
...

...
0 · · · 0 dkn

 ,
so we can sum these to get

eD =

 ed1 0 · · · 0
...

...
...

...
0 · · · 0 edn

 .
In the 2× 2 case, we can write this as

D =

[
d1 0
0 d2

]
⇒ eD =

[
ed1 0
0 ed2

]
.

Example: If A is diagonalizable, that is A = Q−1DQ, where D is diagonal, we
can also compute eA. First we show that

A = Q−1DQ⇒ Ak = Q−1DkQ.

This is true by definition for k = 1. Suppose for some positive integer k we have
Ak = Q−1DkQ. Then we have

Ak+1 = AAk = Q−1DQQ−1DkA = Q−1DDkQ = Q−1Dk+1Q,

and so the general formula is true by induction. Taking a limit of partial sums, we
see

eA = eQ
−1DQ =

∞∑
k=0

1

k!
(Q−1DQ)k =

∞∑
k=0

Q−1DkQ = Q−1eDQ.
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Here we compute with an explicit example. Let

A =

[
4 −2
3 −3

]
= Q−1DQ,

where

Q =

[
2 1
1 3

]
, Q−1 =

1

5

[
3 −1
−1 2

]
, D =

[
3 0
0 −2

]
.

Then

eA = Q−1eDQ =
1

5

[
3 −1
−1 2

] [
e3 0
0 e−2

] [
2 1
1 3

]
=

1

5

[
6e3 − e−1 3e3 − 3e−2

−2e3 + 2e−2 −e3 + 6e−2

]
.

Challenge problem: Can you find conditions on A and B such that eA+B =
eAeB?

We can use matrix exponentials to solve linear systems of the form (3) when A
is constant.

Theorem 3. Let A ∈Mn×n be a fixed coefficient matrix. Then the solution to the
initial value problem

y′ = Ay, y(0) = y0

is

y(x) = exAy0.

Proof. We will only prove this theorem in the case that A is diagonalizable, that
is A = Q−1DQ, even though it is true in general. In this case, we know that the
columns of Q are the eigenvectors of A, with eigenvalues equal to the corresponding
diagonal entries of D. Multiply the ODE on the left by Q, so that we have

Qy′ = QAy = Q(Q−1DQ)y = DQy.

Now change varibles, and let z = Qy, so that we now have the ODE system

z′ = Dz,

which we write in components as
z1
z2
...
zn


′

=


d11 0 · · · 0
0 d22 · · · 0
...

...
...

...
0 · · · 0 dnn



z1
z2
...
zn

 .
This is now a decoupled system, which we can write out and solve explicitly: for
j = 1, 2, . . . , n, we have

z′j = djjzj ⇒ zj(x) = zj(0)edjjx.

Putting everything together, we have the vector

z(x) = Qy(x) = exD(Qy0)

solving the system

Qy′ = DQy.
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Multiplying by Q−1 on the left, we recover

y = Q−1z = Q−1exDQy0 = exAy0,

which solves

y′ = Q−1DQy = Ay,

as we wished to prove. �

Just as we did with difference equations, we translate this result into a statement
about eigenvalues and eigenvectors.

Corollary 4. Let A ∈Mn×n and consider the intial value problem

y′ = Ay, y(0) = y0.

Suppose that A has a basis of eigenvectors {v1, v2, . . . , vn} with eigenvalues λ1, λ2, . . . , λn,
such that Avj = λjvj. Because {v1, v2, . . . , vn} is a basis for Rn, we can write

y0 = c1v1 + c2v2 + · · · cnvn
for some coefficients c1, . . . , cn. Then the solution to our inital value problem is

y(x) = c1e
λ1xv1 + c2e

λ2xv2 + · · ·+ cne
λnxvn.

This follows immediately from our previous theorem.
Example: We take

A =

[
4 −2
3 −3

]
,

which we have already seen has the eigenvalues λ1 = 3 and λ2 = −2, with

Av1 = A

[
2
1

]
= 3

[
2
1

]
= 3v1

and

Av2 = A

[
1
3

]
= −2

[
1
3

]
= −2v1.

Suppose we want to solve the initial value problem

y′ = Ay, y(0) =

[
−5

5

]
= −4

[
2
1

]
+ 3

[
1
3

]
= −4v1 + 3v2.

The solution is

y(x) = −4e3xv1 + 3e−2xv2.

Observe that as x → ∞, the v2 term becomes very small, so when x is very large
the solution y(x) is very close to a multiple of the eigenvector v1.

We pause here to recall our definitions of stability. Roughly speaking, 0 is stable
if any solution starting near enough to 0 stays near 0, and it is asymptotically
stable if any solution starting near enough to 0 tends towards 0. Formally, 0 is
stable if for every ε > 0 there is δ > 0 such that |y(0)| < δ implies |y(x)| < ε for all
ε. Similarly, 0 is asymptotically stable if there is δ > 0 such that |y(0)| < δ implies
limx→∞ |y(x)| = 0.
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Now apply this criterion to the system

y′ = Ay =

[
4 −2
3 −3

]
y.

If we choose the initial condition

y(0) = c1v1 + c2v2

then the solution is
y(x) = c1e

3xv1 + c2e
−2xv2.

In particular, of c1 6= 0 then |y(x)| will grow exponentially because of the e3xv1 term.
We see that in this case 0 must be unstable, because A has one positive eigenvalue
λ1 = 3. This one positive eigenvalue forces the solution to grow exponentially.

Exercise: Sketch some generic solutions of the system

y′ = Ay =

[
4 −2
3 −3

]
on the y1− y2 plane. This sketch is usually called a phase portrait of the system
y′ = Ay.

We’re ready to state a theorem.

Theorem 5. Let A ∈ Mn×n have real eigenvalues λ1, λ2, . . . , λn, and consider the
system of ODEs y′ = Ay. Then 0 is a stable equilibrium if and only if λj ≤ 0
for all j = 1, 2, . . . n, and 0 is asymptotically stable if and only if λj < 0 for all
j = 1, 2, . . . , n.

Proof. We prove this theorem in the case that A is diagonalizeable, i.e. A has
n linearly independent eigenvectors v1, v2, . . . , vn with Avj = λjvj. However, the
statement of the theorem is true in general. Let y0 = y(0) be any initial condition,
and find coefficients c1, c2, . . . , cn such that

y0 = c1v1 + c2v2 + · · · cnvn ⇒ y(x) = c1e
λ1xv1 + c2e

λ2xv2 + · · ·+ cne
λnxvn.

If λj < 0 for all j, we see that all solutions y(x) decay exponentially to 0, regardless
of where they start. In particular, in this case 0 is asymptotically stable. If λj ≤ 0
then for x > 0 we have eλjx ≤ 1, and so

|y(x)| =
∣∣c1eλ1xv1 + · · ·+ cne

λnxvn
∣∣ ≤ |c1||v1|+ |c2||v2|+ · · ·+ |cn||vn|.

In particular, if we choose |cj| small enough for all j, then y stay near 0, and so
0 is stable. On the other hand, if one eigenvalue is positive, say λn > 0, then we
can choose y0 = cnvn, and the solution y(x) = cne

λnxvn will have an exponentially
growing length, no matter how small we choose cn. Therefore, in this case 0 is
unstable. �

We will later see a more general statement, when the eigenvalues of A are allowed
to be complex numbers.

Example: Consider the system of ODEs

y′ = Ay =

[
1 2
2 1

]
y.
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With a little work, we compute that the eigenvalues of A are λ1 = −1 and λ2 = 3.
We have one positive eigenvalue, so 0 is unstable. A little more work tells us that
the two eigenvectors are

v1 =

[
−1

1

]
, Av1 = −v1, v2 =

[
1
1

]
, Av2 = 3v2.

Thus, any solution has the form

y(x) = c1e
−xv1 + c2e

3xv2 → c2e
3xv2

as x→∞. After a long enough period of time, the solution will be very close to a
scalar multiple of v2. The phase portrait of this system looks like a saddle.

Definition 2. Let A ∈M2×2 have real eigenvalues λ1 < 0 and λ2 > 0. (That is, A
has one positive eigenvalue and one negative eigenvalue.) Then we call 0 a saddle
point of the system y′ = Ay.

Example: Consider the system of ODEs

y′ = Ay =

[
−3 2

1 −2

]
y.

With a little work, we compute that the eigenvalues of A are λ1 = −1 and λ2 = −4.
This time we have two negative eigenvalues, so we conclude that 0 is asymptotically
stable. With a little more work, we compute that the eigenvectors are

v1 =

[
1
1

]
, Av1 = −v1, v2 =

[
−2

1

]
, Av2 = −4v2.

Thus, any solution has the form

y(x) = c1e
−xv1 + c2e

−4xv2 → 0

as x → ∞. Notice that the v2 component tends to zero much faster than the v1
component, which we can see in the phase portrait of the system.

Definition 3. Let A ∈ M2×2 have two negative eigenvalues. Then 0 is called a
sink of the system y′ = Ax.

Example: Consider the system of ODEs

y′ = Ay =
1

5

[
17 −3
−2 18

]
y.

With a little work, we can compute that the eigenvalues of A are λ1 = 3 and λ2 = 4.
We have two positive eigenvalues, so 0 is unstable. With a little more work, we
compute the eigenvectors

v1 =

[
1
2

]
, Av1 = 3v1, v2 =

[
1
−3

]
, Av2 = 4v2.

Any solution then has the form

y(x) = c1e
3xv1 + e4xv2,

which grows exponentially as x → ∞. Notice that the v2 term grows much faster
than the v1 term, as we can see from the phase portrait.
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Definition 4. Let A ∈ M2×2 have two positive eigenvalues. Then 0 is called a
source of the system y′ = Ay.

Example: Consider the system of ODEs

y′ = Ay =

[
−1 1

1 −1

]
y.

Again, we do a little bit of work and see that the eigenvalues of A are λ1 = 0 and
λ2 = −1, so 0 is stable but not asymptotically stable. With a little more work, we
find the eigenvectors:

v1 =

[
1
1

]
, Av1 = 0, v2 =

[
1
−1

]
, Av2 = −v2.

Any solution of this system now has the form

y(x) = c1v1 + c2e
−xv2 → c1v1

as x→∞. We see that, regardless of where we start, the limiting behavior is that
the solution becomes as close as you please to a multiple of v1.

We have seen examples of matrices which are not diagonalizable, that is, matrices
which do not have a basis of eigenvectors. We illustrate this with an example.

Example: Consider the system of ODEs

y′ = Ay =

[
1 −1
1 3

]
y.

We find that λ = 2 is the only eigenvalue (it is a repeated root of the characteristic
polynomial), but it only has one eigenvalue associated it:

v =

[
1
−1

]
, Av = 2v.

So we have one solution to the system:

y(x) = ce2x
[

1
−1

]
,

where c is an arbitrary real number. We need to find another solution, and we look
for a solution of the form

y(x) = xe2xv = xe2x
[

1
−1

]
.

However, a computation tells us

y′ = (1 + 2x)e2xv 6= 2xe2xv = xe2xAv = Ay,

so this guess doesn’t work. For our next guess, we choose

y(x) = xe2xv + e2xw = xe2x
[

1
−1

]
+ e2x

[
w1

w2

]
,
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where w ∈ R2 is some fixed vector we must find. Now setting y′ = Ay forces

y′ = e2x(1 + 2x)v + 2e2xw = Ay = A(xe2xv + e2xw)

= 2xe2xv + e2xAw.

Collecting terms and cancelling, we see[
1
−1

]
= v = (A− 2I)w =

[
−1 −1

1 1

] [
w1

w2

]
.

Solving, we find w1 + w2 = −1, so we can choose

w =

[
0
−1

]
⇒ y(x) = xe2xv + e2xw = xe2x

[
1
−1

]
+ e2x

[
0
−1

]
.

Notice that we have a choice in solving for w, but any choice we make in this
step will give us a solution. In fact, any two choices will differ by a multiple of v.
(Challenge problem: prove this last statement.)

Theorem 6. Let A ∈M2×2 have a repeated eigenvalue λ and only one eigenvector v
(up to scalar multiples). Then the general solution to the system of ODES y′ = Ay
has the form

y(x) = c1e
λxv + c1

[
xeλxv + eλxw

]
, where (A− λI)w = v.

In this case, we call w a generalized eigenvector of A associated to the eigenvalue
λ. The equilibrium solution y = 0 is stable if and only if λ ≤ 0.

Remark 2. Be careful to only do this when A is not diagonalizable!

Finally, we treat the case when A has complex eigenvalues.
Example: Consider the system of ODEs

y′ = Ay =

[
0 −4
1 0

]
y.

Computing, we find that the eigenvalues of A are λ± = ±2i, and we have eigen-
vectors

v± =

[
±2i

1

]
, Av+ = 2iv+, Av− = −2iv−.

Thus we can write our solution as

y(x) = c+e
2ixv+ + c−e

−2ixv− = c+e
2ix

[
2i
1

]
+ c−e

−2ix
[
−2i

1

]
.

We use Euler’s formula: if θ ∈ R then eiθ = cos θ+ i sin θ to rewrite our expression
for y as

y(x) = k1 cos(2x)

[
0
1

]
− k1 sin(2x)

[
2
0

]
+ k2 cos(2x)

[
2
0

]
+ k2 sin(2x)

[
0
1

]
,

where k1 = c+ + c− and k2 = −1(c+ − c−).
We see immediately that the solution y(x) is periodic, with period π. In partic-

ular, the equilibrium y0 = 0 is stable, but not asymptotically stable. If you trace
out the solution curves on the y1 −−y2 plane you will find they are ellipses.
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Theorem 7. Let A ∈M2×2 have complex eigenvalues λ± = a±ib, with eigenvectors
v± = u± iw, where a and b are real numbers and u and w are vectors in R2. Then
the general solution of the ODE system y′ = Ay is

y(x) = eax [k1 cos(bx)u− k1 sin(bx)w + k2 cos(bx)w + k2 sin(bx)u] .

In particular, the equilibrium y = 0 is stable if and only if a ≤ 0 and asymptotically
stable if and only if a < 0.

Example: Consider the system of ODEs

y′ = Ay =

[
−1/2 1
−1 −1/2

]
y.

Computing, we find that the eigenvalues of A are λ± = −1/2 ± i, and we have
eigenvectors

v± =

[
±1
±i

]
, Av+ =

(
−1

2
+ i

)
v+, Av− =

(
−1

2
− i
)
v−.

We can now read off that the general solution of our ODE system is

y(x) = e−x/2
[
k1 cosx

[
1
0

]
− k1 sinx

[
0
1

]
+ k2 cosx

[
0
1

]
+ k2 sinx

[
1
0

]]
.

We see in particular that the equilibrium y = 0 is asymptotically stable, and in
fact all solutions spiral in to the origin.

We can now summarize the stability properties of y = 0 for a linear system
y′ = Ay with constant coefficients.

Theorem 8. Let A ∈Mn×n be a fixed matrix whose entries are real numbers, and
let λ1, λ2, . . . , λn be the eigenvalues of A. Consider the system of ODEs y′ = Ay
and observe that y0 = 0 is an equilibrium solution. This equilibrium is stable if and
only if the real part of λj is non-positive for every j = 1, 2, . . . , n. The solution
y0 = 0 is asymptotically stable if and only if the real part of λj is negative for every
j = 1, 2, . . . , n.

2.2. General properties. In this section describe some general properties of lin-
ear systems y′ = Ay, where now A is allowed to depend on x. First of all, one can
reuse our proof using Picard iteration for scalar, first order ODE, to prove existence
and uniqueness.

Theorem 9. Let A : R → Mn×n be continuous and consider the initial value
problem

y′(x) = A(x) · y(x), y(0) = c0.

There is an ε > 0 such that this initial value problem has a unique solution in the
interval −ε < x < ε.

Of course, we expect to find n independent solutions to a given system of ODEs
y′ = Ay, where A : R → Mn×n. This means that at any value x0 we expect to
find n linearly independent solutions y1(x), y2(x), . . . , yn(x), and we should be able
to solve any initial value problem using a linear combination of these solutions:
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y(x) = c1y1(x) + c2y2(x) + · · · cnyn(x). However, we don’t automatically know that
these solutions stay linearly independent for all values of x. It turns out that they
do.

Definition 5. For each x let A(x) ∈ Mn×n, and suppose the function x 7→ A(x)
is at least differentiable. Suppose that y1(x), y2(x), . . . , yn(x) all solve y′j(x) =
A(x)yj(x), and define the Wronskian determinant to be

W (x) = det
[
y1(x) y2(x) · · · yn(x)

]
.

Theorem 10. The Wronskian determinant satisfies

W ′ = tr(A)W.

This theorem is called Abel’s theorem, and is proved by writing out the derivative
of a determinant in terms of sum of determinants of (n − 1) × (n − 1) cofactors.
We will see another version of Abel’s theorem later, when we discuss second order
(scalar) ODEs. We can use Abel’s theorem to conclude the following corollary.

Corollary 11. The Wronskian is either never zero or always zero. As a conse-
quence, either the solutions y1, y2, . . . , yn are always linearly independent or never
linearly independent.

Proof. The ODE

W ′ = W tr(A)⇒ d

dx
ln(W (x)) = tr(A(x))⇒ W (x) = ce

∫ x
x0

tr(A)(t)dt

for some constant c. If c 6= 0, then W is never zero (because an exponential is
never zero). On the other hand, if c = 0 the W is identically zero. The second
statement of the corollary follows immediately from the fact that the determinant
of a matrix is invertible if and only if its columns are linearly independent. �

3. Nonlinear systems

In this section we will study some of the properties of nonlinear systems of ODEs.
Much as we did for difference equations, we will concentrate on finding equilibrium
solutions an analysing their stability properties. Also, for the sake of simplicity, we
will concentrate on 2 × 2 systems (i.e. systems of two equations in two unknown
functions). However, many of the properties we will discuss carry over to larger
n× n systems, with more equations and unknown functions.

Our general setting will be a vector-valued ODE of the form

y′(x) = F (x, y(x)), x ∈ R, y(x) ∈ Rn, F : R×Rn → Rn.

We will only discuss the autonomous case, that is

y : R→ Rn, F : Rn → Rn, y′ = F (y).

At this point, we first list some examples.
12



Example: Here we just write down a particular example, which we will later
see (in tutorials) can model the populations of a pair of competing species. We
consider

y′1 = y1(1−y1−y2), y′2 = y2

(
3

4
− y2 −

1

2
y1

)
⇔
[
y1
y2

]′
=

[
y1(1− y1 − y2)
y2
(
3
4
− y2 − 1

2
y1
) ] .

Example: We consider a pendulum. We let a mass m swing free on a rod of
length l (of negligible mass), and use θ to denote the angle the rod makes with the
veritcal direction. The force of gravity pull the mass downward, so that we have

−mgl sin θ = ml2
d2θ

dt2
⇔ θ′′ = −g

l
sin θ.

We can convert this to a first order system by letting φ1 = θ and φ2 = θ′, so that
we have the system of ODEs[

φ1

φ2

]′
=

[
φ2

−g
l

sin(φ1)

]
.

This is a nonlinear system of first order ODEs in the unknown functions φ1 and
φ2. It is coupled, because the ODE for φ1 involves φ2, and the ODE for φ2 involves
φ1.

Example: We can refine the previous example by introducing some dampling.
This means we take say there is some friction in the pivot point of the pendulum,
so that the original ODE becomes

θ′′ = −g
l

sin θ − c

ml
θ′.

(The factor in front of the θ′ term is chosen to make certain things turn out nicer.)
We can again make the substitution φ1 = θ and φ2 = θ′ to obtain the system[

φ1

φ2

]′
=

[
φ2

−g
l

sinφ1 − c
ml
φ2

]
.

3.1. Equilibria. In this section we discuss equilibrium solutions of autonomous
systems of first order ODEs. Again, these systems all have the form

y′(x) = F (y(x)), y : R→ Rn, F : Rn → Rn.

Definition 6. A solution y(x) of y′ = F (y) is an equilibrium solution if y is
independent of x, i.e. y is some constant vector c. One can also call and equilibrium
solution a fixed point of the system.

Theorem 12. A constant vector c ∈ Rn is an equilibrium if and only if F (c) = 0.

Proof. An equilibrium solution y(x) must be constant, so that y′ = 0. If this
equilibrium is the constant vector c, then we have

0 =
d

dx
(c) = F (c),

13



which proves that and equilibrium must satisfy F (c) = 0. Now suppose that
F (c) = 0, and set y(x) = c for all x. Then we have

F (c) = 0 =
d

dx
(c),

so y ≡ c is indeed an equilibrium solution. �

Example: In this example we find the fixed points of the competing species
system we wrote down in the previous section. We have

y′1 = y1(1−y1−y2), y′2 = y2

(
3

4
− y2 −

1

2
y1

)
⇔
[
y1
y2

]′
=

[
y1(1− y1 − y2)
y2
(
3
4
− y2 − 1

2
y1
) ] ,

from which we can read off

F (y) = F

([
y1
y2

])
=

[
y1(1− y1 − y2)
y2
(
3
4
− y2 − 1

2
y1
) ] .

To find the fixed points we must find the zeroes of F :[
0
0

]
= F (y) =

[
y1(1− y1 − y2)
y2
(
3
4
− y2 − 1

2
y1
) ] .⇔ 0 = y1(1−y1−y2), 0 = y2

(
3

4
− y2 −

1

2
y1

)
.

We have several cases to consider. First, if y1 = 0, then the second equation reads

0 = y2

(
3

4
− y2

)
⇒ y2 = 0 or y2 =

3

4
,

so we have the fixed points [
0
0

]
,

[
0

3/4

]
.

Next we set
y2 = 0⇒ y1(1− y1) = 0⇒ y1 = 0 or 1.

Finally, we consider the case that neither y1 = 0 nor y2 = 0, so we must have

1− y1 − y2 = 0,
3

4
− y2 −

1

2
y1 = 0⇒ y1 =

1

2
= y2.

Putting this all together, we have the following four fixed points:[
0
0

]
,

[
0

3/4

]
,

[
1
0

]
,

[
1/2
1/2

]
.

Example: Next we find the fixed points of a free pendulum. The free pendulum
satsfies

θ′′ = −g
l

sin θ ⇔
[
φ1

φ2

]′
=

[
φ2

−g
l

sinφ1

]
where φ1 = θ and φ2 = θ′. To find the fixed points we set[

0
0

]
= F (φ) =

[
φ2

g
l

sinφ1

]
⇔ φ2 = 0, sinφ1 = 0.

Thus the equilibrium solutions are[
φ1

φ2

]
=

[
kπ
0

]
⇔ θ = kπ,

14



where k is any integer. We can interpret this physically as saying that the equilibria
correspond to the pendulum either hanging straight down or pointing straight up.

Exercise: Show that the damped pendulum,

θ′′ = −g
l

sin θ − c

ml
θ′ ⇔

[
φ1

φ2

]′
=

[
φ2

−g
l

sinφ1 − c
ml
φ2

]
has exactly the same fixed points as the free pendulum.

3.2. Stability. To analyze the stability of the system y′ = F (y) near a fixed point
y = c, we would like to find the linear system which best approximates y′ = F (y)
near y = c. We can do this by replacing F with its first order Taylor polynomial,
which is exactly the linear function approximating F the best. In this section we
will only treat the case of 2× 2 systems, but the theory for larger systems is nearly
identical.

Here we write

y′ =

[
y1
y2

]′
= F (y) =

[
F1(y1, y2)
F2(y1, y2)

]
.

Let c =

[
c1
c2

]
be a fixed point, and write out the linear approximation of F near

y = c:

F (y) ' F (c) + DF |y=c (y − c) =

[
∂F1

∂y1
(c1, c2)

∂F1

∂y2
(c1, c2)

∂F2

∂y1
(c1, c2)

∂F2

∂y2
(c1, c2)

] [
y1 − c1
y2 − c2

]
.

If we let u1 = y1− c1 and u2 = y2− c2 and replace F with its linearization we now
have the first order system of ODEs[

u1
u2

]′
=

[
∂F1

∂y1

∂F1

∂y2
∂F2

∂y1

∂F2

∂y2

][
u1
u2

]
,

where all partial derivatives of F1 and F2 are evaluated at (c1, c2).
Example: We linearize the system

y′1 = y1(1− y1 − y2), y′2 = y2

(
3

4
− y2 −

1

2
y1

)
⇔
[
y1
y2

]′
=

[
y1(1− y1 − y2)
y2
(
3
4
− y2 − 1

2
y1
) ]

about each of its fixed points. First we compute some partial derivatives:

∂F1

∂y1
= 1− 2y1 − y2,

∂F2

∂y1
= −1

2
y2,

∂F1

∂y2
= −y1,

∂F2

∂y2
=

3

4
− 2y2 −

1

2
y1.

Next we evaluate the matrix of partial derivatives of F at each fixed point. We
have[

∂F1

∂y1

∂F1

∂y2
∂F2

∂y1

∂F2

∂y2

]∣∣∣∣∣
(0,0)

=

[
1 0
0 3/4

]
,

[
∂F1

∂y1

∂F1

∂y2
∂F2

∂y1

∂F2

∂y2

]∣∣∣∣∣
(0,3/4)

=

[
1/4 0
−3/8 −3/2

]
and[

∂F1

∂y1

∂F1

∂y2
∂F2

∂y1

∂F2

∂y2

]∣∣∣∣∣
(1,0)

=

[
− −1
0 1/4

]
,

[
∂F1

∂y1

∂F1

∂y2
∂F2

∂y1

∂F2

∂y2

]∣∣∣∣∣
(1/2,1/2)

=

[
−1/2 −1/2
−1/4 −3/2

]
.
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For instance, linearizing about (0, 0) we obtain the system

[
u1
u2

]′
=

[
u1

(3/4)u2

]
,

which is a source node, but linearlizing about (1, 0) we obtain the system[
u1
u2

]′
=

[
−21 −1

0 1/4

] [
u1
u2

]
.

This latter system has a coefficient matrix withone positive and one negative eigen-
value, so we expect the phase portrait to have a saddle point there. This is, in fact,
exactly what happens. We can also see that (0/3/4) is another saddle point (with
one positive and one negative eigenvalue). With a little computation, we also see
that the eigenvalues of the coefficient matrix at (1/2, 1/2) are

λ± =
−7±

√
29

8
< 0,

so this point turns out to be a sink node.

Theorem 13. Let c ∈ Rn be a fixed point of the first order, autonomous system
y′ = F (y) of n equations in n unknown functions y1, . . . , yn, and let A ∈ Mn×n be
the matrix

A =


∂F1

∂y1

∂F1

∂y2
· · · ∂F1

∂yn
∂F2

∂y1

∂F2

∂y2
· · · ∂F2

∂yn
...

...
...

...
∂Fn

∂y1
∂Fn

∂y2
· · · ∂Fn

∂yn

 .
If A has an eigenvalue λj with the real part of λj positive, then the system y′ = F (y)
is unstable near c. On the other hand, if the real part of λj is negative for all
eigenvalues λj of A, then y′ = F (y) is asymptotically stable near c. If the real parts
of all the eigenvalues of A are zero then the test is inconclusive.

Example: We can see from this theorem that the system

y′1 = y1(1− y1 − y2), y′2 = y2

(
3

4
− y2 −

1

2
y1

)
⇔
[
y1
y2

]′
=

[
y1(1− y1 − y2)
y2
(
3
4
− y2 − 1

2
y1
) ]

is asymptotically stable near the fixed point (1/2, 1/2), and unstable near the fixed
points (0, 0), (1, 0), and (0, 3/4).

Example: We have seen that the fixed points of the system corresponding to
the free pendulum are (kπ, 0) where k is an integer. We linearlize the system to
obtain [

u1
u2

]′
=

[
0 1

−g
l

cos(kπ) 0

] [
u1
u2

]
=

[
0 1

(−1)k+1 g
l

0

] [
u1
u2

]
.

In this case, the eigenvalues are given by λ2± = (−1)k+1 g
l
. If k is odd we have

one positive and one negative eigenvalue, so the system is unstable near these
fixed points. If k is even then we have pure imaginary eigenvalues, and the test is
inconclusive.
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Exercise: Do the same stability analysis for the fixed points of the damped
pendulum:

θ′′ = −g
l

sin θ − c

ml
θ′ ⇔

[
φ1

φ2

]′
=

[
φ2

−g
l

sinφ1 − c
ml
φ2

]
.

We close this section of notes with a table listing the stability properties of fixed
points for the case of 2× 2 systems. In this table, λ1 and λ2 are the eigenvalues of
either the coefficient matrix (in the case of linear systems) or the linearization F
at the fixed point.

linear systems nonlinear systems
stability type stability type

λ1, λ2 both positive unstable source node unstable source node
λ1, λ2 both negative asymp. stable sink node asymp. stable sink node

λ1 < 0, λ2 > 0 unstable saddle unstable saddle
λ± = a+ ib, a > 0 unstable spiral unstable spiral
λ± = a+ ib, a < 0 asymp. stable spiral asymp. stable spiral

λ± = ib stable, not asymp. center inconculsive inconclusive
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