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1. Introduction

In this set of notes we examine a particularly nice family of second order ODEs,
those which are linear with constant coefficients. At the end, we include a small
(optional) section on the general theory of second order, linear ODEs. Our ODEs
will have the general form

a2y
′′ + a1y

′ + a0y = g(x),

where a2, a1, a0 are constants, with a2 6= 0, and g(x) is a given function. notice that
the ODE involves two derivatives of y, so we should expect to assign two initial
values for y. In fact, this is the case, and we will generally solve an initial value
problem of the form

a2y
′′ + a1y

′ + a0y = g(x), y(0) = c0, y′(0) = c1,

where c0 and c1 are given numbers. At this point, we need to remark on one
important fact:

Theorem 1. Any initial value problem

a2y
′′ + a1y

′ + a0y = g(x), y(0) = c0, y′(0) = c1

has a unique solution, at least for x in some small interval containing 0.

This fact follows from the corresponding fact for first order systems, because one
can transform a second order scalar ODE into a 2× 2 first order system of ODEs.

We will first concentrate on the homogeneous case, that is when g(x) ≡ 0, and
then describe two methods to solve the non-homogeneous case, when g neq0.

2. The homogeneous case

In this case, we wish to solve

(1) a2y
′′ + a1y

′ + a0y = 0.

We first try to guess a solution. We do know a function which repeats itself
under differentiation: the exponential function. Thus it’s reasonable to guess that
y(x) = erx for some number r. Let’s substitute this in and see what we get:

0 = a2(e
rx)′′ + a1(e

rx)′ + a0e
rx = erx(a2r

2 + a2r + a0)⇒ 0 = a2r
2 + a1r + a0.
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This is a quadratic equation for r, so we shoudl find two roots,

r± =
−a1 ±

√
a21 − 4a0a2

2a2
.

Example: We consider
y′′ − 5y′ + 6y = 0,

and try to find solutions of the form y(x) = erx. Substituting in, we see

0 = (erx)′′ − 5(erx)′ + 6erx = erx(r2 − 5r + 6)⇒ r2 − 5r + 6 = 0⇒ r = 2 or r = 3.

So we have two possible solutions, y1 = e2r and y2 = e3x. Which one do we choose?
The answer is we must choose both.

Theorem 2. Suppose that both y1(x) and y2(x) solve

a2y
′′ + a1y

′ + a0y = 0.

Then so does α1y1 + α2y2 for any constants α1 and α2.

This theorem is called the principle of superposition, and it is very important.
We will see that we really only need the ODE to be linear and homogeneous in
order that the principle of superposition holds.

Proof. Let y = α1y1 + α2y2, and observe that

a2y
′′ + a1y

′ + a0y = a2(α1y1 + α2y2)
′′ + a1(α1y1 + α2y2)

′ + a0(α1y1 + α2y2)

= α1(a2y
′′
1 + a1y

′
1 + a0y1) + α2(a2y

′′
2 + a1y

′
2 + a0y1) = 0.

�

Corollary 3. Let V be the set of functions y(x) such that a2y
′′ + a1y

′ + a0y = 0.
Then V is a two-dimensional vector space.

Proof. The principle of superposition tells us that V is closed under scalar multipli-
cation and addition, so V must be a vector space (in particular, a subspace of the
vector space of all continuous functions). It remains to find dim(V ), which is really
a count of how many free parameters we get to choose in specifying a solution to
the ODE. We have already seen that the solution to the initial value problem

a2y
′′ + a1y

′ + a0y = 0, y(0) = c0, y′(0) = c1

exists and is unique, so we (always!) get to choose exactly two parameters in
specifying y, namely c0 and c1. Thus dim(V ) = 2. We remark that a ahndy basis
of V might be the solution with y1(0) = 1 and y′1(0) = 0, together with the solution
with y2(0) = 0 and y′2(0) = 1. �

Now we can find the general solution to the ODE

y′′ − 5y′ + 6y = 0.

We already have two solutions y1(x) = e2x and y2x) = e3x, and we know the set
of solutions is a two-dimensional vector space. This means the general solution of
our ODE must have the form

y(x) = α1y1(x) + α2y2(x) = α1e
2x + α2e

3x.
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Suppose further that we want to solve an initial value problem, say

y′′ − 5y′ + 6y = 0, y(0) = 2, y′(0) = −1.

We know the solution must have the form y(x) = α1e
2x +α2e

3x for some constants
α1 and α2, so we match the initial conditions. We have

2 = y(0) = α1 + α2, −1 = y′(0) = 2α1 + 3α2 ⇒ α1 = 7, α2 = −5.

We conclude y(x) = 7e2x − 5e3x.
We now outline a general theory.

Theorem 4. Let a2r
2 + a1r + a0 be a quadratic with two distinct roots r1 6= r2.

Then the general solution to the ODE

a2y
′′ + a1y

′ + a0y = 0

is

y(x) = α1e
r1x + α2e

r2x.

Proof. We try to find solutions to the ODE of the form y(x) = erx for some real
number r. Substituting, we have

0 = a2(e
rx)′′ + a1(e

rx)′ + a0(e
rx) = erx(a2r

2 + a1r + a0)⇒ a2r
2 + a1r + a0 = 0.

By assumption, this quadratic equation has precisely two roots, namely r = r1 and
r = r2, so we have now found two linearly independent solutions

y1(x) = er1x, y2(x) = er2x.

Then by the principle of superposition we can write the general solution to our
ODE as a linear combination of y1 and y2. In other words, our general solution
must be of the form

y(x) = α1e
r1x + α2e

r2x.

�

Example: We solve the initial value problem

y′′ − 4y′ + 3y = 0, y(0) = −2, y′(0) = 1.

Trying solutions of the form y(x) = erx, so that

0 = (erx)′′− 4(erx)′ + 3erx = erx(r2− 4r+ 3) = erx(r− 1)(r− 3)⇒ r = 1 or r = 3.

Thus the general solution to our ODE is

y(x) = α1e
x + α2e

3x.

Matching the initial condition, we have

−2 = y(0) = α1 + α2, 1 = y′(0) = α1 + 3α2 ⇒ α1 = −7

2
, α2 =

3

2
.

Thus the solution to our initial value problem is

y(x) = −7

2
ex +

3

2
e3x.
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Example: We solve the initial value problem

y′′ − y′ + 5

4
y = 0, y(0) = −1, y′(0) = 2.

As usual, we try a solution of the form y = erx to see

0 = (erx)′′ − (erx)′ +
5

4
erx ⇒ r2 − r +

5

4
= 0⇒ r =

1

2
± i.

Our general solution is now

y(x) = c+e
(1/2+i)x+c−e

(1/2−i)x = ex/2[c+(cosx+i sinx)+c−(cosx−i sinx)] = ex/2(k1 cosx+k2 sinx),

where k1 = c+ + c− and k2 = i(c+ − c−). Again, we find the constants k1 and k2
by matching the initial condition:

−1 = y(0) = k1, 2 = y′(0) =
1

2
k1 + k2 ⇒ k2 =

5

2
.

Now our solution in

y(x) = ex/2
[
− cosx+

5

2
sinx

]
.

We have one final case to consider, that of a repeated root in the characteristic
polynomial a2r

2 + a1r + a0.

Theorem 5. Let a2r
2 + a1r+ a0 be a quadratic polynomial with a repeated root r∗.

Then the general solution to the ODE

a2y
′′ + a1y

′ + a0y = 0

is

y(x) = α1e
r∗x + α2xe

r∗x.

Proof. From our previous analysis, we already know that y1(x) = er∗x is one so-
lution to our ODE, so the only thing that remains is to find a second, linearly
independent solution. We try y2 = xer∗x and see if it works:

a2(xe
r∗x)′′ + a1(xe

r∗x)′ + a0(xe
r∗x) = a2(2r∗e

r∗x + r2∗xe
r∗x) + a1(e

r∗x + r∗xe
r∗x) + a0xe

r∗x

= xer∗x(a2r
2
∗ + a1r∗ + a0) + er∗x(2a2r∗ + a1)

= er∗x(2a2r∗ + a1).

Here we have used the fact that we know r∗ is a root of the quadratic a2r
2 + a1r+

a0. However, we still have not used the fact that r∗ is a double root. This can
onlyhappen if

a2r
2 +a1r+a0 = a2(r− r∗)2 = a2(r

2−2r∗r+ r2∗)⇒ a1 = −2r∗a2 ⇒ 2a2r∗+a1 = 0.

We conclude that in this special case y2 = xer∗x must be a solution, so by the
superposition principle the general solution to our ODE is

y(x) = α1e
r∗x + α2xe

r∗x.

�
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Notice that this proof only works when we have a double root.
Example: We solve the initial value problem

y′′ + 4y′ + 4y = 0, y(0) = 2, y′(0) = −3.

Again, we try a solution of the form y = erx and find

0 = (erx)′′ + 4(erx)′ + 4(erx) = erx(r2 + 4r + 4)⇒ r = −2.

In this case we have a double root of r∗ = −2, so the general solution has the
form y(x) = α1e

−2x + α2xe
−2x. We find the coefficients by matching the initial

conditions. We have

2 = y(0) = α1, −3 = y′(0) = −2α1 + α2 ⇒ α2 = 7.

Thus our solution is

y(x) = 2e−2x − 7xe−2x.

3. The non-homogeneous case

Here we consider initial value problems for non-homogeneous equations. We will
discuss two methods, the method of undetermined coefficients, and that of variation
of parameters.

One of our guiding principles is that the general solution of a non-homogeneous
ODE is the sum of the solution to the corresponding homogeneous equation and a
particular solution. We write this as a theorem.

Theorem 6. The general solution of

a2y
′′ + a1y

′ + a0y = g(x)

has the form

y(x) = yp(x) + α1y1(x) + α2y2(x),

where yp is any solution of the non-homogeneous equation, and α1y1 + α2y2 is the
general solution of the corresponding homogeneous equation, a2y

′′+ a1y
′+ a0y = 0.

Proof. Again, we use the fact that the initial value problem

(2) a2y
′′ + a1y

′ + a0y = g(x), y(0) = c0, y′(0) = c1

has a unique solution. Let yp(x) be any particular solution to the non-homogeneous
ODE, and let b0 = yp(0) and b1 = y′p(0). Then y(x) solves the initial value problem
(2) if and only if ỹ(x) = y(x)− yp(x) solves the initial value problem

(3) a2ỹ
′′ + a1ỹ

′ + a0ỹ = 0, ỹ(0) = c0 − b0, ỹ(0) = c1 − b1.
We know the general solution of (3) has the form

ỹ = α1y1 + α2y2

as detailed in the previous section, so we must have

y(x) = yp(x) + ỹ(x) = yp(x) + α1y1(x) + α2y2(x).

�
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3.1. The method of undetermined coefficients. In this section we outline
the method of undetermined coefficients. Our guiding philosophy is that some
functions repeat themselves under differentiation. For intsance, the derivative of
an exponential function is another exponential, and the derivative of a polynomial
of degree k is another polynomial, of lower degree. If the right hand side g(x) is
one of these functions, we can guess a good form for the particular solution yp.

Example: Consider the initial value problem

(4) y′′ + 3y′ + 2y = e3x + cosx, y(0) = 2, y′(0) = −1.

We start by solving the homogeneous equation

y′′ + 3y′ + 2y = 0.

Guess a solution of the form y(x) = erx and plug it in to get

0 = (erx)′′ + 3(erx)′ + 2erx = erx(r2 + 3r + 2) = erx(r + 2)(r + 1)⇒ r = −1,−2.

Thus the homogeneous solution is

c1e
−x + c2e

−2x.

The general solution to (4) is a sum of the homogeneous solution listed above and
a particulart solution yp. To find yp we use the method of undetermined coefficients
and guess

yp = Ae3x +B cosx+ C sinx.

Plugging this guess into the equation we have

e3x + cosx = y′′p + 3y′p + 2yp

= 9Ae3x −B cosx− C sinx+ 9Ae3x − 3B sinx+ 3C cosx

+2Ae3x + 2B cosx+ 2C sinx

= 20Ae3x + (B + 3C) cosx+ (C − 3B) sinx.

Matching coefficients of the three different terms we get the three equations

1 = 20A, 1 = B + 3C, 0 = −3B + C,

which have the simultaneous solutions

A =
1

20
, B =

1

10
, C =

3

10
.

Putting this together, we see

y =
1

20
e3x +

1

10
cosx+

3

10
sinx+ c1e

−x + c2e
−2x.

We now use our initial conditions to find c1 and c2. We have

2 = y(0) =
1

20
+

1

10
+ c1 + c2 =

3

20
+ c1 + c2

−1 = y′(0) =
3

20
+

3

10
− c1 − 2c2.
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These equations have the solution

c1 =
9

4
, c2 = −2

5
.

This general technique works most of the time when the right hand side has a
certain form, but there is an important caveat: the right hand side g(x) cannot be a
solution to the corresponding homogeneous equation. If g solves the homogeneous
equation, we must do something slightly different.

Example: Solve the initial value problem

y′′ − 5y′ + 6y = e2x, y(0) = 1, y′(0) = 3.

In this case, we know that the associated homogeneous equation, y′′− 5y′+ 6y = 0
has the general solution c1y1 + c2y2 = c1e

2x + c2e
3x. In particular, we see that

the right hand side e2x does indeed solve the homogeneous equation, so we cannot
hope to solve the non-homogeneous solution with yp = Ae2x. This time we try
yp = Axe2x, and plug in our guess. We have

(Axe2x)′′− 5(Axe2x)′+ 6(Axe2x) = xe2x(4A− 10A+ 6A) + e2x(4A− 5A) = −Ae2x.

Matching this to the given right hand side, g(x) = e2x, we see A = −1, and so
yp = −xe2x and our general solution to the non-homogenoue equation is

y = −xe2x + c1e
2x + c2e

3x.

We evaluate y and y′ at x = 0 to match the initial conditions, given

1 = y(0) = c1 + c2, 3 = y′(0) = −1 + 2c1 + 3c2 ⇒ c1 = −1, c2 = 2,

and therefore y = −xe2x − e2x + 2e3x.
We summarize the possible forms of the particular solution yp in the table below.

Here the model ODE is

a2y
′′ + a1y

′ + a0y = g(x).

If g has several of the terms listed below then we must include each of the corre-
sponding terms for yp. This table is not quite complete, but it should give you a
good idea of the type to equation you can solving using the method of undetermined
coefficients.

term in g(x) corresponding term in yp

αebx Aebx

αebx when a2b
2 + a1b+ a0 = 0 Axebx

α1 cos(kx) + α2 sin(kx) A1 cos(kx) + A2 sin(kx)
α cos(kx) when −a2k2 + ia1k + a0 = 0 A1x cos(kx) + A2x sin(kx)

polynomial of degree k polynomial of degree k
p(x)ebx, where p is a polynomical of degree k q(x)ebx where q is a polynomial of degree k

ex
2

(A2x
2 + A1x+ A0)e

x2

7



3.2. The method of variation of parameters. In the next example we have

(5) y′′ + 3y′ + 2y =
1

1− x
, y(0) = 1, y′(0) = 2.

The two homogeneous solutions are the same, so we can go straight to finding
the particular solution. In this case we can’t use the method of undetermined
coefficients (why?) so we use variation of parameters. We start with

yp(x) = c1(x)e−x + c2(x)e−2x.

We compute

y′p = c′1e
−x + c′2e

−2x − c1e−x − 2c2e
−2x.

We have some freedom in choosing the functions c1 and c2, so we set c′1e
−x+c′2e

−2x =
0. Now we take a further derivtative to get

y′′p = −c′1e−x − c′2e−2x + c1e
−x + 4c2e

−2x.

Plug all this into (5) to get

1

1− x
= y′′p + 3y′p + 2yp

= −c′1e−x − 2c′2e
−2x + c1e

−x + 4c2e
−2x − 3c1e

−x − 6c2e
−2x + 2c1e

−x + 2c2e
−2x

= −c′1e−x − 2c2e
−2x.

We combine this with the equation c′1e
−x + c′2e

−2x = 0 to get a system of two
equations in two unknows. Add these two equations together to get

1

1− x
= −c′2e−2x ⇒ c′2 =

e2x

x− 1
⇒ c2(x) =

∫ x

0

e2s

s− 1
ds.

We can evaluate

c2(0) = 0, c′2(0) = −1.

Next we use our system of equations to find c1. Indeed,

c′1 = −e−xc′2 =
ex

1− x
⇒ c1 =

∫ x

0

es

1− s
ds.

Again we can evaluate to get

c1(0) = 0, c′1(0) = 1.

Finally we use the initial conditions of (5) to find our solution. We have

y(x) = e−x
∫ x

0

es

1− s
ds+ e−2x

∫ x

0

e2s

s− 1
ds+ ae−x + be−2x,

and we have to find the constants a and b. We evaluate at x = 0 to get

1 = y(0) = a+ b

2 = y′(0) = −a− 2b

which has the solution a = 4 and b = −3.
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There is a general recipe for finding solutions to a non-homogeneous ODE using
variation of parameters, and here it is. As always, the ODE we wish to solve is

a2y
′′ + a1y

′ + a0y = g(x).

(1) Find the general solution of the associated homogeneous ODE a2y
′′+a1y

′+
a0y = 0. This general solution has the form c1y1(x) + c2y2(x), where c1 and
c2 are constants.

(2) Try to find a particular solution of the form yp(x) = c1(x)y1(x)+c2(x)y2(x),
where we replace the constants c1 and c2 with unknown functions c1(x),
c2(x).

(3) Require additionally that c′1y1 + c′2y2 = 0, so that now y′p = c1y
′
1 + c2y

′
2.

(4) Now evaluate:

a2y
′′
p + a1y

′
p + a0yp = a2(c

′
1y
′
1 + c′2y

′
2 + c1y

′′
1 + c2y

′′
2) + a1(c1y

′
1 + c2y

′
2) + a0(c1y1 + c2y2)

= a2(c
′
1y
′
1 + c′2y

′
2) + c1(x)(a2y

′′
1 + a1y

′
1 + a0y1) + c2(x)(a2y

′′
2 + a1y

′
2 + a0y2)

= = a2(c
′
1y
′
1 + c′2y

′
2).

(5) We conclude with the system of first order ODEs

c′1y1 + c′2y2 = 0, c′1y
′
1 + c′2y

′
2 =

g(x)

a2
.

Recall that y1 and y2 are now known functions, so the unknown functions
we wish to find are c1(x) and c2(x).

(6) We can solve this system of linear ODEs for c1 and c2 by hand, and then
write down yp. This in turn gives us the general solution of the non-
homogeneous ODE we are looking for.

We now have two very different methods to solve non-homogeneous, linear, sec-
ond order ODEs with constant coefficients. Each method has its advantages and
disadvantages, and it is not always easy to decide which to use. Here is a good
guideline:

• If the right hand side g(x) appears in the table in the previous section, or is
a linear combination of several of these terms, the method of undetermined
coefficients will be easier, and you should use it.
• Otherwise you should use variation of parameters, and (if necessary) leave

the c1(x) and c2(x) as integrals.
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