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1. Introduction

In this set of notes we introduce Fourier series and use them to solve the heat
equation.

The heat equation is your first example of a partial differential equation (PDE),
that is, an equation for an unknown function of several variables, which involves
partial derivatives. If u is a function of the variables x and t, then a first order
PDE for u has the form

(1) 0 = F

(
x, t, u(x, t),

∂u

∂x
,
∂u

∂t

)
,

and a second order PDE for u has the form

(2) 0 = F

(
x, t, u(x, t),

∂u

∂x
,
∂u

∂t
,
∂2u

∂x2
,
∂2u

∂x∂t
,
∂2u

∂t2

)
.

For the sake of brevity, we will often indicate partial derivatives with subscripts,
such as ∂u

∂x
= ux and ∂2u

∂t2
= utt.

The usual definitions apply to PDEs, as they did to ODE. A function u solves
a PDE of the form (1) or (2) if the function u(x, t) satisfies (1) or (2) for all x and
t. A PDE is linear if the function F is linear in u and all its derivatives. A PDE
is autonomous if F does not depend explicitly on x or t. A PDE is homogeneous
if the function u ≡ 0 is a solution.

We will see more about PDEs later on, but first we need to introduce Fourier
series.

2. Fourier series

It would be nice if we could write any reasonable (i.e. continuous) function
on the closed interval [−L,L] as a sum of sines and cosines. Joseph Fourier was
the first person to do this, and his motivation was finding solutions to the heat
equation. Later on we will see why writing a genearl function as a sum of sines
and cosines makes solving the heat equation easier.

Date: 2013.
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2.1. Full Fourier series over [−L,L]. First we need to recall some machinery
from linear algebra. The space of continuous function on [−L,L] carries the inner
product

〈f, g〉 =

∫ L

−L
f(x)g(x)dx,

and we need to remember that a list of functions {f1, f2, . . . } is an orthonormal
set if

〈fi, fj〉 =

{
1 i = j
0 i 6= j

Theorem 1. The set{√
1

2L
,

√
1

L
cos
(nπx
L

)
,

√
1

L
sin
(nπx
L

)
, n = 1, 2, 3, . . .

}
is an orthonormal set.

Proof. We first check orthogonality. Remember the angle sum formulas for sin and
cos:

cos(θ + φ) = cos θ cosφ− sin θ sinφ, cos(θ − φ) = cos θ cosφ+ sin θ sinφ

and

sin(θ + φ) = sin θ cosφ+ cos θ sinφ, sin(θ − φ) = sin θ cosφ− cos θ sinφ.

We combine these to read

cos θ cosφ =
1

2
(cos(θ + φ) + cos(θ − φ)), sin θ sinφ =

1

2
(cos(θ + φ)− cos(θ − φ))

and

sin θ cosφ =
1

2
(sin(θ + φ)− sin(θ − φ)).

Next we compute: for n 6= m we have∫ L

−L
cos
(nπx
L

)
cos
(mπx

L

)
dx =

1

2

∫ L

−L
cos

(
(n+m)πx

L

)
+cos

(
(n−m)πx

L

)
dx = 0

and∫ L

−L
sin
(nπx
L

)
sin
(mπx

L

)
dx =

1

2

∫ L

−L
cos

(
(n+m)πx

L

)
−cos

(
(n−m)πx

L

)
dx = 0.

Both of these hold because cos
(
kπx
L

)
is a L

k
-periodic function with average value 0.

Similarly, we have∫ L

−L
cos
(nπx
L

)
sin
(mπx

L

)
dx =

1

2

∫ L

−L
sin

(
(n+m)πx

L

)
−sin

(
(n−m)πx

L

)
dx = 0

for all pairs of integers n and m.
Finally we check that ∫ L

−L
dx = 2L⇒ 〈1, 1〉 = 2L,
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and ∫ L

−L
cos2

(nπx
L

)
dx =

1

2

∫ L

−L
1 + cos

(
2nπx

L

)
dx = L,

and ∫ L

−L
sin2

(nπx
L

)
dx =

1

2

∫ L

−L
1− cos

(
2nπx

L

)
dx = L.

This completes the proof. �

It is a little more difficult to prove the following theorem, so we omit the proof
here.

Theorem 2. The set{√
1

2L
,

√
1

L
cos
(nπx
L

)
,

√
1

L
sin
(nπx
L

)
, n = 1, 2, 3, . . .

}
is an orthonormal basis for the vector space of continuous functions on [−L,L].

The difficult part in proving the theorem above is to show that{√
1

2L
,

√
1

L
cos
(nπx
L

)
,

√
1

L
sin
(nπx
L

)
, n = 1, 2, 3, . . .

}
spans the space of continous functions.

Corollary 3. Let f : [−L,L]→ R be continuous, and for n = 0, 1, 2, 3, . . . define

an =

〈
f,

1

L
cos
(nπx
L

)〉
=

1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx

and

bn

〈
f,

1

L
sin
(nπx
L

)〉
=

1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx.

Then

f(x) =
a0

2
+
∞∑
n=1

[
an cos

(nπx
L

)
+ bn sin

(nπx
L

)]
.

Proof. This follows immediately from the fact that{√
1

2L
,

√
1

L
cos
(nπx
L

)
,

√
1

L
sin
(nπx
L

)
, n = 1, 2, 3, . . .

}
is an orthonormal basis and that for any orthonormal basis {φk} we have

f(x) =
∑
k

〈f, φk〉φk(x).

�
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Definition 1. Let f : [−L,L] → R be a continuous function. We define the
Fourier coefficients of f to be

an =

〈
f,

1

L
cos
(nπx
L

)〉
=

1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx

and

bn

〈
f,

1

L
sin
(nπx
L

)〉
=

1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx,

and call

f(x) =
a0

2
+
∞∑
n=1

[
an cos

(nπx
L

)
+ bn sin

(nπx
L

)]
the Fourier series representation of f .

Example: Let f(x) = |x| and compute the Fourier series representation of f .
First observe that f is an even function, and for every n sin

(
nπx
L

)
is odd. Thus,

for every n, bn is the integral of an odd function over [−L,L], so bn = 0 for all n.
Next we compute

an =
1

L

∫ L

−L
|x| cos

(nπx
L

)
dx =

2

L

∫ L

0

x cos
(nπx
L

)
dx =

2L

n2π2
((−1)n − 1).

This last quantity is 0 for n even and − 4L
n2π2 for n odd. We should also do a

particular computation for n = 0 to get a0:

a0 =
1

L

∫ L

−L
|x|dx =

2√
L

∫ L

0

xdx = L.

We can thus write the Fourier series of f(x) = |x| as

|x| = L

2
−
∞∑
k=0

4L

(2k + 1)2π2
.

(Here we have used the substitution n = 2k + 1 for n odd.)
Example: Let

f(x) =

{
−1 −L ≤ x < 0

1 0 ≤ x ≤ L.

Even though this is not a continuous function, it still has a valid Fourier series
representation, which we compute now. First observe that f is odd and cos

(
nπx
L

)
is even, so an = 0 for all n. It remains to compute bn, which we find as follows:

bn =
2

L

∫ L

0

sin
(nπx
L

)
dx = −2L

nπ
((−1)n − 1).

This last quantity is 4L
nπ

when n is odd and 0 when n is even. Thus we can represent

f(x) =
∞∑
k=1

4L

(2k + 1)π
,

where again we substitute n = 2k + 1 for n odd.
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2.2. Fourier half-series. In this section we develop two Fourier series represen-
tations for a function of [0, L].

We start with a function f(x) defined on the interval 0 ≤ x ≤ L. We can extend
f to [−L,L] in two ways, either as an even function or as an odd function. Then
even extension is defined by saying f(−x) = f(x), and the odd extension is defined
by the rule f(−x) = −f(x). If we choose the even extension, we get a Fourier
series for f as a sum of cosines, but if we choose the odd extension then we get a
Fourier series for f as a sum of sines. In fact, both are valid representations.

Definition 2. Let f : [0, L]→ R be continuous and define

αn =
2

L

∫ L

0

f(x) cos
(nπx
L

)
dx

and

βn =
2

L

∫ L

0

f(x) sin
(nπx
L

)
dx.

Then we can define the even Fourier series representation of f to be

f(x) =
α0

2
+
∞∑
n=1

αn cos
(nπx
L

)
and the odd Fourier series representation of f to be

f(x) =
∞∑
n=1

βn sin
(nπx
L

)
.

Exercise: Verify that if

f(x) =

{
−1 0 ≤ x ≤ L

2

1 L
2
< x ≤ L

then the even Fourier series of f is

f(x) =
∞∑
k=0

2(−1)k

(2k + 1)π
cos

(
(2k + 1)πx

L

)
.

3. The heat equation

The heat equation is

ut = κ2uxx.

Here u is a twice differentiable function of the two variables x and t, κ > 0 is a
physical parameter, and we usually take x ∈ [0, L] and t ≥ 0. The function u(x, t)
is supposed to measure the heat of a thin rod (or other, similar, object) at position
x and time t. The heat equation thus tells us how the temperature of rod evolves
in time, so long as there are no external heat sources.
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3.1. Origin and nature of the heat equation. We can think of the second
derivative as the limit of second difference quotients, so that

uxx(x0) '
u(x0+∆x)−u(x0)

∆x
− u(x0)−u(x0−∆x)

∆x

∆x
=
u(x0 + ∆x)− 2u(x0) + u(x0 −∆x)

(∆x)2
.

If we now set uxx = 0 then we can see

u(x0) ' 1

2
(u(x0 + ∆x) + u(x0 −∆x)),

which says that u(x0) is roughly equal to the average value of u at neighboring
points.

Using similar reasoning, we can understand why the PDE ut = κ2uxx should
model the flow of heat. First we need to understand that heat likes to spread out.
If we place an ice cube in a hot cup of tea and wait, eventually all the liquid in the
cup will be the same temperature. This is because the heat in the hot liquid will
flow to the cold region of the ice cube. We can model this as saying that the rate of
change of heat should be proportional to the difference between u(x0, t0) and the
temperature of its (physical) neighbors. Thus we should have

ut = κ2uxx

for some constant of proportionality κ.
If we again think of the heat equation as modeling the temperature of a rod,

then we can place two sorts of natural boundary conditions at the endpoints x = L
and x = 0. Neumann boundary conditions are

∂u

∂x
(L, t) = 0 =

∂u

∂x
(0, t)

for all t > 0, which physically means that we have insulated the ends of the rod (so
that no heat can flow in or out). The other sort of natural boundary conditions we
have are Dirichlet boundary conditions, which are

u(L, t) = 0 = u(0, t)

for all t > 0. Physically this means we’re holding the temperature of the ends of
rod to be zero, i.e. the ends are in an ice bath.

To complete our set of given data, we need to specify an initial temperature
distribution, which is a given function f(x) = u(x, 0) for 0 ≤ x ≤ L. In general we
expect to be able to solve either of the following problems: find u(x, t) such that

ut = κ2uxx, u(x, 0) = f(x),
∂u

∂x
(L, t) = 0 =

∂u

∂x
(0, t),

or find u(x, t) such that

ut = κ2uxx, u(x, 0) = f(x), u(L, t) = 0 = u(0, t).

The first of these has Neumann boundary conditions, and the second has Dirichlet
boundary conditions.

At this point, it makes sense to list some basic properties of the heat equation.
We see that it involves two derivatives in x and one derivative in t, so we say that
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ut = κ2uxx is a second order PDE. It is also a linear PDE, because we can rewrite
the heat equation as

0 = ut − κ2uxx = F (x, t, u, ut, ux, utt, utx, uxx),

and in this case F is linear in ut and uxx. The heat equation is also homogeneous
(because u ≡ 0 is a solution) and autonomous (because F does not depend on x
or t).

Solutions to the heat equation also obey a very nice physical law. To see this,
we first define the thermal energy of the rod (at time t) to be

E(t) =

∫ L

0

u2(x, t)dx,

where u solves the heat equation, with either Dirichlet or Neumann boundary
conditions.

Theorem 4. Let u solve

ut = κ2uxx, 0 ≤ x ≤ L, 0 < t

with either Dirichlet or Neumann boundary conditions. Then E ′(t) < 0 for all t.
That is, the thermal energy of the rod is always decreasing.

Proof. We take a derivative, use the heat equation, and integrate by parts to see

dE

dt
=

d

dt

∫ L

0

u2(x, t)dx =

∫ L

0

d

dt
(u2(x, t))dx = 2

∫ L

0

uutdx

= 2κ2

∫ L

0

uuxxdx = 2κ2

[
uux|Lx=0 −

∫ L

0

(ux)
2dx

]
= −2κ2

∫ L

0

(ux)
2dx < 0.

Here we have used the fact that u has either Dirichlet or Neumann boundary
conditions to eliminate the boundary terms in the integration by parts; either will
suffice. �

3.2. Solutions with Neumann boundary conditions. In this section, we solve
the heat equation with Neumann boundary, that is 0 = ux(L, t) = ux(0, t).

We start by looking for a solution of the form u(x, t) = A(x)B(t). Then we must
have

0 = ut − κ2uxx = AB′ − κ2A′′B ⇒ B′

B
(t) = κ2A

′′

A
(x).

As these are two functions of different variables, this is only possible if

B′

B
= κ2A

′′

A
= −τκ2 = constant,

which we can rewrite as

B′ = −τκ2B, A′′ = −τA.
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(The minus sign there will be convenient later on.) At this point, it might be
worthwhile to point out the boundary conditions on u. We must have

ux(0, t) = 0⇒ A′(0) = 0, ux(L, t) = 0⇒ A′(L) = 0.

Regardless of the sign of τ , the solution for B is

B(t) = B0e
−τκ2t,

where the constant B0 is merely the value of B at t = 0. On the other hand, the
solution for A depends a bit on the sign of τ . If τ < 0 then

A(x) = c+e
√
−τx + c−e

√
−τx.

At this point we can try to match the boundary conditions on A. We must have

0 = A′(0) =
√
−τ(c+ − c−)⇒ c+ = c0

and
0 = A′(L) =

√
−τc+(e

√
−τL − e−

√
−τL)⇒ c+ = 0 = c−.

This can only happen if A ≡ 0, which in turn implies u ≡ 0, which is not the
solution of the heat equation we’re looking for. Thus we can rule out τ < 0.

We must therefore have τ > 0, and so

A(x) = c1 cos(
√
τx) + c2 sin(

√
τx).

Again, we match boundary conditions, and see

0 = A′(0) =
√
τc2 ⇒ c2 = 0.

We conclude that with Neumann boundary conditions, the only possible solution
to the heat equation on an interval is

u(x, t) = c1 cos(
√
τx)e−τκ

2t,

where τ > 0 is a parameter we have yet to discover. This is where we use the other
boundary data point, namely

0 = A′(L) = −c1

√
τ sin(

√
τL)⇒

√
τL = nπ ⇒ τ =

n2π2

L2

for some integer n. We now have found a solution to the heat equation of the form

u(x, t) = cne
−n

2κ2π2t
L2 cos

(nπx
L

)
,

where cn is a constant we can determine from the initial condition at t = 0.
We do not yet have a way to choose which integer n we should use. The answer

is that we must choose all possible n, and sum the results. We can do this be-
cause the heat equation is a linear, homogeneous equation, and so the principle of
superposition applies. Thus, we have just derived the following theorem.

Theorem 5. The general solution to the heat equation with Neumann boundary
conditions, which we can write as

ut = κ2uxx,
∂u

∂x
(0, t) = 0 =

∂u

∂x
(L, t),
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is

u(x, t) =
∞∑
n=0

cne
−n

2κ2π2t
L2 cos

(nπx
L

)
.

Using this theorem is exactly where we use the Fourier series we have just dis-
cussed.

Example: Solve the Neumann boundary value problem

ut = κ2uxx,
∂u

∂x
(0, t) = 0 =

∂u

∂x
(L, t), u(x, 0) =

{
−1 0 ≤ x ≤ L

2

1 L
2
< x ≤ L.

We know that the solution must have the form

u(x, t) =
∑
n=0

cnne
−n

2κ2π2t
L2 cos

(nπx
L

)
,

so it only remains to find the coefficients cn. Evaluating u at t = 0, we see

u(x, 0) =
∞∑
n=0

cn cos
(nπx
L

)
=

{
−1 0 ≤ x ≤ L

2

1 L
2
< x ≤ L.

However, we have already written this particular function as a sum of cosines, when
we found the even Fourier series representation of it. We have

u(x, 0) =

{
−1 0 ≤ x ≤ L

2

1 L
2
< x ≤ L.

}
=
∞∑
k=0

2(−1)k

(2k + 1)π
cos

(
(2k + 1)πx

L

)
,

and so we conclude that we must have

u(x, t) =
∞∑
k=0

2(−1)k

(2k + 1)π
e−

(2k+1)2κ2π2t

L2 cos

(
(2k + 1)πx

L

)
.

We see now that we have a standard technique to solve the Neumann boundary
value problem on the interval 0 ≤ x ≤ L, for t ≥ 0:

ut = κ2uxx,
∂u

∂x
(0, t) = 0 =

∂u

∂x
(L, t), u(x, 0) = f(x).

First we find the Fourier coefficients

αn =
2

L

∫ L

0

f(x) cos
(nπx
L

)
dx,

so that

f(x) =
α0

2
+
∞∑
n=1

αn cos
(nπx
L

)
.

Then the solution to our heat equation with Neumann boundary data must be
given in terms of the Fourier series, as

u(x, t) =
α0

2
+
∞∑
n=1

αne
−n

2κ2π2t
L2 cos

(nπx
L

)
.
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We can pick out the long-time behavior of u in this case. Observe that as t→∞
all the exponential terms decay to 0, very rapidly. This means that for all x we
ahve

lim
t→∞

u(x, t) = lim
t→∞

[
α0

2
+
∞∑
k=1

αne
−n

2κ2π2t
L2 cos

(nπx
L

)]
=
α

2
=

1

L

∫ L

0

f(x)dx.

We have just proved the following corollary.

Corollary 6. Let u(x, t) solve

ut = κ2uxx,
∂u

∂x
(0, t) = 0 =

∂u

∂x
(L, t), u(x, 0) = f(x).

Then for all x ∈ [0, L] we have

lim
t→∞

u(x, t) =
α0

2
= avg(f),

where avg(f) is the average value of the initial temperature distrubution f over the
interval [0, L].

3.3. Solutions with Dirichlet boundary conditions. In this section, we solve
the heat equation with Neumann boundary, that is 0 = ux(L, t) = ux(0, t). Indeed,
we will see that the solution in the Dirichlet case is very similar to the solution we
have just constructed in the Neumann case, with the only difference being that we
must replace the cosines with sines.

More specifically, we wish to solve

ut = κ2uxx, u(0, t) = 0 = u(L, t), u(x, 0) = f(t),

where f(x) is a given function which measures the initial temperature distribution.
We again look for a solution u(x, t) = A(x)B(t), and so we must have

AB′ = κ2A′′B ⇒ B′

B
(t) = κ2A

′′

A
(x) = −τκ2 = constant.

We now have two ODEs for A and B, which are

B′ = −τκ2B, A′′ = −τA.
We can solve the ODE for B to give

B(t) = B0e
−τκ2t

for some constant B0 = B(0). Using the same reasoning as before we can eliminate
the case τ ≤ 0, and so (since τ > 0) we must have

B(x) = c+ cos(
√
τx+ c− sin(

√
τx).

By our boundary conditions we have

0 = B(0) = c+ ⇒ B(x) = c− sin(
√
τx)

and

0 = B(L) = c− sin(
√
τL)⇒

√
τL = nπ ⇒ τ =

n2π2

L2
.
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We now conclude that

u(x, t) =
∞∑
n=1

βne
−n

2κ2π2t
L2 sin

(nπx
L

)
.

It remains to find the coefficients βn, but these must be the coefficients of the
Fourier sine-series for the initial condition f . Evaluating at t = 0 we see

f(x) = u(x, 0) =
∞∑
n=1

βn sin
(nπx
L

)
,

where

βn =
2

L

∫ L

0

f(x) sin
(nπx
L

)
.

We make two quick observations. First observe that there is no n = 0 term,
precisely because sin(0) = 0. We also see that for all x we have

lim
t→infty

u(x, t) = lim
t→∞

∞∑
n=1

βn sin
(nπx
L

)
= 0.

This says that in the case of Dirichlet boundary conditions the limiting temperature
idstribution is always zero. This actually should not be too surprising, because we
are (physically) holding the ends of the rod in ice, so all the heat should disipate
out the ends of the rods.

Example: Solve the boundary value problem

ut = κ2uxx, u(0, t) = 0 = u(L, t), u(x, 0) = f(x) =

{
x 0 ≤ x ≤ L

2

L− x L
2
≤ x ≤ L.

We know the solution must be

u(x, t) =
∞∑
n=1

βne
−n

2κ2π2t
L2 sin

(nπx
L

)
where

βn =
2

L

∫ L

0

f(x) sin
(nπx
L

)
dx.

It remains to compute the coefficients βn.
We have

βn =
2

L

[∫ L/2

0

x sin
(nπx
L

)
dx+

∫ L

L/2

(L− x) sin
(nπx
L

)
dx

]

=
2

L

[
−Lx
nπ

cos
(nπx
L

)∣∣∣∣L/2
x=0

+
L

nπ

∫ L/2

0

cos
(nπx
L

)
dx− L2

nπ
cos
(nπx
L

)∣∣∣∣L
L/2

+
Lx

nπ
cos
(nπx
L

)∣∣∣∣L
L/2

− L

nπ

∫ L

L/2

cos
(nπx
L

)
dx

]

=
2

L

[
L2

n2π2
sin(nπ/2) +

L2

n2π2
sin(nπ/2)

]
=

4L

n2π2
sin(nπ/2).
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To evaluate this last quantity, we need to remember some properties of sin. If n
is even, we have sin(kπ) for some integer k, which is zero. If n is odd, then either
n = 4k+ 1 or n = 4k+ 3, and we get either a +1 or a −1, depending. In particular
we have

β4k+1 =
4L

(4k + 1)2π2
, β4k+3 =

4L

(4k + 3)2π2
⇒ f(x) =

4L

π2

∞∑
k=0

(
1

(4k + 1)2
+

1

(4k + 3)2

)
.

Putting everything together, we see

u(x, t) =
∞∑
k=0

4L

(4k + 1)2π2
e−

(4k+1)2κ2π2t

L2 sin

(
(4k + 1)πx

L

)

+
∞∑
k=0

4L

(4k + 3)2π2
e−

(4k+3)2κ2π2t

L2 sin

(
(4k + 3)πx

L

)
.
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