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In these notes we establish some background material which will prove useful
throughout the course. Hopefully, much of this will be review for the reader.

Before we begin, we list some useful references. The classical textbook covering
basic analysis is Principles of Mathematical Analysis by W. Rudin. This book is
very dense, but very much worth the effort it will take to work through it. There
are several other good textbooks, including The Way of Analysis by R. Strichartz
and Elementary Classical Analysis by J. Marsden.

One can also find decent lecture notes online (for free). J. Taylor has a set of
notes available at
http://www.math.utah.edu/∼taylor/foundations.html
N. Korevaar has scanned lecture notes at
http://www.math.utah.edu/∼korevaar/5210spring09/5210lectures.html
You can browse many online lecture notes at the MIT OpenCourseWare website:
http://ocw.mit.edu/OcwWeb/Mathematics/index.htm

This last website is highly recommended; it’s usually a good idea to learn from the
experts.

1 Topology of Rn

Here we review the topology of the Euclidean space Rn. Recall that Euclidean
space comes equipped with a distance: for x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn,
we denote this distance by

|x− y| = dist(x, y) =
√

(x1 − y1)2 + · · ·+ (xn − yn)2.

The distance function in turn determines a topology, in which a set U ⊂ Rn is
open if and only if for any x ∈ U there is an ε > 0 such that the metric ball
Bε(x) = {y : |x− y| < ε} is contained in U . Equivalently, a set is open if and only
if one can write it as a union of metric balls.

With open sets come a host of other useful tools, such as closed sets, compact
sets, and connected sets. It is important to remember the Heine-Borel character-
ization of compact sets in Rn: a set K ⊂ Rn is compact if and only if it is both
closed and bounded.
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The main purpose of this section is to remind the reader of convergence prop-
erties. Let {xk : k = 1, 2, 3, . . . } be a sequence of points in Rn. (Note that here the
subscript serves to index the points in Rn, and does not denote components of an
individual point. We have two equivalent definitions of convergence: the limit x̄ of
the sequence {xk} satisfies either one of the following conditions:

• for all ε > 0 there is a natural number N such that |xk− x̄| < ε for all k > N .

• for all open sets U containing x̄ there is a natural number N such that xk ∈ U
for all k > N .

We prove that these two conditions are equivalent. Suppose the first condition
holds and pick an open set U containing x̄. There is a metric ball Bε(x̄) centered
at x̄, for some ε > 0, which is contained in U . Then, for k > N , |xk − x̄| < ε,
which implies xk ∈ Bε(x̄) ⊂ U . Conversely, suppose the second condition holds
and choose ε > 0. The ball Bε(x̄) is an open set containing x̄, so for k > N we
have xk ∈ Bε(x̄). This in turn implies |xk − x̄| < ε. �

We write the limit in two equivalent ways:

limk→∞xk = x̄, xk → x̄.

Notice that, if xk → x̄, then all the components of xk must approach the
corresponding component of x̄.

Lemma 1. A sequence {xk} converges to x̄ if and only if 〈xk, ej〉 → 〈x̄, ej〉 for all
standard basis elements ej.

Proof. Let xk → x̄. We suppose 〈xk, ej〉 6→ 〈x̄, ej〉 and derive a contradiction. In
this case there is some M > 0 such that

|〈xk, ej〉 − 〈x̄, ej〉| > M.

Then for any choice ε < M we have |xk − x̄| ≥M > ε, so {xk} cannot converge to
x̄.

Conversely, suppose 〈xk, ej〉 → 〈x̄, ej〉. For any ε > 0, there is N ∈ N such that
if k ≥ N then

|〈xk, ej〉 − 〈x̄, ej〉| ≤
√
ε

n

for all j = 1, 2, . . . , n. (We can choose the same N for all j by taking a maximum
as j varies over the finitely many values it can assume.) Then, for k ≥ N ,

|xk − x̄| =

√√√√ n∑
j=1

|〈xk, ej〉| − 〈x̄, ej〉|2 ≤ ε,

and so xk → x̄.
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This leads to the Bolzano-Weierstrass theorem:

Theorem 2. Any bounded sequence in Rn has a convergent subsequence.

Recall that a sequence {xk} has a convergent subsequence if one can an increas-
ing sequence kj of indices, j = 1, 2, . . . , and a point x̄ ∈ Rn such that xkj → x̄.

Proof. The sequence {xk} is bounded, so there is a finite, positive number M
such that |〈xk, ej〉| ≤ M for all k = 1, 2, . . . and j = 1, . . . , n. Now apply the
one-dimensional version of the Bolzano-Weierstrass theorem to each component
〈xk, ej〉.

For the reader’s convenience, we recall the proof of the Bolzano-Weierstrass
theorem on the real line.

Proof. We will first need to prove the following nested intervals lemma: if {Ik =
(ak, bk)} be a sequence of nested intervals, with Ik+1 ⊂ Ik, then the intersection ∩kIk
is nonempty. The sequences {ak} and {bk} are both bounded monotone sequences
({ak} is an increasing sequence and {bk} is decreasing) so they both converge. Call
the limits a = limk→∞ ak and b = limk→∞ bk. Also, because for all k,m ∈ N,
ak < bm, we must have a ≤ b (equality is possible). Then, for any c ∈ [a, b] and
k ∈ N, we have

ak ≤ a ≤ c ≤ b ≤ bk ⇒ c ∈ Ik,

and so c ∈ ∩kIk.
Now let {ak} be some bounded sequence. Then there is some M > 0 such that

ak ∈ [−M,M ] = I1 for all k. We will construct a nested sequence of intervals {Ik}
by successively choosing Ik+1 to be either the left half or the right half of Ik. First
observe that the length |Ik| = 22−kM → 0 as k → ∞. Now suppose Ik contains
infinitely many elements in the sequence {ak} for some k. Either the left half or
the right half of Ik will also contain infinitely many of the ak’s, so choose Ik+1 to be
one half that does. Next, we choose the subsequence {akm} as follows. Let k1 = 1,
and then choose km to be the least k > km−1 such that akm ∈ Ik. This is always
possible because each interval Ik contains infinitely many elements of the original
sequence.

Finally, we let a ∈ ∩kIk. Indeed, if there is another ã ∈ ∩Ik, then

|ã− a| ≤ |Ik| =
M

2k−2
→ 0,

so ã = a and this choice of a is unique. Further, if ε > 0 we can choose k large
enough so that 2k−2 > M/ε, and then (using km ≥ k) |akm − a| < ε. Thus
limm→∞ akm = a, completing the proof.

As an exercise, it is worth the reader’s time to determine which of these se-
quences converges.
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1. xk = ( 1
k
, 1
k2 )

2. xk = ( 1
k
, k)

3. xk = ( k
k+1

, log(k))

4. xk = ( log(k)
k
, k
k+1

)

For the reader’s convenience, we collect some other useful facts about the topol-
ogy of Rn. All of these should be familiar.

• A set U ⊂ Rn is open if and only if it is a union of open metric balls, if
and only if for every x ∈ U there is an ε > 0 such that the open metric ball
Bε(x) ⊂ U .

• A set K ⊂ Rn is compact if and only if it is closed and bounded. (This is the
Heine-Borel theorem.)

• A set E ⊂ Rn is connected if and only if it is path-connected. In particular,
the only connected subsets of R are intervals.

We end this section with a brief discussion of convexity.

Definition 1. If p, q ∈ Rn we denote the line segment joining p to q by [p, q]. A
set U ⊂ Rn is convex if for every pair p, q ∈ U we also have [p, q] ⊂ U . In general,
the convex hull of a set U , written conv(U), is the smallest convex set containing
U .

Observe that the intersection of two convex sets is still convex. Thus, for any
U ⊂ Rn, we can write

conv(U) = ∩{K : U ⊂ K,K convex};

that is, the convex hull of a set is the intersection of all convex sets containing it.
Next, observe that convex sets are connected. In fact, if U is convex then one can
connect and p ∈ U to any other q ∈ U by a straight line segment, and so U is
path-connected, which in turn implies U is connected. We concluded that the only
convex subsets of the real line R are line segments.

2 Functions of several variables

Let U ⊂ Rn be open and connected; and all such a set a domain. A functionf :
U → Rm is an assinment of a point y = f(x) ∈ Rm to each point x ∈ U . The space
Rm is the target of the function f , and the image of f is the collection of all the
points {y = f(x) : x ∈ U}.

We present two equivalent notions of continuity.
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Definition 2. A function f : U → Rm is continuous on the set U if either

• limx̃→x f(x̃) = f(x) for all x ∈ U

• If O ⊂ Rm is an open set containing then so is its preimage f−1(O).

We must show these two definitions are equivalent.

Proof. Suppose limx̃→x f(x̃) = f(x) for all x ∈ U and choose an open set O ⊂ Rm.
For any y ∈ f(U)∩O, there is an ε > 0 such that Bε(y) ⊂ O. Using the definition of
a limit, we see that we can choose δ > 0 such that |x̃−x| < δ implies |f(x̃)−y| < ε,
and so Bδ(x) ⊂ f−1(O). There was nothing particular about our choice of x, other
than x ∈ U , so we conclude that f−1(O) is contained in the union of metric balls
and is hence open.

Conversely, suppose the preimage of every open set is open, choose x ∈ U , and
let y = f(x). This time we choose ε > 0 and consider the open set O = Bε(y).
Because x ∈ f−1(Bε(y)) and f−1(Bε(y)) is open, we can choose δ > 0 such that
Bδ(x) ⊂ f−1(Bε(y)) Unraveling what this means, if |x̃− x| < δ then f(x̃) ∈ Bε(y),
which in turn implies |f(x̃)− f(x)| < ε. Thus limx̃→x f(x̃) = x, as claimed.

Observe that, by taking complements, we could have just as easily proved that
f : U → Rm is continuous if and only if the preimage of every closed set is closed.

It is worthwhile to remember which direction the inclusions go. In particular,
the image of a closed set under a continuous function may not be closed. For
instance, consider f : R2 → R given by f(x, y) = x, and the closed set C =
{(x, 1

x
) : x > 0}. The image of C under the continuous function f is the open

half-line (0,∞), and it is not certainly not closed.
The following theorem proves one of the more useful properties of continuous

functions.

Theorem 3. The image of a compact set under a continuous function is compact.

Proof. Let f : U → Rm be continuous and choose a compact subset K ⊂ U .
Choose any open covering {Oα} of the set f(K). By continuity, each preimage Vα =
f−1(Oα) is open, so the collection {Vα} is an open cover of K. By compactness,
we can choose a finite subcover {V1, . . . , Vk}, whose union covers K. We claim
{O1, . . . , Ok} is the finite subcover fo f(K) we’re looking for, where Vj = f−1(Oj).
Indeed, if y ∈ f(K) then y = f(x) for some x ∈ K. This implies x ∈ Vj for some
j ∈ {1, 2, . . . , k}, and so y ∈ Oj. Thus {O1, . . . , Ok} is indeed an open cover of
f(K).

In particular, consider a continuous function f : K → R, where K ⊂ Rn is
compact. The image is a compact subset of R, so it must contain its supremum
and infimum. We have just proved the following corollary:

Corollary 4. Any continuous, real-valued function on a compact set attains both
its maximum and minimum.
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Again, we have to be careful of the direction in which we apply the theorem.
The example f(x) = arctan(x), mapping R to itself shows that the preimage of a
compact set may not be compact.

The theorem and corollary above begin to explain why compact sets are im-
portant. Another supporting argument for the importance of compact sets is the
following result regarding continuity and uniform continuity.

Theorem 5. Let f : K → Rm be continuous, with K ⊂ Rn compact. Then f is in
fact uniformly continuous.

Recall that the function f is uniformly continuous if for every ε there is δ > 0
such that |x − x̃| < δ implies |f(x) − f(x̃)| < ε. The important characteristic of
this definition (and what distinguished uniform continuity from regular continuity)
is the fact that δ does not depend of x or x̃. The proof below is more general,
and applies to continuous functions between metric spaces.

Proof. Pick ε > 0. For any x ∈ K, there is δ = δ(x) > 0 such that |x − x̃| < δ(x)
implies |f(x)− f(x̃)| < ε

2
. Now the collection of metric balls {B δ(x)

2

(x) : x ∈ K} is

an open cover of K, so (by compactness), we can choose an open subcover

{B δ1
2

(x1), . . . , B δk
2

(xk)},

and set
δ = min{δ1, . . . , δk}.

Now suppose we have two points x, x̃ ∈ K, with |x− x̃| < δ. There is some j such

that x ∈ B δj
2

(xj), which is the same as saying |x− xj| < δj
2

. Further,

|x̃− xj| ≤ |x̃− x|+ |x− xj| < δ +
δj
2
≤ δ.

Thus
|f(x)− f(x̃)| ≤ |f(x)− f(xj)|+ |f(xj)− f(x̃)| < ε

2
+
ε

2
= ε.

We leave the following facts as exercises to the reader.

• If U ⊂ Rn is not closed, then there is a continuous function f : U → R which
is not bounded. (Hint: consider a point x̄ 6∈ U which is an accumulation
point of U .)

• If U ⊂ Rn is not compact, then there is a continuous function f : U → R
which is not bounded. (Hint: use the Heine-Borel theorem.)

• If U ⊂ Rn is not compact, then there is a function f : U → R which is not
uniformly continuous.
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3 Linear Algebra

This section covers some useful tools and techniques from linear algebra, assuming
the reader is familiar with basic concepts, such as

dim(T (V )) + dim(ker(T )) = dim(V )

where T : V → W is linear (or, equivalently, rank + nullity = n). If you don’t
remember this formula you might want to review your favorite linear algebra text-
book, such as Anton’s book and Bretscher’s book.

To make this discussion a little more concrete, we will consider a linear trans-
formation T : Rn → Rm. So long as the domain V and target W are both finite
dimensional, this is really the same thing as an abstract linear transformation
T : V → W between vector spaces. (Note: if you’re not nodding your head in
agreement right now, review change of bases for linear transformations.) We’ll also
write the standard basis of Rn as {e1, . . . , en}, where ej has a 1 in the jth slot and
zeroes everywhere else.

We’d like to understand the geometry associated to the linear transformation
T , so we will need to first define a way to measure distances. Denote the Euclidean
length of a vector v as

|v| = |(v1, . . . , vn)| =
√
v2

1 + · · · v2
n,

and recall that the unit sphere Sn−1 is given by

Sn−1 = {v ∈ Rn : |v| = 1}.

Definition 3. If T : Rn → Rm linear, write its operator norm as

‖T‖ = sup
u∈Sn−1

{|T (u)|}.

We collect some properties of the operator norm.

• In the definition of the operator norm, we can replace the supremum with a
maximum.

The unit sphere Sn−1 is a closed, bounded set in Rn, so by the Heine-Borel
property it is compact. The restriction of T to Sn−1 is a continuous function
on a compact space, so it much achieve its maximum (and minimum).

• ‖T‖ = 0 only if T is the zero transformation.

If T 6= 0 then there a nonzero v ∈ Rn such that T (v) 6= 0. Then

‖T‖ ≥ |T (
v

|v|
)| > 0.
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• ‖T‖ is finite.

Write u ∈ Sn−1 as u =
∑n

j=1 ujej. Because u ∈ Sn−1 each coefficient uj is
between −1 and 1, so

|T (u)| = |T (u1e1+· · ·+unen)| ≤ |u1||T (e1)|+· · ·+|un||T (en)| ≤ |T (e1)|+· · ·+|T (en)|.

This provides a uniform bound for |T (u)| as u ranges over Sn−1. Notice that
the bound depends on T . Indeed, it is easy to construct a sequence of linear
transformations Tk : Rn → Rm with ‖Tk‖ → ∞. (Try it.)

• If λ ∈ R and u ∈ Sn−1 then |λT (u)| = |λ||T (u)|, and so ‖λT‖ = |λ|‖T‖.

• If S : Rn → Rm is another linear transformation and u ∈ Sn−1 then

|(S + T )(u)| = |S(u) + T (u)| ≤ |S(u)|+ |T (u)| ≤ ‖S‖+ ‖T‖,

and so ‖S + T‖ ≤ ‖S‖+ ‖T‖.

• Now let S : Rm → Rk be linear, and consider the compostion S ◦ T . If
u ∈ Sn−1 then

|S(T (u))| ≤ ‖S‖|T (u)| ≤ ‖S‖‖T‖,

and so ‖S ◦ T‖ ≤ ‖S‖‖T‖.

• This last inequality can be strict. Let S, T : R3 → R3 be orthogonal projec-
tions onto the xy plane and the z axis, respectively. Then ‖S‖ = ‖T‖ = 1,
but the composition is the zero transformation.

Write the matrix representation of T as

[T ] = [aij].

We can estimate the operator norm of T in terms of the coefficients aij. If v =
v1e1 + · · ·+ vnen then

|T (v)| ≤
n∑
j=1

|vj||T (ej)| ≤
n∑
j=1

m∑
i=1

|vj||aij||ej| =
n∑
j=1

m∑
i=1

|vj||aij|.

Since there are mn terms in the last sum, we conclude

‖T‖ ≤ mnmax
i,j
{|aij|}.

On the other hand, we can also find a lower bound. Let ai0j0 = maxi,j |aij|. Then
ai0j0ei0 is one component of T (ej0), so |ai0,j0| ≤ |T (ej0)|. We conclude

max
i,j
|aij| ≤ ‖T‖ ≤ mnmax

i,j
|aij|.
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Geometrically, ‖T‖ measures the maximum stretch factor of T on the unit
sphere. If v 6= 0 in Rn, then

|T (v)| = |v||T (
v

|v|
)| ≤ ‖T‖|v|.

Thus we see that T maps the unit ball into a ball of radius ‖T‖. Put another way,
if B is the unit ball in Rn, the circumradius of T (B) is ‖T‖.

We can refine this picture by introducing the following semi-norm. (A semi-
norm has most of the properties of a norm, except that it might be zero on some
nonzero elements.)

Definition 4. If T : Rn → Rm is linear, we define the conorm

m(T ) = inf
u∈Sn−1

{|T (u)|}.

The conorm measures the minimum stretch of T , when applied to the unit
sphere. If m(T ) 6= 0, the ratio,

‖T‖
m(T )

≥ 1,

is called the condition number of T , and it measure how much T distorts the unit
sphere. (Exercise: what can you say if the condition number is 1?)

Proposition 6. Let T : Rn → Rm be linear. The conorm m(T ) > 0 if and only
if T is one-to-one. If S : Rn → Rm is also linear then m(S + T ) ≥ m(s) − ‖T‖.
Finally, if S : Rm → Rk then m(S ◦ T ) ≥m(S)m(T ).

Proof. We first show m(T ) > 0 if and only if T is one-to-one. If m(T ) = 0 then
T (u) = 0 for some u ∈ Sn−1. But because T is linear, we also have T (0) = 0, so
T is not one-to-one. Now suppose T is not one-to-one, say T (v1) = T (v2) for some
v1 6= v2. Then let

u =
v1 − v2

|v1 − v2|
∈ Sn−1.

By our choice, T (u) = 0, and so m(T ) = 0.
Now let S : Rn → Rm, and choose u ∈ Sn−1. Then

|S(u) + T (u)| ≥ |S(u)| − |T (u)| ≥m(S)− ‖T‖.

Finally, let S : Rm → Rk and choose u ∈ Sn−1. Then

|S(T (u))| ≥m(S)|T (u)| ≥m(S)m(T ).

We consider the case m = n.

9



Proposition 7. Let T : Rn → Rn. Then m(T ) > 0 if and only if T is invertible.
Furthermore, in this case m(T ) = ‖T−1‖−1.

Proof. The first statement follows from the previous proposition and general facts
about linear transformations. Now let T be invertible and denote its inverse by S.
Then

Id = S ◦ T ⇒ 1 = m(S ◦ T ) ≥m(S)m(T )⇒m(T ) ≥ 1

m(T−1)
≥ 1

‖T−1‖
.

Next choose w ∈ Sn−1 such that |T−1(w)| = ‖T−1‖ and let v = T−1(w). Then

1 = |w| = |T (v)| ≥m(T )|v| = m(T )‖T−1‖.

Rearranging this inequality gives m(T ) ≤ ‖T−1‖−1, completing the proof.

Finally, we restrict ourselves further to the set Gl(n,R) of invertible linear
transformations on Rn, inside the space L(n,R) = Rn2

of linear transformations
from Rn to itself. The operator norm ‖ · ‖ gives us a natural way to measure
distances on Rn2

, and so we can make sense of things like open sets and continuous
maps.

Proposition 8. Gl(n,R) is an open subset of Rn2
, and the inversion map T 7→ T−1

is continuous on it.

Proof. Let T ∈ Rn2
be invertible, with matrix coefficients aij. The determinant

det(T ) is a degree n polynomial in the coefficients aij, so it is a continuous function.
The linear transformation T is invertible if and only if det(T ) 6= 0, so Gl(n,R) is
the preimage of the open set R\{0} under the continuous function det, and is hence
open. Now let S, T ∈ Gl(n,R) and observe

S−1 − T−1 = S−1 ◦ (T − S) ◦ T−1.

Then
‖S−1 − T−1‖ ≤ ‖S−1‖‖T − S‖‖T−1‖ → 0

as ‖T − S‖ → 0.

There is a trick to remember the factorization we used in the second part of this
proof. Start with S−1−T−1 and factor out S−1 on the left to get S−1◦(Id−S◦T−1).
Now factor out T−1 on the right to get the formula above.
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