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These notes introduce the notion of derivatives for functions of several variables.
It is worthwhile to first recall the derivative of a real-valued function of a single

variable. Let f : R → R, and fixed x0 ∈ R. The classical definition of f having a
derivative f ′(x0) at x0 is that the limit

f ′(x0) = lim
x→x0

(
f(x)− f(x0)

x− x0

)
exists. Denoting the limit as a = f ′(x0), we can rewrite this as

lim
x→x0

(
f(x)− f(x0)− a(x− x0)

x− x0

)
= 0.

Notice that any linear map from R to itself is just multiplication by some constant a.
This is the important conceptual leap we must make: the derivative of a function
at a point is not a number, or a vector. It is a linear transformation. The
derivative of a function f at the point x0 is the linear transformation which best
approximates f near x0. Indeed, you’re already familiar with this concept from
Taylor’s theorem, but might not have thought about it using the language above.

Now we naturally arrive at the proper definition of a derivative:

Definition 1. Let f : Rn → Rm and x0 ∈ Rn. We say f has a derivative at x0 if
there is some linear map A : Rn → Rm such that

lim
x→x0

(
f(x)− f(x0)− A(x− x0)

|x− x0|

)
= 0.

If this limit exists for the linear map A, we write Df |x0
= A as the (total) derivative

of f at the point x0.

We can rewrite this expression as, near x0,

f(x) = f(x0) + A(x− x0) + r(x),

where

A : Rn → Rm is linear, and lim
x→x0

(
|r(x− x0)|
|x− x0|

)
= 0.
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We call r(x− x0) the sublinear remainder of f at x0. It will be convenient later to
define the auxiliary remainder function r̄ : [0,∞)→ [0,∞) by

r̄(ρ) = sup
|x−x0|≤ρ

|f(x)− f(x0)− Df |x0
(x− x0)|

|x− x0|
.

Notice that −r̄(|x− x0|) ≤ r(x− x0) ≤ r̄(|x− x0|), and we still have the estimate

lim
x→x0

r̄(|x− x0|)
|x− x0|

= 0.

Also, not that r̄(ρ) is a monotone function of ρ, so that for ρ∗ > ρ > 0 we have
r̄(ρ∗) ≥ r̄(ρ).

We emphasize here that it is important to remember that the derivative of f at
the point x0 is not a number or a vector, it is the linear transformation which
best approximates f near x0.

Proposition 1. If f is differentiable at x0 then it is also continuous.

Proof. Write x = x0 + v, and use the notation above. Then

lim
x→x0

|f(x)− f(x0)| = lim
v→0
|f(x0 + v)− f(x0)|

= lim
v→0
|f(x0) + A(v) + r(v)− f(x0)|

≤ lim
v→0

(‖A‖|v|+ |r(v)|) = 0

We conclude limx→x0(f(x)) = f(x0).

At this point we state some basic rules of differentiation.

Theorem 2. Let f and g be differentiable functions.

1. D(f + cg) = Df + cDg for all real numbers c.

2. D(g ◦ f) = (Dg) ◦ (Df)

3. D(f · g) = Df · g + f ·Dg (Notice the order of operations!)

The second two statements require some clarification. In the second statement,
we consider f : Rn → Rm and g : Rm → Rk. Then the composition maps Rn to Rk,
and so does it’s derivative. The theorem states that the derivative of a composition
is the composition of derivatives. (This statement is certainly too elegant to not
be true!) In the third statement, the product in question is a bilinear operation we
will explain inside the proof.
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Proof. We begin with property 1. Choosing a basepoint x0, we see

lim
x→x0

[ |(f(x) + cg(x))− (f(x0) + cg(x0) + (Df |x0
+ c Dg|x0

)(x− x0)|
|x− x0|

]
= lim

x→x0

[ |(f(x)− Df |x0
(x− x0) + c(g(x)− Dg|x0

(x− x0))|
|x− x0|

]
≤ lim

x→x0

[ |f(x)− f(x0)− Df |x0
(x− x0)|

|x− x0|

]
+ |c| lim

x→x0

[ |g(x)− g(x0)− Dg|x0
(x− x0)|

|x− x0|

]
= 0.

This proves the linearity of the derivative.
Next we prove the chain rule, property 2. For simplicity of notation, we write

f and g in Taylor series expansions:

f(x) = f(x0) +A(x− x0) + rf (x− x0), g(x) = g(x0) +B(x− x0) + rg(x− x0).

Here A and B are the linear transformations which are the derivatives Df |x0
and

Dg|x0
respectively, and the remainder terms for f and g satisfy

lim
x→x0

|rf (x− x0)|
|x− x0|

= 0 = lim
x→x0

|rg(x− x0)|
|x− x0|

.

Letting
y = f(x), y0 = f(x0), v = x− x0, w = A(v) + rf (v),

we can write

g ◦ f(x) = g ◦ f(x) = g(y)

= g(y0 + A(v) + rf (v))

= g(y0) +B ◦ A(v) +B(rf (v)) + rg(w).

It remains to show that the two remainder terms B(rf (v)) and rg(w) are smaller
than linear. First,

lim
v→0

|B(rf (v))|
|v|

≤ lim
v→0

‖B‖|rf (v)|
|v|

≤ lim
v→0

‖B‖r̄f (|v|)
|v|

= 0.

Next, we decompose w = A(v) + rf (v), so that

lim
v→0

|rg(w)|
|v|

= lim
v→0

|rg(A(v) + rf (v))|
|v|

≤ lim
v→0

r̄g(|A(v) + rf (v)|)
|v|

≤ lim
v→0

r̄g(‖A‖|v|+ r̄f (|v|))
|v|

= 0.

Putting this all together, we have

lim
x→x0

|g ◦ f(x)− g ◦ f(x0)−B ◦ A(x− x0)|
|x− x0|

≤ lim
v→0

|B(rf (v)) + rg(w)|
|v|

= 0,
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and so B ◦ A is the linear transformation which best approximates g ◦ f at x0 as
claimed.

To prove 3, we first explain the product. on the real line, this is the usual
product of numbers, but on a higher dimensional vector space there are many ways
to interpret a product. In this case we mean a bilinear map.

Let V,W,Z all be vector spaces. A bilinear map · : V × W → Z is any
map which is linear in each factor. More precisely, if we fix v ∈ V then the
map w 7→ v · w : W → Z is linear. Similarly, if we fix w ∈ W then the map
v 7→ v ·w : V → Z is also linear. Again, pay attention to the order of operations; a
bilinear map doesn’t need to be symmetric. Examples of bilinear maps include the
dot product and matrix multiplication. For the proper statement of 3, we write
the bilinear form as β(v, w) = v · · ·w. Then we have

Dβ(f, g)|x (v) = β(Df |x (v), g(x)) + β(f(x), Dg|x (v)).

To prove this statement we again write the first order Taylor expansion of f
and g, with Df |x = A and Dg|x = B. Then

β(f(x+ v), g(x+ v)) = β(f(x) + A(v) + rf (v), g(x) +B(v) + rg(v)) (1)

= β(f(x), g(x)) + β(A(v), g(x)) + β(f(x), B(v))

+β(f(x), rg(v)) + β(A(v), B(v) + rg(v))

+β(rf (v), g(x) +B(v) + rg(v)).

We must verify that the last three terms are sublinear in v. In order to do this, we
need to think of a good way to bound a bilinear map. In this case, if β : Rn×Rm →
Rk, we can also think of β as a linear map Tβ : Rn → Rmk = L(Rm,Rk). That
is, Tβ is a linear map from Rn into the space of linear maps from Rm to Rk. The
map Tβ is given by (Tβ(v))(w) = β(v, w). Now, Tβ is a linear operator between
finite-dimensional vector spaces, so it has a finite operator norm

‖Tβ‖ = sup{‖Tβ(v)‖ : |v| = 1} = sup{|(Tβ(v))(w)| : |v| = 1, |w| = 1},

and so
|β(v, w)| ≤ ‖Tβ‖|v||w|

Now we can estimate the last three terms in (2). First of all,

lim
v→0

|β(f(x), rg(x))

|v|
≤ lim

v→0

‖Tβ‖|f(x)|r̄g(|v|)
|v|

= 0.

The other two estimates are similar.

As mentioned above, we often call the linear map Df the total derivative of
f . From it we can recover other things like directional derivatives and partial
derivatives.
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Definition 2. Let f : Rn → Rm and v ∈ Rn. If x0 ∈ Rn the directional derivative
of f at x0 in the direction v is

Df |x0
(v) = lim

t→0

(
f(x0 + tv)− f(x0)

t

)
,

provided the limit exists. (Notice that the limit is a vector in Rm.) We will typically
take v ∈ Sn−1 to be a unit vector. In the case v = ej, one of the standard basis
vectors of Rn, we obtain the partial derivative

∂fi
∂xj

= D(fi)|x0
(ej),

where fi is the ith component of the function f .

Proposition 3. Let f : Rn → Rm and v ∈ Rn. If the total derivative Df |x0
exists

then so does the directional derivative, and in this case Df |x0
(v) is the linear

transformation Df |x0
applied to the vector v.

Proof. Suppose Df |x0
exists, and denote it as A. Then

lim
t→0

(
|f(x0 + tv)− f(x0)|

|t|

)
− A(v) = lim

t→0

(
|f(x0 + tv)− f(x0)− A(tv)|

t

)
= lim

t→0

(
|r(tv)|
|t|

)
= 0.

In this case we have a nice expression for Df |x0
(v) in terms of the component

of v and the partial derivatives of f . Write v =
∑n

j=1 vjej, then by linearity

Df |x0
(v) =

n∑
j=1

vj Df |x0
(ej) =

n∑
j=1

vj
∂f

∂xj
.

Here we consider ∂f
∂xj

as a vector in Rm, whose ith component is ∂fi

∂xj
.

The reverse implication does not hold. In contrast to what happens with func-
tions of one variable, it is possible for a function of several variables to have partial
derivatives, or even directional derivatives in all directions, at a point without even
being continuous. Consider the real valued function of two variables

f(x, y) =

{
x3

x2+y2
(x, y) 6= (0, 0)

0 (x, y) = (0, 0).

Away from the origin (0, 0) this is a perfectly smooth function. Also, for any unit
vector u ∈ Sn−1, the directional derivative exists. In fact, writing u = (cos θ, sinθ)
for some angle θ, we have

Df |(0,0) = lim
t→0

(
t3 cos3 θ

t(t2 cos2 θ + t2 sin2 θ)

)
= cos3 θ.
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So we see that the directional derivatives not only exist, they are uniformly bounded
between −1 and 1. It’s not too much more work to see that restricting f to
any smooth curve through the origin produces a smooth function of one variable.
Despite all this, f is not differentiable at (0, 0). First observe that the partial
derivatives of f at (0, 0) are

∂f

∂x

∣∣∣∣
(0,0)

= 1,
∂f

∂y

∣∣∣∣
(0,0)

= 0.

However, if θ = π/4 then u = (cos θ, sin θ) = ( 1√
2
, 1√

2
) and

Df |(0,0) (u) =
1√
8
6= 1√

2
=
∂f

∂x
cos θ +

∂f

∂y
sin θ.

One should keep the example directly above in mind to remember the difference
between directional derivatives and the total derivative for for functions of several
variables. Fortunately, these two coincide for functions of one variable, whether the
target is one-dimensional or not. This is because, in R, one can only take a limit
in one direction, rather than several in two (or more) dimensions. Thus we see
that all the rules of calculus we’re used to for scalar-valued functions f : R → R
still hold for vector-valued functions f : R → Rm. In practice, one can write
f(t) = (f1(t), . . . , fm(t)), where t ∈ R is the independent parameter, and apply
one-variable rules of calculus to each component fi(t) separately.

We can refine the notion of a differentiable function f : Rn → Rm by asking
for the derivative to be continuous. We give the space of linear transformations
Rn → Rm a topology from the operator norm, and ask that the derivative Df |x0

vary contiuously (as a function of the base point x0) in this topology. Equivalently,
we can ask that the coefficients ∂fi

∂xj
of the matrix associated to the linear transfor-

mation Df |x0
are continuous functions. (It is worthwhile to check that these two

conditions are equivalent.)

Definition 3. We say that f : Rn → Rm is of class C1 if the derivative Df |x0

varies continuously with respect to the base point x0.

We will return to the subject on C1 functions later, and prove that f : Rn → Rm

is C1 if and only if its partial derivatives ∂fi

∂xj
exist and are continuous. First, though,

we prove some mean-value estimates which are very useful. In this discussion, we
let D be a domain, that is an open, connected set in Rn, and consider f : D → Rm.
If p, q ∈ D, denote the line segment joining p to q by [p, q]. Recall that a domain
D ⊂ Rn is convex if for every pair p, q ∈ D the line segment [p, q] is also in D.

Theorem 4. Let p, q ∈ D such that [p, q] ⊂ D. Then there is a linear transforma-
tion A : Rn → Rm such that

f(q)− f(p) = A(q − p).
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In fact,

A = Aq,p =

∫ 1

0

Df |tq+(1−t)p dt.

Moreover, this linear transformation Aq,p depends continuously on the endpoints p
and q.

Proof. Define the vector-valued function of one variable g(t) = f(tq + (1 − t)p).
By the fundamental theorem of calculus for functions of one variable and the chain
rule,

f(q)− f(p) = g(1)− g(0) =

∫ 1

0

g′(t)dt =

∫ 1

0

Df |tq+(1−t)p (q − p)dt.

It remains to see that Aq,p is continuous. Take ε > 0. The segment [p, q] is compact,
so Df is uniformly continuous on it. So there is δ > 0 such that

|tq + (1− t)p− u| < δ ⇒ ‖ Df |tq+(1−t)p − Df |u ‖ ≤
ε

2

for all t ∈ [0, 1]. Choosing x and y so that |x− p| < δ and |y − q| < δ we see

‖ Df |tq+(1−t)p − Df |ty+(1−t)x ‖ ≤ ε.

We conclude

‖Aq,p − Ay,x‖ ≤
∫ 1

0

‖ Df |tq+(1−t)p − Df |ty+(1−t)x ‖dt ≤ ε.

Theorem 5. Choose p, q so that [p, q] ⊂ D and let M = sup0≤t≤1 ‖ Df |tq+(1−t)p ‖.
Then

|f(q)− f(p)| ≤M |q − p|.

Proof. Without loss of generality, we can assume M is finite. It suffices to show
|f(p)− f(q)| ≤ (M + ε)|p− q| for any ε > 0. Consider the set

X = {x ∈ [p, q] : |f(y)− f(p)| ≤ (M + ε)|y − p| ∀y ∈ [p, x]}.

Observe both sides of the defining inequality for X are zero if x = p, so p ∈ X.
Also, because f is continuous, X is a closed subset of the interval [p, q]. If we can
show X is also an open subset of [p, q], then we must have X = [p, q] because the
interval is connected. We show this by examining the first order Taylor expansion
of f at any x0 ∈ X. Indeed,

|f(x)− f(x0)| ≤ | Df |x0
(x− x0)|+ r̄f (|x− x0|) ≤ (M + ε)|x− x0|.
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There are three possible configurations for the triple x, x0, y in [p, q] if y ∈ [p, x]:
either x0 is between x and y, x is between x0 and y, or y is between x and x0. (It
might help to draw a picture here.) In the first two cases, x0 ∈ X and y comes
before x0, so |f(y)− f(p)| ≤ (M + ε)|y − p|. In the last case,

|f(y)−f(p)| ≤ |f(y)−f(x0)|+|f(x0)−f(p)| ≤ (M+ε)(|y−x0|+|x0−p|) ≤ (M+ε)|y−p|.

In any case, we conclude that if x ∈ [p, q] is near x0 ∈ X then x ∈ X, and so X is
an open subset of the interval [p, q]. Because [p, q] is connected, its only nonempty
subset which is both open and closed is itself, and so |f(p)− f(q)| ≤ (M + ε)|p− q|
as we claimed.

We leave the proofs of the following three corollaries as exercises. Recall that a
function is Lipschitz continuous, with Lipschitz constant L, if

|f(p)− f(q)| ≤ L|p− q|.

Corollary 6. Let f be differentiable with ‖ Df |x0
‖ ≤ M for all x0 ∈ D. Then f

is Lipschitz with Lipschitz constant M .

Corollary 7. A continuously differentiable function is locally Lipschitz.

(Hint: Pick a basepoint p and choose a small, convex neighborhood of p. Then
use the fact that if q is near q then Df |p has to be close to Df |q.)

Corollary 8. If Df |p = 0 for all p ∈ D and D is connected then f is constant on
D.

(Hint: Use the Corollary above with the best Lipschitz constant you can think
of.)

Now, using some of the mean-value estimates we have just derived, we will
prove the following theorem.

Theorem 9. The function f : Rn → Rm is of class C1 if and only if the partial
derivatives ∂fi

∂xj
exist and are continuous.

Proof. If f is C1, the derivative exists, and so the partial derivatives also exist.
The partial derivatives are also the composition of the derivative map and a dot
product, so they are continuous.

Now suppose the partial derivatives exist and are continuous and fix x ∈ Rn.
We have to show that, for v ∈ Rn small,

r = f(x+ v)− f(x)− A(v)
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is smaller than |v|, where A is the linear transformation whose components ar
aij = ∂fi

∂xj
. Choose ε > 0. By continuity, there is a δ > 0 such that if |v| < δ then∣∣∣∣ ∂fi∂xj

∣∣∣∣
x+v

− ∂fi
∂xj

∣∣∣∣
x

∣∣∣∣ ≤ ε

nm

Now join x to x + v by the sequence of n line segments σj = [pj, qj], j = 1, . . . , n,
where p1 = x, qj = pj + vjej, and pj+1 = qj. Then, using the mean value theorem,
we can write

fi(x+ v)− fi(x) =
∑
j

fi(qj)− fi(pj) =
∑
j

∂fi
∂xj

∣∣∣∣
pj+θijvjej

vj,

for some θij ∈ [0, 1]. Note that, because |v| < δ, the points pj and qj are all in the
ball Bδ(x), so we conclude∣∣∣∣∣fi(x+ v)− fi(x)−

∑
j

∂fi
∂xj

∣∣∣∣
x

vj

∣∣∣∣∣ =

∣∣∣∣∣∑
j

(
∂fi
∂xj

∣∣∣∣
pj+θijvjej

− ∂fi
∂xj

∣∣∣∣
x

)
vj

∣∣∣∣∣
≤ ε

m
.

It follows from this estimate that the derivative exists, and Df |x is the linear

transformation whose components are aij = ∂fi

∂fj

∣∣∣
x
. Moreover, these component

vary continuously with x, so f is in fact C1.

The same estimate leads one to a slightly more general statement. (Details of
the proof are left to the reader.)

Theorem 10. Let f : Rn → Rm and suppose the partial derivatives exist and are
continuous near x. Then f is differentiable at x. Further, if the partial derivatives
of f exist and are bounded then f is locally Lipschitz.

We’ll finish off this section of notes with some brief asides. What does it mean
for a function f : C → C to have a derivative? Recall that the complex plane
C is bijective to the real plane R2 under the map z = x + iy, where i2 = −1.
However, C has the additional algebraic structure of multiplication, which makes
many aspects of analysis on it particularly nice. Indeed, under the bijection listed
above, multiplication by the complex number a + ib is the same as multiplication

by the 2 × 2 matrix

[
a −b
b a

]
. As we have written before, f : C → C has a

derivative at z0 if there is a linear map T : C→ C such that

f(z + h) = f(z) + T (h) + r(h).
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However, the fact that T is a linear map from C to itself means it must be multi-
plication by a complex number. Writing f in real components, f(z) = u(z)+ iv(z),
we see the the matrix of partial derivatives take the form[ ∂u

∂x
∂u
∂y

∂v
∂x

∂v
∂y

]
=

[
a −b
b a

]
.

Thus we have derived the Cauchy-Riemann equations for an analytic function:

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

If you take a course in complex analysis you’ll that these are very powerful equa-
tions.

Finally, recall that we previously proved that matrix inversion is a continuous
function. We can improve this with the following theorem.

Theorem 11. Recall that Gl(n,R) ⊂ Rn2
is the set of invertible linear transforma-

tions from Rn to itself. The inversion map Inv : Gl(n,R) → GL(n,R) is of class
C1.

In fact, the same proof shows Inv has as many derivatives as you please.
We will need the following lemma.

Lemma 12. If A ∈ Gl(n,R) and ‖A‖ < 1 then (Id−A)−1 exists, and is the limit
(as k →∞) of the partial sums

Sk =
k∑
j=0

Aj = Id +A+ · · ·+ Ak.

Proof. The identity has conorm m(Id) = 1, so we can bound the conorm

m(Id−A) ≥m(Id−‖A‖ > 0,

which shows Id−A is invertible. Next we show Sk is a Cauchy sequence. Choose
ε > 0, and choose N ∈ N large enough so that

‖A‖N < ε(1− ‖A‖).

Because ‖A‖ < 1, the sum
∑∞

j=0 ‖A‖j is a geometric series, and converges to

(1− ‖A‖)−1. If k > l > N then we estimate

‖Sk − Sl‖ = ‖Ak + Ak−1 + · · ·+ Al+1‖ ≤ ‖A‖k + · · · ‖A‖l+1

≤ ‖A‖l+1(1 + · · ·+ ‖A‖k−l+1) ≤ ‖A‖l+1

∞∑
j=0

‖A‖j

=
‖A‖l+1

1− ‖A‖
< ε.
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The space Rn2
is a finite-dimensional normed vector space, so it is complete, and

thus the series
∑∞

j=0A
j converges to some linear transformation S. We want to

show S = (Id−A)−1. However, we can telescope the sum to get

Sk ◦ (Id−A) = (Id−A) ◦ Sk = Id−Ak+1.

(Write this out if you don’t see it.) Also, ‖Ak+1‖ ≤ ‖A‖k+1 → 0, so, letting k →∞
we see

S ◦ (Id−A) = (Id−A) ◦ S = Id

as claimed.

Now we prove that matrix inversion is C1.

Proof. If A ∈ Gl(n,R) and V ∈ Rn2
is small, we want to prove the Taylor estimate

Inv(A+ V ) = Inv(A) + L(V ) + r((V ),

where L : Gl(n,R) → Rn2
is a linear transformation and r is sublinear. It will

help to factor (A+ V )−1 = A−1(Id +V A−1)−1, which in particular (by the lemma)
implies A+ V is invertible for V sufficiently small. Furthermore,

(A+ V )−1 = A−1

(
∞∑
j=0

(−V A)j

)
= A−1 − A−1 ◦ V ◦ A−1 + r(V ),

where in the last expression we have retained only the first two terms of the
series expansion. The map V 7→ −A−1 ◦ V ◦ A−1 is the linear function of V
we’re looking for, and our only remaining task is to show the remainder r(V ) =

A−1
(∑∞

j=2(−V A)j
)

is smaller than V . In fact,

‖r(V )‖ ≤ ‖A−1‖
∞∑
j=2

(‖V ‖‖A−1‖)j = ‖A−1‖ (‖V ‖‖A−1‖)2

1− ‖V ‖‖A−1‖
,

so

lim
V→0

‖r(V )‖
‖V ‖

≤ lim
V→0

‖V ‖‖A−1‖3

1− ‖V ‖‖A−1‖
= 0.

Finally, we need to prove the map V 7→ −A−1◦V ◦A−1 depends continuously on
A. We already know Inv is a continuous function, so if Ak → A then A−1

k → A−1.
Thus

‖ − A−1
k ◦ V ◦ A

−1
k + A−1 ◦ V ◦ A−1‖ ≤ ‖(A−1 − A−1

k ) ◦ V ◦ A−1‖+ ‖A−1
k ◦ V ◦ (A−1 − A−1

k )‖
≤ ‖A−1 − A−1

k ‖(‖A
−1‖+ ‖A−1

k ‖)→ 0.
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Some comments are in order. In the case of n = 1, the formula for matrix
inversion reverts to the familiar

d

dx

(
1

x

)
= − 1

x2
.

In higher dimensions the formula is more complicated, and one must pay close
attention to the correct order of operations. This order of operations becomes
more important for higher powers. As an exercise, you might determine whether
(A2)−1 = (A−1)2 for linear transformations from Rn to itself (equivalently, n × n
matrices). Start by thinking about 2× 2 matrices.

One can use series to define many familiar functions of matrices. For instance,
the exponential of an n× n matrix A is given by the familiar power series

eA =
∞∑
k=0

Ak

k!
.

It’s not too hard to show this series is absolutely and uniformly convergent (in
fact, one can pretty much copy the n = 1 proof), and so one can even differentiate
the power series using the familiar formula. However, usually eA+B 6= eA · eB for
matrices. If you start to expand out the corresponding series, you’ll find the right
condition to force eA+B = eA · eB. Again, one must pay close attention to the order
of multiplication.

Here are some more exercises. If you’re doing a lot of work for any of these,
stop! Each one is actually very quick if you understand what’s going on.

1. Let f : R3 → R2 be orthogonal projection onto the horizontal plane. What
is the derivative Df |x? Does it depend on the base point x?

2. Fix v = (1, 0, 0, 1,−2, 1) ∈ R6 and let f(x) : R6 → R be given by f(x) =
〈x, v〉. What is the derivative Df?

3. Fix any 3× 4 matrix A and consider the function f : R4×2 → R3×2 given by
f(B) = A ·B. What is the derivative Df?
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