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In this section of notes we discuss second and higher derivatives of a function
of several variables. First, recall that if f : Rn → Rm and x0 ∈ Rn then f is
differentiable at x0 if there is a linear transformation A : Rn → Rm such that

lim
x→x0

|f(x)− f(x0)− A(x− x0)|
|x− x0|

= 0.

We call this linear transformation the derivative Df |x0
. Now suppose U ⊂ Rn is

open and f : U → Rm is C1, i.e. has a derivative which varies continuously in U .
This derivative is now a function

U 3 x 7→ Df |x ∈ L(Rn,Rm) = Rmn,

and so it makes sense to see if Df itself has a derivative. If it exists, this derivative
will now be a linear map D2f : Rn → L(Rn,Rm) = Rmn. We can clarify some of
the notation by using the bilinear maps we introduced in the last set of notes.

Let V,W,Z be vector spaces, and denote the space of bilinear maps β : V ×W →
Z as L(V,W ;Z).

Lemma 1. The spaces L(V,W ;Z), L(W,V ;Z), L(V, L(W,Z)), and L(W,L(V, Z))
are all naturally isomorphic (that is, the isomorphism doesn’t depend on any choices).
The common dimension of these vector spaces is dim(V ) dim(W ) dim(Z).

Notice that(again) the order of operations is important. If we restrict our
attention to symmetric bilinear transformations we don’t have to pay attention to
the order, though.

Proof. To β ∈ L(V,W ;Z) we have already associated the linear transformation
Tβ : V → L(W,Z), where (Tbeta(v))(w) = β(v, w). We define the inverse map by
associating a bilinear map βT to a linear transformation T : V → L(W,Z). In
fact, βT (v, w) = (T (v))(w). By construction, βTbeta = β for all β ∈ L(V,W ;Z)
and TβT

= T for all T ∈ L(V, L(W,Z)), and so we’ve just shown L(V,W ;Z) is
naturally isomorphic to L(V, L(W,Z)). Permuting the arguments of the bilinear
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and linear maps, the same line of reasoning shows L(W,V ;Z) is naturally isomor-
phic to L(W,L(V, Z)). Finally, if β ∈ L(V,W ;Z) we define β̂ ∈ L(W,V ;Z) by
β̂(v, w) = β(w, v), which is an involution. (An involution is an isomorphism which
is its own inverse.)

All that remains is to count the dimension of all four of these vector spaces.
Choose bases {Ei}, {Fj}, and {Gk} (respectively) for V , W , and Z. Write v ∈ V
as v =

∑
viEi and w ∈ W as w =

∑
wjFj. Now define the bilinear maps βijk ∈

L(V,W ;Z) by β(v, w) = viwjGk ∈ Z; these form a basis of L(V,W ;Z).

Recall we defined the norm of the bilinear form β by

‖β‖ = sup{|β(v, w)| : |v| = 1 = |w|} = ‖Tβ‖,

and so these isomorphisms in fact preserve the norms of all the spaces.

Corollary 2. The dimension of the space of bilinear maps Rn×Rn → Rm is n2m.

In fact, we can define k-linear maps, where k ∈ N, as those maps which take in
k vectors and are linear in each factor. By induction on the lemma above and its
corollary, the space of k-linear maps Rn × · · · ×Rn → Rm is nkm. (Here there are
k factors of Rn in the domain of the k-linear map.)

Another fact about symmetric bilinear transformations (and symmetric k-linear
transformations in general) will be useful. A bilinear transformation β is symmetric
if β(v, w) = β(w, v) for all possible pairs v and w. Such a bilinear transformation
is uniquely determined by its action on the diagonal. In other words, a symmetric
bilinear transformation is determined by the values β(v, v) for all possible v. Indeed,
if β is symmetric, then

β(v − w, v − w) = β(v, v)− 2β(v, w) + β(w,w),

which implies

β(v, w) =
1

2
(β(v, v) + β(w,w)− β(v − w, v − w)).

By the same reasoning (or induction) a symmetric k-linear transformation β :
Rn×· · ·×Rn → Rm is determined by its action on the diagonal, that is β(v, v, . . . , v)
for all v ∈ Rn.

Now let’s return to the question of second and higher order derivatives. Let’s
say f : Rn → Rm is a C1 function; then Df : Rn → L(Rn,Rm) is continuous, and
we can ask if it has a linear approximation at a basepoint x0 ∈ Rn. Such a linear
approximation would be a linear map

A : Rn → L(Rn,Rm)

which satisfies

lim
x→x0

Df |x (w)− Df |x0
(w)− (A(x− x0))(w)

|x− x0|
= 0 (1)
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for all w ∈ Rn. Using the identification L(Rn, L(Rn,Rm)) = L(Rn,Rn; Rm) above
(and abusing notation just a little) we can write D2f |x as the bilinear transforma-
tion which best approximates the function Df , base at x. The limit estimate above
says D2f |x (v, w) is smaller than |v||w|, so, in particular, we obtain the second order
Taylor estimate

lim
v→0

|f(x+ v)− f(x)− Df |x (v)− 1
2
D2f |x (v, v)|

|v|2
= 0. (2)

The factor of 1/2 in front of the second derivative term in the equation (2) occurs
because Df |x appears twice in equation (1).

By induction on the number of derivatives, we prove the following Taylor series
expansion for function of several variables.

Theorem 3. Let f : Rn → Rm have k derivatives at the point x. Then the kth
order Taylor remainder rk(v) defined by

f(x+ v) = f(x) + Df |x (v) +
1

2
D2f

∣∣
x

(v, v) + · · ·+ (3)

+
1

(k − 1)!
Dk−1f

∣∣
x

(v, v, · · · , v) +
1

k!
Dkf

∣∣
x

(v, v, · · · , v) + rk(v)

satisfies

lim
v→0

|rk(v)|
|v|k

= 0.

In this theorem, the derivative Dlf of order l, for l = 1, 2, . . . , k, is an l-linear
map from Rn × Rn × · · · × Rn → Rm.

At this point, we write out the second derivative in terms of partial derivatives.
As was the case for the first derivative, the existence of the second derivative implies
the existence of the second partials, and in this case

∂2fi
∂xj∂xk

∣∣∣∣
x0

= D2fi
∣∣
x0

(ej, ek),

where fi is the ith component of the function f . Indeed, we can borrow the proof in
the previous set of notes for the first derivative and apply it to all higher derivatives.
However, with second and higher order derivatives we have a choice of the order
in which we take derivatives. Does the answer we get depend on this choice? In
other words, is the second derivative a symmetric bilinear form?

Theorem 4. If f has a second derivative it is a symmetric bilinear form, so that

∂2fi
∂xj∂xk

=
∂2fi

∂xk∂xj

for all i, j, k. In other words,

D2f
∣∣
x0

(v, w) = D2f
∣∣
x0

(w, v)

for all v, w ∈ Rn.
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The same proof shows the kth order derivative is in fact symmetric in all its k
entries.

Remark 1. The usual proof one sees that the second derivative is symmetric actu-
ally requires that the second derivative varies continuously with the basepoint. The
proof below does not assume continuity of the second derivative. We outline the
(slightly) weaker proof in exercises below.

Proof. Without loss of generality we can assume f : Rn → R; the symmetry
assertion we want to prove concerns only interchanging v and w, not on the values
f can assume.

Fix a basepoint x in the domain of f and vectors v, w ∈ Rn and consider the
function

F (t, v, w) = f(x+ tv + tw)− f(x+ tv)− f(x+ tw) + f(x).

Notice that F is symmetric in v and w: F (t, v, w) = F (t, w, v).
We will complete the proof by showing limt→0 t

−2F (t, v, w) = D2f |x (v, w).
Then, because the thing inside the limit is symmetric in v and w, we conclude
D2f |x (v, w) = D2f |x (w, v) as we claimed.

For a given t, we will need an auxiliary function

g(s) = f(x+ sv + tw)− f(x+ sv).

Then F (t, v, w) = g(t) − g(0). Also, because f is differentiable, g is also a dif-
ferentiable function of the one variable s. So, by the mean value theorem for one
variable, there is θ ∈ (0, t) such that F (t, v, w) = tg′(θ). However, we can also
compute g′(θ) in terms of Df using the chain rule, obtaining

F (t, v, w) = tg′(θ) = t[Df |x+θv+tw (v)− Df |x+θv (v).

Next we expand both the Df terms in Taylor series.

F (t, v, w)

t2
=

1

t

[
Df |x (v) + D2f

∣∣
x

(v, θv + tw) + r(v, θv + tw)
]

−
[
Df |x (v) + D2f

∣∣
x

(v, θv) + r(v, θv)
]

= D2f
∣∣
x

(v, w) +
r(v, θv + w)

t
+
r(v, θv)

t

The two remainder terms r(v, θv+w) and r(v, θv) are sublinear, so the correspond-
ing ratios go to zero as t→ 0. This completes the proof.

We can apply all these ideas to compute higher order derivatives. For instance,
the third derivative D3f |x, should it exist, is a trilinear map from Rn × Rn × Rn

to Rm. It is also fully symmetric, that is

D3f
∣∣
x

(u, v, w) = D3f
∣∣
x

(v, u, w) = D3f
∣∣
x

(w, v, u),
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and so on. In particular, if f has derivatives up to order k, then for l ≤ k the lth
order mixed partial derivatives are equal.

We say a function f is of class Ck, for k = 0, 1, 2, 3, . . . , if f has derivatives
up to and including order k, and the kth derivative is continuous. Borrowing the
proof we had in the last set of notes for first derivatives, we see that f ∈ Ck if and
only if all partial derivatives of f of order l ≤ k exist and are continuous. If f has
derivatives to all orders, then we write f ∈ C∞.

Observe that the Taylor series expansion in (3) approximates a function f as a
polynomial, just as in the one variable case. When does this series converge to f?
Actually, the answer is the same as in the one variable case. Write out

f(x+ v) = f(x) +Df(v) +
1

2
Df(v, v) + · · ·+ 1

k!
Df(v, v, . . . , v) + · · ·

= c0 + c1(v) + c2(v, v) + . . . ,

where in each term ck is a symmetric k-linear form. Using the same estimates one
does in the one variable case (with operator norms replacing absolute values), we
see that the radius of convergence of this series is R where

R = lim sup
k→∞

‖ck‖1/k.

So long as |v| < R, the series converges uniformly and absolutely, and we can
differentiate it term by term. A function f which is given by a convergent power
series is analytic, which we write as f ∈ Cω. The condition f ∈ Cω is much
stronger than the condition f ∈ C∞, which we can even see for functions of one
variable. Let

f(x) =

{
e−1/x x > 0

0 x ≤ 0.

One can verify that all derivatives of f exist, even at x = 0. Indeed, the kth
derivative at zero is f (k)(0) = 0, so the Taylor polynomial (centered at 0) to any
order is the zero polynomial. If f did have a convergent power series centered at 0,
it would have to be the zero series, which would then mean f is identically equal
to 0 in a neighborhood of 0. Which it isn’t.

Here are some exercises to think about, written in no particular order.

1. Write down a function f : R → R, with f ∈ C∞, such that f(x) ≥ 0 for all
x and

f(x) =

{
1 |x| < 1

2

0 |x| > 1.

Such a function is called a bump function, and is useful in many applications.
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