
The Heat Equation via Fourier Series

The Heat Equation: In class we discussed the flow of heat on a rod of length L > 0. Letting
u(x, t) be the temperature of the rod at position x and time t, we found the differential equation

∂u

∂t
= κ2

∂2u

∂x2
, u(x, 0) = f(x), (1)

where f(x) is the initial temperature distribution and κ > 0 is a physical constant. You can find
another explanation of this equation, based on physics, in the notes for 2FM on Vula (first file of
notes, pages 19–20). One can have several different boundary condition at the ends of the rod.
The most common are Dirichlet boundary conditions

u(0, t) = 0, u(L, t) = 0,

which correspond to setting the ends of the rod in an ice bath to keep the temperature zero there,
and Neumann boundary condition

∂u

∂x
(0, t) = 0,

∂u

∂x
(L, t) = 0,

which correspond to keeping the rod insulated so no heat can enter or leave it. More general
boundary conditions are possible.

Let’s begin by solving the heat equation with the following initial and boundary conditions:

∂u

∂t
= κ2

∂2u

∂x2
,

∂u

∂x
(0, t) = 0 =

∂u

∂x
(L, t), u(x, 0) = cos

(πx
L

)
. (2)

We start by guessing a solution of the form u(x, t) = A(x)B(t). Plugging this guess in we see

A(x)B′(t) = κ2A′′(x)B(t)⇒ B′

B
(t) = κ2

A′′

A
(x) = −κ2τ.

The right hand side is independent of t, while the left hand side is independent of x, so τ must
be a constant. The minus sign above will be convenient later.

We can now separate the partial differential equation into two ordinary differential equations,
which are

A′′ = −τA, B′ = −κ2τB.

We first solve the equation for B:

B(t) = B0e
−κ2τt,

where B0 = B(0).
Now we turn our attention to the equation for A. We try a solution A(x) = erx and get

the characteristic polynomial r2 = −τ , so we have different types of solutions for positive and
negative τ . We first consider the possibility that τ < 0, which we will see is impossible. In this
case

A(x) = c+τ e
√
−τx + c−τ e

−
√
−τx,

and we can try to match the boundary conditions in (2). Then

0 = A′(0) =
√
−τ(c+τ − c−τ )⇒ c+τ = c−τ = cτ .

On the other hand,

0 = A′(L) =
√
−τcτ (e

√
−τL − e−

√
−τL).

Since L > 0, this forces cτ = 0, and so the temperature distrution u(x, t) = 0 for all time t, which
is impossible. Thus we see τ < 0 is impossible, and we must have τ > 0.
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So far we have
A(x) = c+τ cos(

√
τx) + c−τ sin(

√
τx),

where c±τ are constants. Again, we match the boundary conditions, first at x = 0:

∂u

∂x
(0, 0) = 0 = B0

√
τ(−c+τ sin(0) + c−τ cos(0))⇒ c−τ = 0,

and so A(x) = c+τ cos(
√
τx). We can similarly match the boundary conditions at x = L:

∂u

∂x
(L, 0) = 0 = −B0c

+
τ

√
τ sin(

√
τL)⇒

√
τL = nπ, n = 0, 1, 2, 3, 4, . . .

We now see that

τ =
n2π2

L2
, n = 0, 1, 2, 3, 4, . . .

Gathering together our expressions for A(x) and B(t), we get

u(x, t) = cne
−n2κ2π2t

L2 cos
(nπx
L

)
,

where we’ve let c+τ = cn and folded the constants B0 and cn together. Finally, we match our
initial conditions at t = 0 to get

cos
(πx
L

)
= u(x, 0) = c1 cos

(nπx
L

)
⇒ n = 1, cn = 1,

and so our solution is

u(x, t) = e−
κ2π2t
L2 cos

(πx
L

)
.

What if we change the initial conditions slightly to

u(x, 0) = 1− cos
(πx
L

)
+ 2 cos

(
3πx

L

)
?

We can now write the solution as a sum of three solutions, for

τ0 = 0, τ1 =
π2

L2
, τ3 =

9π2

L2
,

so the solution now is

u(x, t) = c0 + c1e
−κ2π2t

L2 cos
(πx
L

)
+ c3e

− 9κ2π2t
L2 cos

(
3πx

L

)
.

Matching the initial data at t = 0 we see c0 = 1, c1 = −1, and c3 = 2.
In general, if we can write the intial data as a sum of cosines, we can solve the differential

equation. More precisely, if

u(x, 0) = f(x) =

∞∑
n=0

cn cos
(nπx
L

)
then the solution of (1) with Neumann boudnary data is

u(x, t) =

∞∑
n=0

cne
−n2κ2π2t

L2 cos
(nπx
L

)
,

with the same coefficients in the sum. There is a similar expression for solutions to the Dirichlet
boundary value problem as a sum of sines; it would be a nice exercise to work this out.
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Observe that, as t → ∞, all the exponential terms decay, and only the n = 0 term remains,
So

lim
t→∞

u(x, t) = c0

is a constant. We will see a physical interpretation of this fact later on.
Fourier Series: It would be nice if we could write any reasonable (i.e. continuous) function

on [0, L] as a sum of cosines, so that then we could solve the heat equation with any continuous
initial temperature distribution. In fact, we can, using Fourier series. (This is the reason Joseph
Fourier first wrote down his series representation of a general function.)

Basically, the set {√
1

L
,

√
2

L
cos
(nπx
L

)
, n = 1, 2, 3, 4, . . .

}
forms an orthonormal basis of an appropriate space of functions on the interval [0, L], where the
inner product is

〈f, g〉 =

∫ L

0

f(x)g(x)dx.

This means we can write any continuous function f(x) on [0, L] (and even some functions which
are not continuous) as

f(x) =
a0
2

+

∞∑
n=1

cn cos
(nπx
L

)
, cn =

2

L

∫ L

0

f(x) cos
(nπx
L

)
dx.

Notice that

c0 =
1

L

∫ L

0

f(x)dx

is the average value of f over [0, L]. It would be worthwhile to verify the following as exercises:

1. For n = 1, 2, 3, . . . ∫ L

0

cos2
(nπx
L

)
dx =

L

2
.

2. For n 6= m integers ∫ L

0

cos
(nπx
L

)
cos
(mπx

L

)
dx = 0.

3. If

f(x) =

{
−1 0 < x < L

2

1 L
2 < x < L

then the Fourier series for f is

f(x) =

∞∑
n=0

cn cos

(
(2n+ 1)πx

L

)
, cn =

2(−1)n

(2n+ 1)π
.

Finally, we use Fourier series to solve the heat equation, combining our solution from the
beginning. The solution to (1) with Neumann boundary data,

∂u

∂t
= κ2

∂2u

∂x2
, u(x, 0) = f(x),

∂u

∂x
(0, t) = 0 =

∂u

∂x
(L, t),

is

u(x, t) =
c0
2

+

∞∑
n=1

cne
−n2κ2π2t

L2 cos
(nπx
L

)
, cn =

2

L

∫ L

0

f(x) cos
(nπx
L

)
dx.
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Observe that, as t→∞, the u(x, t) converges to a constant

lim
t→∞

u(x, t) =
c0
2

=
1

L

∫ L

0

u(x, 0)dx.

Thus we see that the limiting temperature distribution is the average value of the initial
temperature distibution.

The case of Dirichlet boundary data: Finally we find the solution to the heat equation
of a rod of length L > 0 with Dirichlet boundary conditions:

∂u

∂t
= κ2

∂2u

∂x2
, u(0, t) = 0 = u(L, t), u(x, 0) = f(x). (3)

Again we separate variables, u(x, t) = A(x)B(t), so that

AB′ = κ2A′′B ⇒ B′

B
= κ2

A′′

A
= −κ2τ,

where τ is a constant. We have the ODEs

B′ = −κ2τB, A′′ = −τA.

The solution to the equation for B is

B(t) = e−κ
2τtB(0).

For A, we again try A(x) = erx, and so r2 = −τ , and we again have to consider the cases
where τ < 0 and τ > 0. If τ < −0 then

A(x) = c+τ e
√
−τx + c−τ e

−
√
−τx.

By the boundary condition at x = 0 we have

0 = A′(0) = c+τ + c−τ ⇒ c+τ = −c−τ = cτ .

Now use the boundary condition at x = L:

0 = A(L) = cτ (e
√
−τL − e−

√
−τL).

Since L > 0 we must have cτ = 0, and, just as before, we get a contradiction.
As in the Neumann case, we have

A(x) = c+τ cos(
√
τx) + c−τ sin(

√
τx),

and we use the boundary conditions. At x = 0,

0 = A(0) = c+τ .

On the other hand,

0 = A(L) = c−τ sin(
√
τL)⇒

√
τL = nπ ⇒ τ =

n2π2

L2
, n = 0, 1, 2, 3, . . .

We conclude
A(x) = c̃n sin

(nπx
L

)
,

where we’ve replaced cτ with c̃n.
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Summing over all n, we have

u(x, t) =

∞∑
n=1

c̃ne
−n2π2κ2t

L2 sin
(nπx
L

)
. (4)

It remains to find the coefficients c̃n. This time, we use the fact that

{
√

2

L
sin
(nπx
L

)
, n = 1, 2, 3, 4, . . . }

is an orthonormal basis of

{f : [0, L]→ R :

∫ L

0

f(x)dx = 0} = {1}⊥,

and so

f(x) =

∞∑
n=0

c̃n sin
(nπx
L

)
, c̃n =

2

L

∫ L

0

f(x) sin
(nπx
L

)
dx.

Plugging this sum for f into (4) we have

u(x, t) =
∞∑
n=1

c̃ne
−n2π2κ2t

L2 sin
(nπx
L

)
, c̃n =

2

L

∫ L

0

f(x) sin
(nπx
L

)
.

Notice that, in this case,
lim
t→∞

u(x, t) = 0

for all x. This makes sense, because we’ve set the temperature at the ends of the rod to zero, so
the ends of the rod act as heat sinks and absorb all the heat.
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