Fractals, Part I
Jesse Ratzkin

1 Introduction: What is a fractal?

For many years, people tried to model physical objects and phenomena using regu-
lar geometric objects. One can try to model a mountain with a cone, or a riverbank
with a line segment or a circular arc. In a way, this is a nice choice of modeling;
cones, lines and circles are relatively simple objects. Here is a possible picture of
one of these modeled landscapes.

mountain

stream

Have you ever seen alandscape like this?

Unfortunately, riverbanks rarely form straight lines and I have yet to see a
mountain which looks like a cone. Here are some pictures of natural objects, like
mountains and riverbanks, which have very complicated structure.
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The fact that real objects are too complicated to model with regular geometric
objects motivated some people to create more complicated geometric objects, like

the ones pictured below.

These pictures are examples of fractals. For our purposes, a fractal is anything
which is self-similar. In other words, one can always write a fractal as some number
of rescaled copies of itself. For instance, maybe one can a write a fractal as 4 copies
of itself scaled down by a factor of 3. Or maybe one can write a fractal as 3 copies
of itself, 2 of which are scaled down by a factor of 4 and one scaled down by a
factor of 2. In fact, the rescaling do not have to be uniform; they can rescale
the sets by different amounts in different directions. Below we have a geometric
representation of the different scalings for each of the fractals above. The large
square represents the original image and the other smaller parallelograms represent
the various rescaled images of that original square.
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2 Some examples of fractals

The first fractal we’ll make is called the middle thirds Cantor set. It was invented
by Georg Cantor, who was quite a character (read about him at http://www-
history.mcs.st-and.ac.uk/~history /BiogIndex.html). We will denote the middle
thirds Cantor set C, and make it using an iterative process.



Start with Cy being the unit interval, [0, 1]. Then remove the middle third and
call what’s left over C;. Now (Y is the union of two intervals: C; = [0,1/3]U[2/3, 1].
We next create Cy by removing the middle third of each of those intervals. If we
keep doing this for all natural numbers (i.e. removing the middle third of all the
intervals in C,,), what’s left over is the middle thirds Cantor set C. Here is a picture
of the first several iterations.

Co

Cs

Cs
Questions:
1. Does C' have any points left after we’re done removing all those intervals?
2. Is C a fractal? In other words, is it self-similar?

3. Can you characterize all the points in C? (You might want to look at ap-
pendix A first. This question is actually quite involved.)

We can compute the length of C' as follows. First, notice that C' C C), for
n=20,1,2,..., so the length of C is less than or equal to the length of C,,. Also,
C,, is the disjoint union of 2" intervals, each of length 37". Therefore, the length
of Cy, is (2/3)" — 0 as n — oo. We have just shown that the length of C is 0.

Following this procedure, we can create some more fractals. Here are pictures
of the von Koch snowflake, the Sierpinski triangle and the Menger sponge.

Koch Snowflake Sierpinski triangle
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One can make each of these fractals by a deletion process similar to the one
we used to make the middle thirds Cantor set (except the von Koch snowflake,
which is a little different). Can you draw the first three or four iterations in the
deletion process? Then can you compute the length of the von Koch snowflake, the
area of the Sierpinski triangle and the volume of the Menger sponge? After you do
that, can you think of a way to make the Cantor set or the Siepinski triangle by
adding material to your original image (possibly after rescaling), instead of deleting
material?

3 Length, area and volume

One important property of lengths, areas and volumes is that they scale. For
instance, if you rescale a line segment by a factor of 3 then you multiply its length
by a factor of 3. Also, if you rescale a square by a factor of 3 then you multiply its
area by 32 = 0.

This idea of scaling actually leads us to a nice proof of the Pythagorean theorem.
Consider the following picture:

a

1. What is the area of a right triangle in terms of the lengths of its legs?
2. Can you show that all three triangles on the right are similar?

3. Suppose the triangle on the left is also similar to the triangles on the right.
What are the side lengths of the triangle on the left?

4. Can you use this to prove the Pythagorean theorem: a? + b = ¢2?

We have seen that the von Koch snowflake has infinite length, the Sierpinski
triangle has 0 area and the Menger sponge has 0 volume. This seems quite odd;
usually bounded curves have finite length. What’s going on?



4 Scaling dimension

The answer is that in some sense the von Koch snowflake has dimension greater
than 1! To investigate this phenomenon we will need to talk a little bit about how
one measures the dimension of an object. There are several notions of dimension
we can use; we will use the notion of scaling dimension.

What does it mean to say that a curve is 1-dimensional? First consider some-
thing simple, like a line segment.

1. If you rescale a line segment by a factor of 3, how many copies of the original
line segment do you need to cover the new line segment? What if you rescale
the line segment by a factor of n?

2. If you rescale a square by a factor of 3, how many copies of the original square
do you need to cover the new square? What if you rescale the square by a
factor of n?

3. If you rescale a cube by a factor of 3, how many copies of the original cube
do you need to cover the new cube? What if you rescale the cube by a factor
of n?

You should have found that you need n, or n' copies of the new interval to
cover the old one; similarly, you need n? copies of the old square to cover the new
one and n? copies of the old cube to cover the new one. The important thing here
is the exponent: when you scale a d-dimensional object by a factor of n, you need
nd copies of the original to cover the new object. We can rewrite this as follows:

let n be the scaling factor and m be the number of copies of the original object one
d

needs to cover the new object. Then this object has dimension d where m = n®, or
1
d=-28"
logn

1. What is the scaling dimension of the middle thirds Cantor set C'?
2. What is the scaling dimension of the von Koch snowflake K?
3. What is the scaling dimension of the Sierpinski triangle S?

4. What is the scaling dimension of the Menger sponge M?

We have a sizeable caveat regarding the notion of scaling dimension. Namely,
this definition only makes sense if the object we're looking at scales. In other
words, if we scale the object by a factor of n, we need to be able to exactly cover
this new object with some number of copies of the original object. Many everyday
objects do not scale (circles, for instance), and scaling dimension of these objects
makes no sense. However, scaling dimension is very closely related to another



notion called Hausdorff dimension. The idea of Hausdorff dimension makes sense
for most objects one would want to measure and it agrees with scaling dimension
for objects that scale. Unfortunately, the ideas behind Hausdorff are a bit beyond
the scope of these discussions.

5 Another way to make fractals

So far, we have talked about making fractals by starting with some set and deleting
portions. Our definition of fractal and scaling dimension suggests another approach.
Namely, we might want to create our fractals by replacing our starting object with
some number of copies of itself, scaled down by some factor.

For example, we can create the middle thirds Cantor set C' by

e starting with the unit interval [0, 1] and

e repeatedly replacing it with 2 copies of itself, scaled by a factor of 1/3. One
copy sits with its left endpoint at 0 and the other sits with its right endpoint
at 1.

We can do a similar thing with the Von Koch snowflake, the Sierpinski triangle
and the Menger sponge. For each of these fractals answer the following questions.

1. How many copies do you need?

2. What are the scaling factors? (The scaling factors do not all need to be the
same.)

3. Where do you put each copy?

In fact, with this process, it doesn’t matter what you start with. No matter
what your original image is, the iteration will always converge to the right fractal!
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A The Cantor set and the unit interval

A.1 Binary and trinary digits

We have seen that the middle thirds Cantor set C' has 0 length and infinitely many
points (e.g. all the numbers 37", for n = 0,1,2,...). This shouldn’t completely
shock you, because the integers also have zero length and infinitely many points.
However, it turns out that C' has many more points than even the integers, in a
quantifiable way.

Recall that we can write any number z € [0, 1] in binary expansion; i.e. one
can write any number z € [0, 1] in the form

T=0a12"" 4+ a2+ a2 + ... a, =0,1.

Along the same lines we can also write z € [0,1] in trinary expansion, that is we
can write x as

=13 ' +a3 2 +a33 % +... a, =0,1,2.

1. If x € C,, what can you say about the about the first n digits in the trinary
expansion of 7 You might want to start by thinking about C; and Cs, and
then using an induction argument.

2. If x € C, what can you say about the trinary expansion of x?

3. Can you say anything about the converse? In other words, if z € [0, 1] satisfies
the condition you found in the previous part, is z in the Cantor set?

A.2 Cardinality

You should have found that the numbers in the Cantor set are precisely those
whose trinary expansions have only 0 and 2. Why is this important? This result is
important because we can use it to show that the Cantor set has the same number
of points as the unit interval. To explore this idea, we need to talk about the
cardinality (i.e. size) of a set, an idea which is related to dimension.

We will denote the cardinality of a set A by #(A). Given two sets A and B we
say #(A) < #(B) if there is a map ¢ : A — B such that

é(ar) = ¢(az) if and only if  ay = as.

Such a map is called one-to-one. If #(A) < #(B) and #(B) < #(A) then we
say #(A) = #(B).

1. Show that #(C) < #([0, 1)).

2. If Q is the set of rational numbers and R is the set of real numbers show that

#(Q) < #(R).



3. Show that #([0,1]) = #(R). (Hint: ¢(t) = —.)

THet-
We can define a map ¢ : [0,1] — C by

=2+ ag? + a2+ () = (201)37 + (202)372 + (2a3)373 + - -
1. Show that ¢(z) € C.

2. Show that ¢ is one-to-one.

3. What does this say about the cardinality of C'?

We call the set A countably infinite if #(A) = #(N), where N= {1,2,3,...}
are the natural numbers.

1. Show that the integers Z = {0, +1,£2,+3, ...} are countably infinite. (Hint:
Start from 0 and work your way both forwards and backwards.)

2. Show that the set of positive rational numbers Q" are countably infinite.
(Hint: Think of a rational number as a pair of integers and arrange these
pairs in a grid. Then start with (0,0) and work diagonally. This trick is
called Cantor diagonalization.)

It is remarkable that the unit interval [0, 1] is not countably infinite; it is much
larger. One proof assumes [0, 1] is countably infinite and derives a contradiction.
Suppose [0,1] is countably infinite. Then there is a map ¢ : [0,1] — N which is
one-to-one. Arrange the numbers in [0, 1] in the order they get from ¢ (i.e. label
xz < y if and only if ¢(z) < ¢(y)). Now write down the binary expansions for this
list of numbers. This list will look something like

100101110...
10101101110...
0010111101... etc.

Now we will find a new number in [0, 1] which is not on this list, contradicting the
fact that we have all the numbers in [0, 1] on this list. We can describe the new
number is as follows: the first digit of the first number on our list is 1, so the first
digit of the new number will be 0. The second digit of the second number on our
list is 0, so the second digit of the new number will be 1. The third digit of the
third number on our list is 1, so the third digit of the new number will be 0. In
this way, we can determine each digit of the binary expansion of the new number,
which uniquely determines the number. Also, the new number differs from each
number on our list by at least one digit, so it can’t be on the list. Therefore, we
have arrived at a contradiction and shown that [0, 1] is not countably infinite.



