Fractals, Part II
Jesse Ratzkin

Last week we defined a fractal as an object which can be written as a finite
number of copies of itself, each of which is shrunken in some way. Then we recreated
some of the classical fractals (like the Cantor set, the Sierpinski triangle and the
von Koch snowflake) and discussed some of their properties.

1 The Cantor set and Sierpinski’s triangle revis-
ited

Last week we created the Cantor set C' by starting with the unit interval [0, 1] and

successively deleting the middle third of any intervals we had. However, there is

another way create C. Again, we will start with the Cy = [0, 1]. This time, we will
create C7 by

e rescaling Cj by a factor of 1/3,
e rescaling Cj by a factor of 1/3 and translating it to the right by 2/3,
e and letting C; be the union of these two sets.

Below is a picture of this process.
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In general we have the following operation we can apply to any set A C R:
e rescale A by a factor of 1/3

e rescale A by a factor of 1/3 and translate to the right by 2/3

e replace A with the union of these two sets.

1. Show that this recipe creates the same C1, (5, Cs, ... as the deletion process
we talked about last week.



2. What happens if you start with a point (say the point 0) instead of the
unit interval [0,1]? Draw the first several iterations of this shrinking and
translating process starting with 0.

3. What happens to the Cantor set if you apply a step in this recipe?

4. There are two transformations 77,7, from the real line R to itself in this
recipe. Namely, 77 rescales by a factor of 1/3 while T3 rescales by a factor of
1/3 and translates to the right by 2/3. Can you write these transformations
in terms of a real coordinate z?

5. Recall that |z| = z if 2 > 0 and |z| = —z if 2 < 0. Given two numbers z
and Z, what can you say about |T;(z) — 71(Z)| as compared to |x — Z|? How
about |T5(z) — T»(z)| compared to |z — Z|?

You should have found that the object you get when you use this recipe starting
with a point looks a lot like the Cantor set we found before. Indeed, you can start
with any nice bounded set and obtain the Cantor set with this recipe. The two

transformations are 1 1 2
Ti(z) = 37 Tr(z) = 3713

Moreover,
- 1 _ _ 1 _
() - T(@)| = 3lz =3[ [Ta(e) - T2(2)] = glv - 2],

The important thing is that each of the transformations 77 and 75 shrink distances
by some fixed amount.

We can create Sierpinski’s triangle S with a similar shrinking and translating
process. Here is a picture of the first several iterations in creating S.
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This time we will have three transformations instead of two. All three transfor-
mations T}, Ty, T3 map the plane R? to itself. The first transformation is a uniform
rescaling by a factor of 1/2. We can write this transformation as

n([3])=2ls =0 ool )

The second transformation is a uniform rescaling by a factor of 1/2 followed by a
translation to the right by 1/2. We can write the second transformation as

(D=2l [0 =0 ol [+ 1)



The third transformation is a uniform rescaling by a factor of 1/2 followed by a
translation to the right by 1/4 and up by 1/2. We can write the third transforma-
tion as

w3 =2l D=1 ol )+ )

Again, our recipe is to replace a set A with the union 77 (A) UTy(A) UT3(A). You
can think of these transformations in the following way. For instance, 75 takes the
x axis and first rescales it by a factor of 1/2 and then translates it to the right by
1/2. Similarly, T5 takes the y axis and first rescales it by a factor of 1/2 and then
translates it to the right by 1/2.

1. Draw the first several iterations of this recipe if you start with an equilateral
triangle, a unit square and a unit circle. Do you notice a pattern?

2. What happens to the Sierpinski triangle when you apply a step in this recipe?

3. Given two points in the plane P = [ z } and Q = [ g }, what can you say

about the distance between T7(P) and T;(®) as compared to the distance
between P and Q7 Answer the same question for 75 and T3.

You should have found that you always obtain Sierpinski’s triangle with this
recipe, no matter if you start with a triangle, square, circle or some other bounded
shape. Moreover, the transformations 77,75, T3 again decrease distance (this time
by a factor of 1/2).

2 Some transformations of the plane: rescalings
and translations

Let’s take a closer look at the transformations of the plane we are using. Recall
that the unit square is the set of points [ Z } in the plane such that 0 < z <1

and 0 < y < 1. We will denote the unit square by [J. In all the pictures on the left
below, the large square is the unit square. The smaller rectangles are the images of
the unit square under T3, Ty, T3; T1(0) is always the lower left hand image, T5 (1)
is the lower right hand image, and 73(0J) is the top image.

Below is a picture of the image of the unit square O under all three of the
transformations 77, 75,75 we used to build Sierpinki’s triangle.
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However, we could have made a mistake and translated the top square too far
to the right. Then the picture of the image of the unit square under all three
transformations would look like this picture.
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Additionally, we could rescale everything by a factor of 1/4 instead of a factor
of 1/2. Then the picture of the image of the unit square under all three transfor-
mations would look like this picture.
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Even worse, the rescalings could be by a factor of 1/2 in the vertical direction
and by a factor of 1/4 in the horizontal directions. Then the picture of the image
of the unit square under all three transformations would look like this picture.
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1. Can you find formulas for the new transformations in each of these cases?

2. Can you make up a few similar transformations of your own and write down

their formulas?

3. Can you write down the formula for a general translation, say to the right by

e and up by f?

4. Can you write down the formula for a general rescaling, say by a in the

horizontal direction and by c¢ in the vertical direction?

5. Can you combine these two transformations? What is the formula for first
rescaling by a in the horizontal direction and c in the vertical direction, and

then translating by e to the right and by f up?

Here are some more pictures of transformations we can do with rescalings and
translations and the fractals they generate. See if you can find the formulas for
all the transformations below. Then try to make up some transformations of your

OwI.
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3 Transforming in the plane

Recall that one of the transformations we used to make the Cantor set is

1 2
T(x) =-x+ —.
(#) =32 +3
The picture below describes how 7" transforms the line; it first rescales by a factor

of 1/3 and then translates to the right by 2/3.

0 — - 0 -~ - 0
first rescale by 1/3 then translate by 2/3

We have also seen that we can write a combination of translations and rescalings
in the plane in the form

a i 0 n e
y 0] ¢ f
This transformation rescales by a factor of a in the horizontal direction and by ¢
in the vertical direction; it also translates to the right by e and up by f.



Let’s look more closely at the transformation

ry p=e [0 o] [ )

This was the third transformation we used to make Sierpinski’s triangle. The image
of the z-axis under 7T is the set of points

5]

This is another horizontal line. The transformation from the z-axis to this hori-
zontal line first rescales by a factor of 1/2 and then translates to the right by 1/4
and up by 1/2. Similarly, the image of the y-axis under T is the set of points

0 1/4
o[+ e]
This is another vertical line. The transformation from the y-axis to this vertical
line first rescales by a factor of 1/2 and then translates to the right by 1/4 and up

by 1/2.
It might be useful to answer each of the questions below first for the particular

transformation
|y =l el [ 3]

but answer also the questions for the general transformation

iy s3] o[ 2] <[ 7]

1. Show that the transformation sends the z-axis to some line.
2. In which direction does this line point?

3. How does the transformation change the line? For instance, does the trans-
formation rescale the line, changing distances?

4. Answer these same questions for the y-axis.

You should have found that the image of the z-axis is another horizontal line.
For the particular example of particular transformation
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the z-axis is rescaled by a factor of 2/5, and then translated to the right by 3/5
and up by 2/5. For a more general transformation of the form

iy p==[5] o [e]+ 5]

the z-axis is rescaled by a factor of a, and then translated to the right by e and up
by f. Similarly, the image of the y-axis is another vertical line.

This is all fine if we only want horizontal and vertical lines, but can we get
other lines? Consider the transformation

w0 o a] e L ]

1. What is the image of the z-axis under 77
2. What is the image of the y-axis under 7?7

3. What is the image of the unit square [J under 77 Where do the corners of
the unit square go?

4. Draw a picture of the image of the unit square under 7". Be sure to label the
corners.

You should have found that the image of the unit square is the following par-
allelogram:
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Now consider a transformation of the form

(s p=ei] ]+ [ 7]

such that the image of the unit square is the following parallelogram:
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Suppose we also know that

v O =] ] ot =]?]
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Can you recover the transformation 77 (In other words, can you find the coeffi-
cients a, b, ¢,d, e, f7) (Hint: you might want to translate this parallelogram so that
T

( 0
You should have found that the transformation is

x 1 -1 1
=l L)
1. If you'’re given a transformation of the form

r(y =z 5] ]+ [ 7]

can you describe the image of the unit square in terms of the coefficients
a,b,c,d,e, f? (Hint: start with the corners.)

0 ]) lies at the origin.)

2. If you're given a parallelogram (with the corners labeled) which is the image
of O under some transformation 7', can you find an algorithm to determine
T?

3. If you’re just given the parallelogram, but the corners are not labeled, can
you uniquely determine 7°7

You Should have found that the image of [J under a transformation of the form

(MR EN



is a parallelogram with corners

e a+e at+c+e c+e

f b+ f b+d+ f d+f |
Also, if you’re given a parallelogram with corners A, B,C, D (listed in counter-
clockwise order) then the transformation 7 is

T([ z }) =z(B—-A)+y(D—-A)+ A
Transformations of the form

g p==3 ] oo [a]+ 7]

are called affine transformations. They are natural generalizations of transforma-
tions of the form T'(x) = maz + b of the line.

4 Fractal templates using affine maps

Now we know how to make fractals using affine maps. First of all, we call a
transformation 7 : R?> — R? a contraction if it is distance decreasing; i.e. if for
P, € R* we have the distance between T'(P) and T'(Q) is less than or equal to
k times the distance between P and (), where £ < 1. All we have to do is find a
finite number of affine maps 71, . .., Ty which are contractions and use the following
recipe.

1. Start with any nice bounded set Uy, like a square or even just a point.
2. Replace UO with U1 = Tl(U()) U---u Tk(Uo)
3. Repeat.

The easiest way to check that all the affine maps are contractions is to force the
image of a unit square to be strictly contained in a unit square. (See appendix A
for a discussion of why this recipe works.)

Here are some example for you to examine. After you examine these, you can
create your own pictures.
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A The contraction mapping principle and another
way to make fractals

We will denote the distance between two points P and Q as ||P — Q||. A contrac-
tion of the R? is any map T : R> — R? such that ||T'(z) — T(2')|| < k||z — /|| for
some k < 1. In other words, a contraction is any map which decreases distances
by some fixed amount. Suppose T is such a contraction and that 7°(0) = 0.

1. What can you say about ||7(x)|| as compared to ||z||?

2. What can you say about the sequence {z,}, where z,,1 = T'(z,) (i.e. =, =
T(T(T---(x))) for some x)?

You should have found that if 7" is a contraction such that 7(0) = 0 then
T(T(T---(x))) — 0 as n — oo, regardless of what z is. The condition T(0) = 0 is
not a major obstacle. In general, T(T(T ---(z))) — Z as n — oo, where T'(Z) = 7.
(Why? Look at ||T(x,) — z,||.) The point Z such that T(Z) = Z is called a fixed
point of 7'; all contractions have a unique fixed point, and T(T(T--- (z))) — =
for any starting point x. This fact about contractions is known as the contraction
mapping principle.

We can apply the contraction mapping principle to make some fractals, but
first we need to define the Hausdorff distance between two sets. Let A and B
be two bounded sets in the plane. For P € A, define the distance from P to B by

ist(P, B) = min(||P — )
dist(P, B) = min(||F - Q)
Similarly, for () € B we can define the distance between ) and A by
dist(Q, 4) = min([[P = Q).
Then we can define the Hausdorff distance between the sets A and B by

dist(A, B) = max[r}ggi((dist(P, B)), Iggg(dist(Q, A))].

One can think of the Hausdorff distance as measuring how far you have to move the
set. A so that it coincides with the set B. A good example to think about is when
A and B are two concentric discs with the radius of A being 1 and the radius of B
being 2. Then the Hausdorff distance between A and B is 1. A sequences of sets
converge to a limit when their Hausdorff distances becomes small. The contraction
mapping principle shows that the sequence of bounded sets we generate converge,
in the sense that the Hausdorff distance between the iterates becomes very very
small as we continue to iterate.

1. Suppose T : R? — R? is a contraction. What happens when you apply T
over and over again to the unit square?



2. Was there anything special about the unit square? What do you get starting
with any bounded shape (e.g. a circle or a rectangle)?

3. Now suppose you have two contractions 73,7, : R? — R2?. This time in the
iterative process you replace the unit square U with 71 (U) U T»(U). What
happens when you keep doing this?

4. Was there anything special about having two contractions? Does the same
idea work with three or four contractions?

Our general recipe for creating fractals is the following. Start with some finite
number of contractions 77,...,T; and any bounded object (like a square, or a
circle, or even a point). Call that bounded object U. Then replace U with U; =
Ti(U)U ---T,(U). Then replace U; with Uy = T1(U;) U --- U Ty (Uy). In general,
replace U, with U,.1 = T1(U,) U - - - T(U,). The limit you obtain is the fractal.
The fundamental reason this recipe works is that the iterative step is a contraction
on the space of nice, bounded sets in the plane. Then the contraction mapping
principle guarantees a fixed point, which is our fractal.



