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Let f : Rn → Rm be C1. When is the zero set

Z = {x ∈ Rn : f(x) = 0}

the graph of another function? When is Z ”nicely behaved?” We first consider
some examples.

• Let A ∈ L(Rn,Rm) be linear, and take n > m. By the dimension theorem,
A has a null space N , and N is a linear subspace of Rn. If the rank of A is
m′ then dim(N) = n−m′ ≥ n−m. It is also straight-forward to write N as
the graph of a linear function g : Rn−m′ → Rm′

.

• Let f(x, y) = x2 + y2 − a. If a > 0 the zero set is a circle of radius
√
a

centered at the origin, which is a nice, smooth object. However, you can’t
write a circle as a graph. When a = 0 the zero set collapses to a point. If
a < 0 then the zero set is empty.

• Let f(x, y) = x2 − y2 − a. If a > 0 the zero set is the union of two graphs
{x = g±(y) = ±

√
y2 + a}. If a < 0 the zero set is the union of two graphs

{y = g±(x) = ±
√
x2 − a}. In either case, the zero set is nice. If a = 0 the

zero set is the union of the two lines {x = ±y}, which isn’t nice, at least near
the origin.

Notice that, in the last two examples, the zero set ceases to have nice proper-
ties where the derivative Df vanishes. The inverse function theorem and implicit
function theorem both give criterion, in terms of Df , that the zero set {f(x) = 0}
behaves nicely.

We’ll begin with the implicit function theorem. We write n = m + k, and
consider a C1 function

f : Rn = Rk × Rm → Rm.

Denote a point in Rk × Rm as (x, y) where x ∈ Rk and y ∈ Rm. We want to
write the zero set Z = {f(x, y) = 0} (at least locally) as the graph of a function
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g : Rk → Rm, so that Z = {f(x, y) = 0} = {y = g(x)}. The function g is given
implicitly by this relation; our goal it to prove it exists, and that it is C1.

To simplify notation a little, we suppose f(0, 0) = 0, and carry out computations
based around (0, 0). The derivative Df |(0,0) is a linear map from Rk × Rm to Rm,
which we write as

Df |(0,0) (x, y) = A(x) +B(y), A ∈ L(Rk,Rm), B ∈ L(Rm,Rm).

In this case, our first order Taylor expansion, based at (0, 0) reads

f(x, y) = f(0, 0) + Df |(0,0) (x, y) + r(x, y) = A(x) +B(y) + r(x, y). (1)

To find our implicit function g we want to solve the equation 0 = A(x) + B(y) +
r(x, y) for y.

It’s worthwhile to briefly consider the case where f is linear. Then f(x, y) =
A(x) +B(y), and the condition we need to find the implicit function g is that B is
invertible. In this case, we can multiply the equation 0 = A(x) + B(y) on the left
by B−1 to get

0 = B−1 ◦ A(x) + y ⇔ y = g(x) = −B−1 ◦ A(x).

In the nonlinear case, we can sometimes get lucky, and the remainder term r

might be a function of x alone. Again, we need to assume B = ∂f
∂y

∣∣∣
(0,0)

is invertible,

and in this case we can again multiply on the left by B−1 to get

Z = {0 = A(x) +B(y) + r(x)} = {y = g(x) = −B−1(A(x) + r(x))}.

Most of the time we don’t get lucky, and the remainder term depends on both x
and y. However, we can use the fact that the remainder term is small to prove that
we can ignore it, at least if both x and y are also small. This is the key idea of the
proof.

One key tool we will use is the Contraction Mapping Principle, which we quickly
review here. Let Φ : X → X be a mapping between complete, separable, normed
vector spaces. If there is K < 1 such that

|Φ(x)− Φ(y)| ≤ K|x− y|

then Φ has a unique fixed point. The proof is quite simple. Choose any x0 ∈ X,
and define the sequence of iterates by xk+1 = Φ(xk). Then by induction

|xk+1 − xk| ≤ Kk|x1 − x0|.

Given ε > 0 choose N such that

KN |x1 − x0|
1−K

< ε.

2



(Note: this is where we need K < 1.) If n ≥ m ≥ N then

|xn − xm| ≤ |xn − xn−1|+ · · ·+ |xm+1 − xm|
≤ (Kn−1 + · · ·+Km)|x1 − x0| ≤ Km(1 +K + · · ·+Kn−m−1)|x1 − x0|

=
Km|x1 − x0|

1−K
(1−Kn−m) ≤ KN |x1 − x0|

1−K
< ε

Therefore the sequence {xk} is a Cauchy sequence and by completeness it has a
limit x̄. We claim x̄ is the unique fixed point of the contraction Φ. First,

|x̄− Φ(x̄)| ≤ |x̄− xn|+ |xn − Φ(xn)|+ |Φ(xn)− Φ(x̄)|
≤ |x̄− xn|+Kn|x1 − x0|+K|xn − x̄| → 0

as n → ∞, proving Φ(x̄) = x̄ as claimed. Now suppose there is some other fixed
point y. Then

|x̄− y| = |Φ(x̄)− Φ(y)| ≤ K|x̄− y| < |x̄− y|.

This is a contradiction unless x̄ = y.

Theorem 1. The Implicit Function Theorem. Let f : Rk × Rm → Rm be
C1 and let f(0, 0) = 0. Write the derivative at the origin as Df |(0,0) (x, y) =
A(x) +B(y) where

A =
∂f

∂x

∣∣∣∣
(0,0)

∈ L(Rk,Rm), B =
∂f

∂y

∣∣∣∣
(0,0)

∈ L(Rm,Rm),

and suppose that B is invertible. Then there is a neighborhood U of 0 ∈ Rk such
that, restricted to x ∈ U , the implicit function g : U → Rm exists, is unique, and
is C1.

Proof. We want to solve the equation

0 = A(x) +B(y) + r(x, y) (2)

for y. Given x, this is equivalent to finding a fixed point of the mapping

Kx(y) = −B−1(A(x) + r(x, y)). (3)

That is, we want to solve the equation y = Kx(y) = −B−1(A(x) + r(x, y)). By the
Contraction Mapping Principle, we’re done if we can show Kx is a contraction; in
this case, Kx will have a unique fixed point, giving us the function y = g(x).

By equation (1), we see

r(x, y) = f(x, y)− A(x)−B(y),
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and so (because now A and B are fixed linear transformations) r ∈ C1. We compute
its derivative at x = 0, y = 0:

Dr|(0,0) (u, v) = Df |(0,0) (u, v)− A(u)−B(v) = 0.

By continuity, there is ρ > 0 such that if
√
|x|2 + |y2| ≤ ρ then

‖B−1‖

∥∥∥∥∥ ∂r∂y
∣∣∣∣
(x,y)

∥∥∥∥∥ ≤ 1

2
.

Now use the mean value theorem on Kx to conclude that if |x|, |y1| and |y2| are all
less than ρ then

|Kx(y1)−Kx(y2)| ≤ ‖B−1‖|r(x, y1)− r(x, y2)| (4)

≤ ‖B−1‖‖∂r
∂y
‖|y1 − y2|

≤ 1

2
|y1 − y2|.

Thus, provided x and y are sufficiently small, Kx is indeed a contraction and has a
unique fixed point. We can now define the implicit function y = g(x) as the unique
fixed point of Kx.

We still need to prove that g is C1. We begin with a Lipschitz estimate:

|g(x)| ≤ |Kx(g(x))−Kx(0) +Kx(0)| ≤ Lip(Kx)|g(x)− 0|+ |Kx(0)|

≤ 1

2
|g(x)|+ |B−1(A(x) + r(x, 0)| ≤ 1

2
|g(x)|+ 2‖B−1‖‖A‖|x|

Here Lip(Kx) is the Lipschitz constant associated toKx, so that |Kx(y1)−Kx(y2)| ≤
Lip(Kx)|y1 − y2|; we’ve just shown in equation (4) that this Lipschitz constant is
at most 1/2. We conclude

|g(x)| ≤ 4‖B−1‖‖A‖|x|. (5)

If the Dg|x=0 exists, then by the chain rule it must satisfy

A+B ◦ Dg|0 = 0⇒ Dg|0 = −B−1 ◦ A.

Let’s try that in the first order Taylor expansion and see what happens. In this
case,

|g(x)− g(0)− (−B−1(A(x))| = |B−1(r(x, y))| ≤ ‖B−1‖|r(x, g(x))|
≤ ‖B−1‖r̄(

√
|x|2 + |g(x)|2)

≤ ‖B−1‖r̄(
√
|x|2 + 16‖B−1‖2‖A‖2|x|2).
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This last term is sublinear, and so

lim
x→0

(
|g(x)− g(0) +B−1(A(x))|

|x|

)
= 0

as we required, proving Dg|0 = B−1 ◦ A.
None of the computations above require the basepoint of our computations to

be (0, 0), and so we can conclude the implicit function g : U → Rm exists and
is differentiable on some open set U ⊂ Rk containing 0. Moreover, if we write
Df |(x,g(x)) = [A B] for (x, g(x)) in the zero set Z, we can write

Dg|x = (B(x, g(x)))−1 ◦ A(x, g(x)) =

(
∂f

∂y

∣∣∣∣
(x,g(x))

)−1(
∂f

∂x

∣∣∣∣
(x,g(x))

)
.

We started with f ∈ C1, and so this expression for Dg is continuous, completing
our proof.

Corollary 2. Let f ∈ Ck satisfy all the other conditions listed above in the implicit
function theorem. Then the implicit function g is also Ck.

Proof. We have just proved the corollary for k = 1, and we complete the proof using
induction. Thus, we assume the corollary holds for Ck−1 functions and prove it for
Ck functions. In particular, given f ∈ Ck, we can assume the implicit function g
is Ck−1. The derivative Dg solves the equation

Ax +Bx ◦ Dg|x = 0, Ax =
∂f

∂x

∣∣∣∣
(x,g(x))

, Bx =
∂f

∂y

∣∣∣∣
(x,g(x))

.

Since f ∈ Ck its derivative is Ck−1, and so we have just defined Dg by an implicit
equation of Ck−1 functions, which means that Dg ∈ Ck−1. This in turn implies
g ∈ Ck.

Corollary 3. Matrix inversion is C∞.

Proof. Given A ∈ GL(n,R), its inverse is determined by the equation

f(A,B) = A ◦B − Id = 0⇔ B = Inv(A).

The defining equation just involves matrix multiplication and addition, and so it
is smooth. Also, the derivative of f with respect to B is ∂f

∂B
(V ) = AV , which is

invertible because A ∈ GL(n,R). Now we can apply the implicit function theorem,
which tells us that the zero set is a smooth graph, of the function A 7→ A−1.

We have previously proved this result by first showing Inv is C1 and then
bootstrapping, but once we know the implicit function theorem we can get all the
regularity we please at once. It turns out that it’s useful to know both proofs.
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Next we examine the inverse function theorem, which gives us conditions under
which we can find a local inverse of a given function f : Rn → Rn. Before we do
that, though, we introduce some terminology. Let U and V be open sets in Rn,
and suppose f : U → V is a bijection, i.e. f is one-to-one and onto. We say that
f is a Ck diffeomorphism if f ∈ Ck and also f−1 ∈ Ck. Notice that regularity of
f does not imply regularity for f−1. Indeed, this is easy to see even for functions
f : R → R, as we can see from f(x) = x3. This function is a bijection from R to
itself, and it is infinitely differentiable. However, f−1(x) = x1/3 is not differentiable
at x = 0.

Intuitively, one should think of diffeomorphisms as the mappings which preserve
any property depending on derivatives. For example, a sphere and an ellipsoid
are diffeomorphic. A sphere and a cube are homeomorphic (they have the same
topology), but they are not diffeomorphic (a cube has edges and corners, while a
sphere does not).

Theorem 4. The Inverse Function Theorem. Let f : U → Rn be Ck on some
open set U ⊂ Rn, and suppose, for some p ∈ U , the derivative Df |p is invertible.

Then there is some neighborhood V of f(p) and a Ck inverse function g : V → U
such that

x = g(f(x)), y = f(g(y))

for y ∈ V and x ∈ g(V ).

Remark 1. It is straight-forward to extend the proof below and show that, under
the hypotheses of the inverse function theorem, f is a local diffeomorphism. More
precisely, there are small neighborhoods U0 and V0 of p and q (respectively) such
that f : U0 → V0 is a Ck diffeomorphism, and its inverse is also Ck.

Remark 2. We will use the implicit function theorem to prove the inverse function
theorem. The text by Rudin (which is the canonical reference for the material we’re
covering) proves the inverse function theorem first, and then uses it to prove the
implicit function theorem. In fact, the two theorems are equivalent.

Proof. Define the map

F : U × Rn → Rn, F (x, y) = f(x)− y.

This is a Ck function, and its zero set is

Z = {(x, y) : F (x, y) = 0} = {y = f(x)},

which is the graph of f . We compute the derivative

DF |(p,f(p)) (u, v) = Df |p (u) + v.

By hypothesis, Df |p is invertible, so we can apply the implicit function theorem
(with x and y interchanged) to get an implicit function g : V → U . More precisely,
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there is a possibly smaller neighborhood U0 ⊂ U such that g : V → U0 is a bijection
and for (x, y) ∈ U0 × V

y = f(x)⇔ F (x, y) = 0⇔ x = g(y).

We just need to verify that if y ∈ V then f(g(y)) = y, and if x ∈ U0 then
g(f(x)) = x. If y ∈ V , then x = g(y) is the unique point in U0 such that f(x) =
f(g(y)) = y, and so f ◦ g = Id. Similarly, if x ∈ U0 then y = f(x) ∈ V , and (by
the implicit function theorem) there is a unique point g(f(x)) such that

F (x, f(x)) = f(x)− f(x) = 0.

However, x itself satisfies this last equation, and so (by uniqueness) we must have
g ◦ f = Id.

The final theorem we will treat here is the rank theorem. Recall that, if A ∈
L(Rn,Rm), then the rank of A is the dimension of the image. In terms of matrices,
the rank is the size of the largest square minor with a nonzero determinant. If
A : Rn → Rm has rank k, then we can reorder the variables in the domain Rn and
the target Rm, and change basis in the first k variables, so that

A(x1, . . . , xk, xk+1, . . . , xn) = (x1, . . . , xk, 0, . . . , 0).

That is, after a linear change of basis (which is particular to A), a rank k linear
transformation will look like orthogonal projection P onto the first k variables.

The rank theorem says that, if f : Rn → Rm is C1, and (in a neighborhood) Df
has constant rank k, then there is a C1 change of coordinates to make f into the
projection P . Before we prove this theorem, we will need some preliminary results.

Definition 1. Two maps f : A → B and g : C → D are equivalent if there are
bijections α : A→ C and β : B → D such that g = β ◦ f ◦ α−1.

If f : U → V is Ck, where U ⊂ Rn and V ⊂ Rm are open sets, we can
refine the notion of equivalence a little. In this case, we want α and β to be Ck

diffeomorphisms. In this case the composition β ◦ f ◦ α−1 is still a Ck function

Lemma 5. Ck equivalence is an equivalence relation.

Proof. We start by showing f is always equivalent to itself. Taking α and β to be
the identity transformations, we see f = Id◦f ◦ Id−1. Next, suppose f is equivalent
to g, which we can write as f = α ◦ g ◦ β−1. Then g = β ◦ f ◦ α−1, and so g is
equivalent to f . Finally, suppose f is equivalent to g and g is equivalent to h. We
can write these relations as f = β ◦ g ◦ α−1 and g = γ ◦ h ◦ δ−1, and so

f = β ◦ γ ◦ h ◦ δ−1 ◦ α−1 = (β ◦ γ) ◦ h ◦ (α ◦ δ)−1 = ψ ◦ h ◦ φ−1,

where ψ = β ◦ γ and φ = α ◦ δ. This shows f is equivalent to h.
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How should you think of Ck equivalence? Let f : U1 → V1 and g : U2 → V2 be
Ck, where Ui ⊂ Rn and Vi ⊂ Rm are open sets. Then f is equivalent to g means
that f and g look the same after changing variables.

Definition 2. Let f : U → V be C1, where U ⊂ Rn and V ⊂ Rm are open, and
let x ∈ U . The rank of f at x is the rank of Df |x.

Notice that the rank function is lower semi-continuous. In other words, the
rank can suddenly jump up, but it cannot suddenly jump down. The easiest way
to see this is to remember that, if f has rank k at x, then the derivative Df |x
has a k × k minor with a nonzero determinant. By continuity, if x′ is near x the
determinant of the same k × k minor will still be nonzero, and so the rank of f at
x′ is at least k.

Lemma 6. Rank is unchanged by C1 equivalence.

Proof. Let f : U1 → V1 and g : U2 → V2 be C1 maps, with Ui ⊂ Rn and Vi ⊂ Rm

open, be equivalent. This means there are C1 diffeomorphisms α : U2 → U1 and
β : V2 → V1 such that f = β ◦ g ◦ α−1. We need to show that, for any x1 ∈ U1,
the rank of f at x1 is the same as the rank of g at x2 = α−1(x1). However, by the
chain rule,

Dg|x2
= Dβ|β(f(x1)) ◦ Df |x1

◦ (Dα|x1
)−1.

By hypothesis, the two maps Dα and Dβ are linear isomorphisms, and so they
preserve the rank of Df .

Before stating the rank theorem, we will establish some notation. Fix positive
integers n,m, k, with k < n and k < m, and let f : U × V → Rm be a C1 function
with U × V ⊂ Rk × Rn−k where U and V are open sets. Write coordinates in the
domain as z = (x, y) ∈ Rk×Rn−k. We write a product open set in the target space
as U ′ × V ′ ⊂ Rk × Rm−k, with coordinates z′ = (x′, y′) ∈ Rk × Rm−k.

Theorem 7. The Rank Theorem. With the notation as in the paragraph above,
suppose the rank of f is identically k in the open set U × V . Then, in a possible
smaller open set Ũ× Ṽ , the function f is C1 equivalent to the orthogonal projection
Pk(x, y) = (x, 0).

Proof. Pick a basepoint z0 = (x0, y0) ∈ U × V , and let z′0 = (x′0, y
′
0) = f(x0, y0).

Define the two translations

τ1 : Rn → Rn, τ1(x, y) = (x− x0, y − y0)

τ2 : Rm → Rm, τ2(x
′, y′) = (x′ − x′0, y′ − y′0);

these translations are C∞ (in fact, analytic) diffeomorphisms. Now, changing vari-
ables by

f1(x, y) = τ2(f(τ1(x, y))) = f(x− x0, y − y0)− (x′0, y
′
0),
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we get an equivalent map such that f(0, 0) = (0, 0). Thus, without loss of gener-
ality, we can assume f(0, 0) = (0, 0), and we proceed with this normalization, and
do all our local computations at the origin.

Next we normalize the derivative Df |(0,0). Let O ∈ L(Rn,Rn) be a rotation

sending {(0, y)} = {0} × Rn−k ⊂ Rn onto the kernel of Df |(0,0), and let O′ ∈
L(Rm,Rm) be a rotation sending the image of Df |(0,0) onto {(x′, 0)} = Rk×{0} ⊂
Rm. Such rotations exist because the corresponding linear subspaces have the same
dimensions. Change variables by

f1(x, y) = O′ ◦ f ◦ O(x, y),

which is another C∞ equivalence. By the chain rule,

Df1|(0,0) = O′ ◦ Df |(0,0)O : Rk × {0} → Rk × {0}

is invertible, and is the zero map on the complimentary Rn−k factor. In other
words, without loss of generality, we can assume

Df |(0,0) =

[
A 0
0 0

]
,

where A ∈ L(Rk,Rk) is invertible. Our goal now is to find a C l change of coordi-
nates, such that in these coordinates f(x, y) = (x, 0) ∈ U ′ × V ′ ⊂ Rk × Rm−k.

Let i : Rk → Rk × Rn−k = Rn be the inclusion map and let π : Rm =
Rk × Rm−k → Rk be orthogonal projection onto the first k coordinates. Then
the composition

g : U → U ′, g(x) = π(f(i(x))),

where U ⊂ Rk ⊂ Rk × Rn−k and U ′ ⊂ Rk ⊂ Rk × Rm−k are open sets satisfies
g(0) = 0 and

Dg|0 = π ◦ ∂f
∂x

∣∣∣∣
(0,0)

= A

is an invertible linear map from Rk to itself. By the inverse function theorem, g
has a local C1 inverse function

h : U ′ → U, h(0) = 0, Dh|0 = A−1,

so that x′ = g(x) precisely when x = h(x′), provided x ∈ U and x′ ∈ U ′. Rewriting
this in terms of the original function f , we see that, given x′ ∈ U ′ there is a unique
x ∈ U satisfying π(f(x, 0)) = x′. Associated to this x′ there is also a unique
y′ ∈ V ′ ⊂ Rm−k such that (x′, y′) ∈ f(i(U)). Moreover, this function x′ 7→ y′ is
C1 by construction. Thus, we can write the image set f(i(U)) as the graph of a
function

φ : U ′ → V ′, φ(x′) = f(h(x′), 0)− π(f(h(x′), 0)),
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and this function φ, being the composition of C1 functions, is itself C1.
Now define the map

Ψ : U ′ × V ′ → U × V ′, Ψ(x′, y′) = (h(x′), y′ − φ(x′)).

We can see this map is a local diffeomorphism two ways. First we can compute its
derivative at (0, 0) to get

DΨ|(0,0) =

[
A−1 0
∗ Id

]
,

where Id is the identity map from Rm−k to itself. This matrix is invertible, whatever
the entries in the lower left-hand corner are. In this particular case, we can write
down the inverse map for Ψ explicitly: it is

Ψ−1(x, y′) = (g(x), y′ + φ(g(x))).

If x ∈ U then

f(x, 0) = (x′, φ(x′))⇒ Ψ ◦ f(x, 0) = Ψ(x′, φ(x′)) = (h(x′), φ(x′)− φ(x′)) = (x, 0),

and so, restricted to the slice U×{0}, the composition Ψ◦f is the correct projection.
Finally, we find a diffeomorphism γ so that Ψ ◦ f ◦ γ = Pk. Define

F : U × U × V → U ′, F (ζ, x, y) = π(f(ζ, y))− x.

Observe that

F (0, 0, 0) = 0,
∂F

∂ζ

∣∣∣∣
(0,0,0)

= Id ∈ L(Rk,Rk).

By the implicit function theorem, there is a C1 function ζ = ζ(x, y) describing the
zero set as its graph, so F (ζ(x, y), x, y) = 0. Now define

γ(x, y) = (ζ(x, y), y), G = Ψ ◦ f ◦ γ.

We claim that G = Pk, completing the proof. By the chain rule, using the fact
that f(ζ(x, y), x, y) = 0, we have

0 =
∂

∂x

∣∣∣∣
(0,0)

(F (ζ(x, y), x, y)) =
∂F

∂ζ

∂ζ

∂x
+
∂F

∂x
= Id

∂ζ

∂x
− Id,

and so ∂ζ
∂x

∣∣
(0,0)

= Id ∈ L(Rk,Rk). Thus,

Dγ|(0,0) =

[
Id ∗
0 Id

]
,
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which is invertible. By construction, we also have γ(0, 0) = (0, 0), and so by the
inverse function theorem, γ is a diffeomorphism from a neighborhood of the origin
to itself.

Recall that we defined ζ as the implicit function for the zero set of F , and so
ζ(x, 0) = 0. Plugging this in, we see

π(G(x, y) = π(Ψ(f(γ(x, y)))) = π(γ(x, 0)) = x.

Notice that this is true for all suffiently small y, not just for y = 0 (which is what
we proved above). Let π⊥ be the orthogonal projection onto {0} × Rm−k ⊂ Rm,
so that π⊥(x′, y′) = (0, y′) = (x′, y′)− π(x′, y′). Also let Gy′ = π⊥ ◦G. Then, near
(0, 0),

DG =

[
Id 0

∗ ∂Gy′

∂y

]
.

Up to now, we have only used the fact that the rank of f is at least k in the
open neighborhood U × V ; now we use the fact that its rank is equal to k. We
know that G is C1 equivalent to f , so it must also have rank k near (0, 0). Given
the expression of DG above, this is only possible if, in this neighborhood,

∂Gy′

∂y
= 0⇔ Gy′ = constant.

Evaluating at (0, 0), we see that Gy′ = 0, and so G(x, y) = (x, 0), which is precisely
what we wanted to show.

As part of the proof of the Rank Theorem, we actually proved the following
result.

Corollary 8. Suppose f : U → Rm is C l on the open set U ⊂ Rn, and that f
has rank k on all of U . Then f is C l equivalent to a map of the form G(x, y) =
(x, g(x, y)), where g : U → Rm−k is also C l.

Corollary 9. If f : U → R is C l and has rank 1 at x, then in a neighborhood of x
the level sets {x ∈ U : f(x) = constant} are C l-equivalent to (n − 1)-dimensional
discs.

Proof. Near x the rank cannot decrease, but by the dimension theorem the rank
also cannot increase. Thus in a neighborhood of x the rank must always be 1, and
so f is locally equivalent to projection onto a line. The level sets of an orthogonal
projection onto a line form a stack of parallel (n−1)-dimensional hyperplanes, and
the corollary follows.

Corollary 10. Let f : Rn → Rn be C l and suppose the rank of f at x is n. Then
the image of a sufficiently small neighborhood U of x under f is C l equivalent to
an n-dimensional disc.
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Proof. The rank of f cannot suddenly decrease, but the rank is also at most n.
Thus, in a small enough neighborhood U of x, the rank of f is always n. By the
rank theorem, in a (possibly smaller) neighborhood f is C l equivalent to x 7→ (x, 0),
and so the image of this neighborhood under f is C l equivalent to a disc.
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