
Determinant and Trace

Area and mappings from the plane to itself: Recall that in the last set of notes we
found a linear mapping to take the unit square S = {0 ≤ x ≤ 1, 0 ≤ y ≤ 1} to any parallelogram
P with one corner at the origin. We can write the parallelogram P as

P = {xv + yw : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1},

where v and w are the two vectors which form the edges of P starting at the origin (0, 0). Then
we can write the linear transformation as

T

([
x
y

])
= xv + yw, [T ] =

[
v1 w1

v2 w2

]
,

where v = (v1, v2) and w = (w1, w2) in components. Notice that the mapping T is invertible
precisely when it does not collapse S down to a line segment (or a point), which happens precisely
when the area of the parallelogram P is non-zero. Also, recall that we said T is invertible precisely
when its determinant det([T ]) = v1w2 − v2w2 is nonzero. We have

det([T ]) 6= 0⇔ T invertible ⇔ Area(P ) 6= 0.

We’ll see next that det([T ]) is the area of P , up to a sign. This is easiest to see with the shear
map we examined in the last set of notes. Start with the sheer map T whose matrix representation
is

[T ] =

[
1 b
0 1

]
.

(In the earlier set of notes we wrote the entry in the upper right corner of [T ] as a, but it will turn
out to be convenient to call it b for our later discussion.) In this case, T maps the unit square

S = {0 ≤ x ≤ 1, 0 ≤ y ≤ 1} to the parallelogram P spanned by the two vectors v =

[
1
0

]
and

w =

[
b
1

]
; in other words,

T (S) = P = {xv + yw : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} =

{
x

[
1
0

]
+ y

[
b
1

]
: 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

}
.

We reproduce a picture here:
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(1, 0)

(1, 1)
Area = 1

We already know that the unit square S has area 1, but let’s see that P also has area 1. The area
of a parallelogram is equal to its base times its height, and the height and base of P are both 1,
so the area of P is 1 · 1 = 1. On the other hand,

det([T ]) = det

([
1 b
0 1

])
= 1 · 1− 0 · b = 1 = Area(P ).
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Now we can rescale the sheer T by a in the horizontal direction and by d and vertical direction,
to have something more general. This time we have

[T ] =

[
a b
0 d

]
,

and

T (S) = P = {xv + yw : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} =

{
x

[
a
0

]
+ y

[
b
d

]
: 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

}
,

and the picture looks like
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(a, 0)

(b, d)

Area = ad

(In this particular picture a = 1/2 and d = 2, but this choice of scaling factors is not important.)
This time the height of the parallelogram P is d while its base is a, so Area(P ) = base·height = ad.
Again, we have

|det([T ])| =
∣∣∣∣det

([
a b
0 d

])∣∣∣∣ = |a · d− b · 0| = |ad| = Area(P ).

Notice that the absolute value here is necessary, because a and d could have opposite signs.

Now that we know |det([T ])| gives the area of the image of the unit square if [T ] =

[
a b
0 d

]
,

it’s not too hard to see this is true for any linear map. We’ll first need a technical fact.
Exercise: Prove det(AB) = det(A) det(B) for 2×2 matrices A and B. (Really, just multiply

it out.) Notice that this means det(AB) = det(BA) for any pair of 2× 2 matrices.
Exercise: Show that for any angle θ we have

det([Rθ]) = det

([
cos θ − sin θ
sin θ cos θ

])
= 1.

Now let T : R2 → R2 be a linear mapping of the plane to itself, and suppose

[T ] =

[
a b
c d

]
.

This means T (e1) =

[
a
c

]
and T (e2) =

[
b
d

]
, where e1 =

[
1
0

]
and e2 =

[
0
1

]
as before.

Now, the vector T (e1) =

[
a
c

]
makes some angle θ with the positive x axis, so we apply the

rotation R−θ to T to get a new mapping

T̃ = R−θ ◦ T, [T̃ ] = [R−θ][T ] =

[
cos θ sin θ
− sin θ cos θ

] [
a b
c d

]
=

[
ã b̃

0 d̃

]
,
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and
det([T̃ ]) = det([R−θ][T ]) = det([R−θ]) det([T ]) = det([T ]).

By the computation we did above, Area(P̃ ) = |det([T̃ ])|. We also have that T sends the unit
square S to a parallelogram P , and T̃ sends S to a parallelogram P̃ . These two parallelograms
P and P̃ differ by a rotation, so they have the same area. Thus we see

Area(P ) = Area(P̃ ) = |det([T̃ ])| = |det([T ])|.

In particular, we have just proven that det([T ]) 6= 0 precisely when T is invertible, because this
is precisely when the image parallelogram P has nonzero area.

Orientation and the sign of the determinant: As we saw in the previous notes, there
are actually two linear transformations which map the unit square S onto this parallelogram P ,
we can also have

T

([
1
0

])
=

[
b
d

]
, T

([
0
1

])
=

[
a
0

]
, [T ] =

[
b a
d 0

]
.

In this case we see that
det([T ]) = −ad = −Area(P ).

Why do we have the minus sign? To understand what’s going on, it will help to label the corners
of the unit square S and the parallelogram P as in the picture below.
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i’ iv’

ii’ iii’

What does this labeling mean? The mapping T sends the vector e1, which goes from i to ii in

the square on the left to the vector

[
b
d

]
. which also goes from i to ii in the parallelogram on

the right. Similarly, the mapping T sends the vector e2, which goes from i to iv in the square on

the left to the vector

[
a
0

]
. which also goes from i to iv in the parallelogram on the right. Now,

if we follow the labeling of the corners of the square in order, as in i to ii to iii to iv, then we
traverse along the boundary of the square counter-clockwise. However, if we follow the labeling
of th ecorners of the parallelogram in order, as in i’ to ii’ to iii’ to iv’, we traverse along the
boundary of the parallelogram clockwise. This means the mapping T reversed the direction we
traversed along the boundary of the shape. In other words, T reversed the orientation. We have
discovered the following general principle:

det([T ]) < 0⇔ T reverses orientation.

This principle is exactly why we wrote |det([T ])| = Area(P ) before. In general, if T : R2 → R2

preserves orientation then det([T ]) = Area(P ), but if T reverses orientation then det([T ]) =
−Area(P ).

Higher dimensions: So far we’ve seen that the determinant of a 2 × 2 matrix is the area
(up to a sign) of the parallelogram which is the image of the unit square. In fact, a similar thing
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is true in higher dimensions. Let [T ] be an n × n matrix, which we’ve seen corresponds to a
linear map T : Rn → Rn. Then T sends the unit cube S = {0 ≤ xi ≤ 1 : i = 1, 2, . . . , n} to a
parallelpiped P , which is spanned by the columns of [T ]. Then |det([T ])| = Vol(P ), where Vol
gives the n-dimensional volume.

We begin with a quick illustrative example. Consider

[T ] =

 a b 0
c d 0
0 0 e

 , e > 0.

Then the image of the unit cube S under T is

P = {(x, y, z) : (x, y) ∈ P̄ , 0 ≤ z ≤ e},

where

[T̄ ] =

[
a b
c d

]
, S̄ = {0 ≤ x ≤ 1, 0 ≤ y ≤ 1}, P̄ = T (S̄).

By slicing P with horizontal slices, we see

Vol(P ) = eArea(P̄ ) = e|det([T̄ ])|.

So, by any reasonable definition of the determinant for 3×3 matrices which fits with our definition
for 2× 2 matrices, we must have

det([T ]) = e det([T̄ ]) = e(ad− bc).

Exercise: Let [T ] be a 3× 3 matrix. Show that you can always perform a rotation to make

the last colum of [T ] into

 0
0
e

. (Hint: what are the columns of [T ]?)

At this point, we can write down a reasonable formula for the determinant of a 3× 3 matrix.
Let

[T ] =

 a b c
d e f
g h i

 ,
then

det[T ] = cdet

([
d e
g h

])
− f det

([
a b
g h

])
+ i det

([
a b
d e

])
.

Here we’ve singled out the last column, but we can do the same thing by picking out any row or
column. To do this properly, we need some notation. Let [T ] = [Aij ], so that the entry of [T ] in
the ith row, jth column is Aij . Also, let [T̄ij ] be the 2 × 2 matrix you get from [T ] by crossing
out the ith row and jth column. Then for any choice of j = 1, 2, 3 we can write

det([T ]) = (−1)1+jA1j det([T̄1j ]]) + (−1)2+jA2j det([T̄2j ]) + (−1)3+jA3j det([T̄3j ]),

which computes det([T ]) by exanding along the jth column. Alternatively, for any choice of
i = 1, 2, 3 we can write

det([T ]) = (−1)i+1Ai1 det([T̄i1]) + (−1)i+2Ai2 det([T̄i2]) + (−1)i+3Ai3 det([T̄i3]),

which computes det([T ]) by expanding along the ith row.
The same idea will compute the determinant of any square matrix inductively. That is, you

write the determinant of an n× n matrix as a sum of determinants of (n− 1)× (n− 1) matrices.
We write the general formula as follows. Again, we let Aij be the entry of [T ] in the ith row, jth
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column, and we let [T̄ij ] be the (n− 1)× (n− 1) matrix you get from [T ] by crossing out the ith
row and the jth column. The for any choice of j = 1, 2, . . . , n we compute det([T ]) by expanding
along the jth column using the formula

det([T ]) = (−1)1+jA1j det([T̄1j ]) + (−1)2+jA2j det([T̄2j ]) + · · ·+ (−1)n+jAnj det([T̄nj ]).

Alternatively, for any choice of i = 1, 2, . . . , n we compute det([T ]) by expanding along the ith
row using the formula

det([T ]) = (−1)i+1Ai1 det([T̄i1]) + (−1)i+2Ai2 det([T̄i2]) + · · ·+ (−1)i+nAin det([T̄in]).

We summarize some important properties of the determinant here.

1. The determinant is linear in each row and column. That is, if A is an n× n matrix and Ã
is the same as A except that you multiply the ith row by c, then det(Ã) = cdet(A). Also,
A1 and A2 are the same except at the ith row and A is what you get by adding together
the ith row of A1 and A2 then det(A) = det(A1) + det(A2). The same goes for columns.

2. Consequently, if A is an n× n matrix and c is a number then det(cA) = cn det(A).

3. An n× n matrix A is invertible if and only if det(A) 6= 0.

4. In fact, |det(A)| is the n-dimensional volume of the parallelpiped P which is the image
of the unit cube S = {0 ≤ x1 ≤ 1, . . . , 0 ≤ xn ≤ 1} under the linear transformation
associated to A. (You can prove this by induction, in a very similar way we got the
geometric interpretation for three dimensions from the two-dimensional version.)

5. Let A and B be n× n matrices, then det(AB) = det(A) det(B).

6. Let A be an n× n matrix and let Ã be the matrix you get by swapping adjacent two rows
of A (or by swapping two adjacent columns). Then det(Ã) = −det(A)

Trace: Another important number associated to an n× n matrix is its trace. We let [T ] be
an n × n matrix with Aij being the entry in the ith row, jth column. Then the trace of [T ] is
given by

tr([T ]) = A11 +A22 + · · ·+Ann,

the sum of the entries of [T ] on the diagonal running from the top left of [T ] to its bottom right.
Later on, we’ll see that under some conditions (for instance, if Aij = Aji) that the trace measures
an average distortion of T as a mapping. That is, if the trace is close to n then T doesn’t distort
distances too much, but if the traces is very different from n then it distorts distances a lot.
Remember that this guidline only holds if T is symmetric, that is if Aij = Aji. The trace satisfies
the following properties:

1. If I is the n× n identity matrix then tr(I) = n.

2. If A and B are square matrices and c is a number then

tr(A+B) = tr(A) + tr(B), tr(cA) = c tr(A), tr(AB) = tr(BA).

Some special matrices: We close with some special types of square matrices. Let [T ] be
a square matrix, with entries Aij in the ith row, jth colum as above. We say [T ] is diagonal
if Aij = 0 for i 6= j. We say [T ] is upper triangular if Aij = 0 for i > j and that [T ] is lower
triangular if Aij = 0 for i < j.

Exercise: Why is a diagonal matrix called diagonal? How about upper (or lower) triangular
matrices?

Exercise: Let [T ] be diagonal, and show that

det([T ]) = A11A22 · · ·Ann, tr([T ]) = A11 +A22 + · · ·+Ann

Exercise: Show that the same formula holds for a upper triangular and lower triangular
matrices.
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