
Eigenvalues and eigenvectors

Some motivation: We just saw in the last set of notes that the determinant of a 2 × 2
matrix tells us the effect the associated linear map has on area. In other words, if det([T ]) = 2
then T : R2 → R2 will scale the areas of squares by a factor of 2. It’s not to hard to show that
T scales the areas of all shapes by the same factor. (Hint: cut whatever shape you’re interested
in into a bunch of little tiny squares. You won’t be able to do this exactly, but what you have
left over has a negligible area.) However, it’s easy to find a linear map which preserves area but
distorts lengths by a lot. For instance, consider the linear

T : R2 → R2, [T ] =

[
1
2 0
0 2

]
.

We draw a picture of what T does to the unit square below.
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-
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2

This map preserves area, but it changes lengths by a lot. It shrinks length in some directions by
a factor of 1/2 and it stretches lengths in other directions by a factor of 2. We can make this
picture much worse by choosing , for instance, a horizontal scale factor of 1/100 and a vertical
scale factor of 100. This example tells us we need at least two numbers to keep track of how a
linear map T : R2 → R2 deforms lengths. We’ll see in a bit that, at least in some special cases,
we only need two numbers, and that these numbers are (essetially) the eigenvalues.

Definitions: If you know a little about the German language, you might be able to guess
what an eigenvector is. The German word eigen means own, and an eigenvector of a linear
transformation keeps its own direction. It can get rescaled, but the direction remains the same.

Definition 1 Let T : Rn → Rn be a linear transformation. Then a nonzero vector v ∈ Rn is an
eigenvector with eigenvalue λ if T (v) = λv. Notice that, even though v is not allowed to be zero,
it’s possible that λ = 0.

Exercise: Why is it necessary to have v 6= 0 in the definition of an eigenvector v?
This definition is a little awkward for doing computations, so the first thing we’ll do is refor-

mulate it a little. Let v be an eigenvector of T with eigenvalue λ. Then

[T ][v] = λ[v] = λ[I][v]⇔ ([T ]− λ[I])[v] = 0.

Now, v 6= 0, so the linear transformation T − λI sends a nonzero vector to 0, which means it
can’t be one-to-one. This means T − λI isn’t invertible, and so

det([T ]− λ[I]) = 0.
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This last equation is an n-th degree polynomial equation for the unknown λ. We know that any
n-th degree polynomial has exactly n roots in the complex numbers C (so long as we remember
to count repeated roots), which means we’ve just proved the following

Theorem 1 Let T : Rn → Rn be linear. Then a complex number λ ∈ C is an eigenvalue of T if
and only if

det([T ]− λ[I]) = 0.

Moreover, every n × n matrix has precisely n complex numbers λ1, . . . , λn (counted with multi-
plicity) which are eigenvalues.

This theorem tells us how to compute eigenvalues of a square matrix: we write down the
polynomial det([T ]− λ[I]) and find its roots. In practice this can be a little sticky, for instance,
if we want to find the eigenvalues of a 5 × 5 matrix. However, for the case of 2 × 2 matrices,
which is most of what we’ll discuss in this class, the eigenvalues are the roots of a second order
polynomial, which we can always find using the quadratic formula. So, for the time being at
least, let’s say we can find eigenvalues and continue, to see how to find the eigenvectors.

Let [T ] be an n× n matrix, and let λ be an eigenvalue of [T ]. We want to find the associated
eigenvector(s), that is the nonzero vectors v such that T (v) = λv. We write this equation as a
matrix equation

[T ][v] = λ[v]

and try to solve it using our favorite method (like row reduction).
Exercise: Show that if v is an eigenvector of the matrix A with eigenvalue λ, then 2v is also

an eigenvector of A, with the same eigenvalue λ. Is there anything special about the scale factor
of 2?

Exercise: Show that the linear system [T ][v] = λ[v] for finding an eigenvector will always
have many many solutions. Usually, it this system will have one free variable, so it might be
convenient to set one of the components of v to 1. However, it is possible that this linear system
has more than one free variables.

Ok, that’s the the basics of eigenvalues and eigenvectors. You now know what they are and
how to find them. For the rest of these notes we’ll discuss some properties of eigenvectors and
eigenvalues, and do some examples, but actually right now it might be a good idea for you to
put the notes down and work through some examples. Just write down some 2× 2 matrices and
find their eigenvalues and eigenvectors. The first several examples will be slow and difficult, but
you’ll get better and faster with some practice.

Some properties of eigenvalues and eigenvectors:
Here we list some properties of the eigenvalues and eigenvectors.
Recall that v is an eigenvector of A with eigenvalue λ if Av = λv. If λ is a real number as well,

this means A(v) is colinear with v, i.e. either A(v) points in the same direction or the opposite
direction as v. In other words, if λ is a real eigenvalue of A then, considered as a linear map, A
preserves the direction of the associated eigenvector v.

Exercise: Recall that we constructed the 2× 2 rotation matrices

[Rθ] =

[
cos θ − sin θ
sin θ cos θ

]
.

Show that [Rθ] has a real eigenvalue if and only if the angle θ is an integer multiple of π (when
measured in radians).

Exercise: We also constructed reflection matrices. Show that 1 is an eigenvalue of any
reflection matrix.

Exercise: Let A be the 3 × 3 matrix associated to a rotation of 3-dimensional space. Show
that 1 is an eigenvalue of A, and describe the relation between this associated eigenvector and
the rotation.

2



Exercise: Show that 0 is an eigenvalue of an n×n matrix A if and only if A is not invertible.
(This is completely general.)

Now we consider an n×n matrix A with real entries Aij in the ith row, jth column. We have
that λ is an eigenvalue of A precisely when

det(A− λI) = 0.

This is an nth degree polynomial, and the coefficients of this polynomial are sums of products
of the entries of A. This means λ is a root of a polynomial with real coefficient. Now, it can
happen that λ is not a real number, but it is a complex number, but these complex roots occur
in conujugate pairs. We have the following

Proposition 2 Let A be an n × n matrix with real entries. Then a non-real complex number
λ = a + ib is an eigenvalue of A if and only if its complex conjugate λ̄ = a − ib is also an
eigenvalue. In fact, in this case the eigenvectors are also complex conjugates. That is, if v is an
eigenvector associated to the eigenvalue λ then v̄ is an eigenvector associated to the eigenvalue λ̄.

The last sentence of the proposition follows immediately from taking the complex conjugate of
the equation Av = λv to get Av̄ = λ̄v̄.

Exercise: Let A be an n × n matrix with real entries, and let λ = a + ib be a non-real
eigenvalue. Show that the components of the associated eigenvector v are also non-real.

Some times we can find n independent eigenvectors v1, . . . , vn for an n × n matrix A. This
means we can find n different vectors v1, . . . , vn such that A(vj) = λjvj , and that we can’t write
vj as the weighted sum of the other vi’s. In this case, we say that A is diagonalizable, for the
following reason. We can write any vector w as a sum w = c1v1 + c2v2 + · · · cnvn, and then

A(w) = A(c1v1 + · · · cnvn) = c1A(v1) + · · · cnA(vn) = c1λ1v1 + · · · cnλnvn. (1)

In other words, if we change coordinates and write all our vectors as sums of v1, . . . , vn as above,
then A has the very nice form

[A] =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
0 · · · 0 λn

 ,
and (in the right coordinates) is a diagonal matrix. We see immediately from equation (1) that,
at least if A is diagonalizable, that the eigenvalues λ1, . . . , λn encode the stretch factors we were
looking for at the beginning of these notes.

We need to know the facts that the determinant and the trace of a matrix do not depend on
the basis; that is, if you change coordinates as we just did the determinant and the trace remain
the same.

Exercise: Show that, for a diagonalizable, n × n matrix, the determinant is the product of
the eigenvalues and the trace is the sum of the eigenvalues.

Exercise: Not all matrices are diagonalizable. In fact, show that

[
1 1
0 1

]
is not diagonal-

izable.
We saw above that if A is diagonalizable then det(A) is the product of all the eigenvalues and

tr(A) is their sum. In fact, this is true for any n× n matrix, as you’ll see in a second year linear
algebra course when you discuss the Jordan cannonical form of a matrix.

Proposition 3 For any n×n matrix A, it holds that det(A) is the product of the eigenvalues of
A, and tr(A) is their sum.
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Exercise: Let A be a 2×2 matrix with complex eigenvalues λ± = a±ib. Show that tr(A) = 2a
and det(A) = a2 + b2. In particular, det(A) ≥ 0.

Exercise: Let A be a 2 × 2 matrix with real eigenvalues λ1 and λ2. Show that det(A) > 0
if and only if λ1 and λ2 have the same sign. Then show that λ1 and λ2 are both positive if and
only if both det(A) > 0 and tr(A) > 0.

Finally, we mention symmetric matrices, that is matrices such that Aij = Aji where Aij
is the entry of A in the ith row, jth column. These are particularly nice, as we see from the
following theorem you’ll prove in the second year linear algebra class.

Theorem 4 A symmetric n × n matrix is diagonalizable and has n real eigenvalues λ1 ≤ λ2 ≤
· · · ≤ λn ∈ R.

Examples: We’ll compute the eigenvalues and eigenvectors of some 2× 2 matrices here, just
so we have some examples written down.

First let

A =

[
4 −2
3 −3

]
.

We want to find the eigenvalues of A, so we set

0 = det(A− λI) = det

([
4− λ −2

3 −3− λ

])
= λ2 − λ− 6 = (λ− 3)(λ+ 2),

and we see that the eigenvalues of A are λ1 = −2 and λ2 = 3.
Now we find the eigenvector associated to the eigenvalue λ1 = −2. We want to solve the linear

equation

Av = −2v ⇔
[

4 −2
3 −3

] [
v1
v2

]
=

[
−2v1
−2v2

]
.

Of course, you can solve this using row reduction, but I find that for a small system like this, it’s
easier to just write out the equations. We have

4v1 − 2v2 = −2v1, 3v1 − 3v2 = −2v2,

and both these equations reduce to v2 = 3v1. (You might want to think about why you’ll always
reduce from two equations to one when you’re finding the eigenvectors of a 2× 2 matrix.) So, up
to a scale factor, the eigenvector of A associated to λ1 = −2 is

v =

[
1
3

]
.

Finally we find the eigenvector associated to λ2 = 3. This time the linear equation is

Aw = 3w ⇔
[

4 −2
3 −3

] [
w1

w2

]
=

[
3w1

3w2

]
,

which we rewrite as
4w1 − 2w2 = 3w1, 3w1 − 3w2 = 3w2.

This reduces to w1 = 2w2, and so the eigenvector is (again, up to scale)

w =

[
2
1

]
.

For our next example, we take the matrix

A =

[
1 −1
1 1

]
.
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Again, we find eigenvalues of A by setting

0 = det(A− λI) = det

([
1− λ −1

1 1− λ

])
= λ2 − 2λ+ 2.

Using the quadratic formula we see that the eigenvalues are λ+ = 1 + i and λ− = 1 − i. Notice
that, just as we said earlier, the eigenvalues occur in conjugate pairs.

We set up the equation for the eigenvector associated to λ+ = 1 + i as before, and get

Av = (1 + i)v ⇔
[

1 −1
1 1

] [
v1
v2

]
=

[
(1 + i)v1
(1 + i)v2

]
,

which reduces to
v1 = iv2 ⇔ −v2 = iv1.

(You might want to recall here that 1
i = −i.) So we see that the eigenvector associated to

λ+ = 1 + i is

v =

[
i
1

]
.

There’s a short cut to finding the other eignevector w: since

Aw = λ−w = λ̄+w

and Ā = A we must have

w = v̄ =

[
−i

1

]
.

We can also do this computation directly:[
1 −1
1 1

] [
w1

w2

]
=

[
(1− i)w1

(1− i)w2

]
⇔ w2 = iw1 ⇔ w1 = −iw2

and we recover

w =

[
−i

1

]
.

An application to dynamical systems: Often one can represent a discrete dynamical
system by an n × n matrix A. (Here we discretize the time variable t.) We can think of A as a
recipe for how the system evolves from one time step to the next. That is, if v describes the state
of the system at time tn then A(v) describes the state of the system at time tn+1. Now suppose
v is an eigenvector of A with eigenvalue λ, and we begin our dynamical system at the position v
at time t0 = 0. In the next time step we evolve to position A(v) = λv, and in the time step after
that we evolve to

A(A(v)) = A(λv) = λA(v) = λ2v,

and so on. After N time steps, we arrive at position AN (v) = λNv. Now, if |λ| < 1 we have
|λ|N → 0 as N → ∞, so the long-time behavior of this system, at least if we start at the
eigenvector v, is to collapse down to zero. On the other hand, if |λ| > 1 then |λ|N → ∞ as
N →∞, and so ANv becomes as large as you please.

We make some definitions and put some of these properties together, for a linear dynamical
system which evolves by the rule v 7→ Av. First observe that 0 is always a fixed point of the
system: A(0) = 0 no matter what A is. We say 0 is an unstable fixed point if we can find very
small vectors w such that |AN (w)| → ∞ as N →∞. This means that, even though we start very
close to our fixed point 0, we eventually end up very far away from it by applying A over and
over and over. We say 0 is a stable fixed point of A if there is a positive number M such that
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|AN (w)| ≤ M |w| for all w near 0 and for all N = 1, 2, 3, 4, . . . . This means that if we start near
0, then we stay near 0 forever. Finally, we say 0 is and asymptotically stable fixed point of
A if for w close enough to 0 we have AN (w) → 0 as N → ∞. This means that if we start close
enough to our fixed point 0 then we actually collapse in to it.

Theorem 5 Let A be an n × n matrix and consider the dynamical system given by v 7→ A(v).
If A has an eigenvalue λ with |λ| > 1 then 0 is unstable. On the other hand, 0 is asymptotically
stable if and only if |λ| < 1 for all eigenvalues λ of A.
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