
Introduction to Graph Theory

Motivation and basic definitions: In class we saw an example of computing probabilities,
and we saw that a lot of information can go into these computations. So we’d like a good way
to store and organize and manipulate this information. It turns out that graph theory is a great
tool.

We’ll need some basic definitions. A graph is a list of vertices {v1, . . . , vn} and edges. Each
edge joins a pair of distinct vertices (so we don’t consider edges that join a vertex to itself), and
we write the edge joining vi to vj as vi− vj . Notice that we don’t put a direction to this edge, so
that in graph theory vi − vj = vj − vi. If there is an edge vi − vj we say that the vertices vi and
vj are adjacent, and we say the edge vi− vj is incident to both vertices vi and vj . The degree
of a vertex is the number of edges incident to it.

Sometimes you want to have a direction to the edges, that is you want to distinguish between
the edge v1 − v2 and the edge v2 − v1. In this case we write edges with an arrow to indicate
direction, such as v1 → v2, and call the graph a directed graph.

Let’s look at an example of how graph theory is useful. In 1994, the University of Chicago
published a study called The Social Organization of Sexuality, in which they claimed that on
average men have 74% more opposite-sex partners than women. Does this make sense? In other
words, can this statistic hold over an entire population. We can figure this out by writing down
a graph G. We write down a vertex for each person, and it will be convenient to split up the
vertices as the collection M of male vertices and the collection W of female vertices. So the entire
vertex set of G is V = {M,W}. If m ∈ M represents a man and w ∈ W represents a women,
we draw an edge w −m between them if they’ve been partners; these are the only edges in our
graph. Part of our graph might look like this:
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Now, each man m has deg(m) partners of the opposite sex, while each woman w has deg(w)
partners of the opposite. This means we can compute the average number of partners of the
opposite sex, for both men and women as

avg(M) =
Σm∈M deg(m)

#M
, avg(W ) =

Σw∈W deg(w)

#W
.

Now, if we take the ratio of these averages, we get

avg(M)

avg(W )
=

(#W )Σm∈M deg(m)

(#M)Σw∈W deg(w)
=

#W

#M
.

Here we have used the fact that Σm∈M deg(m) = Σw∈W deg(w), which holds because each edge
runs from W to M , so each of these sums is just the total number of edges in our graph. We see
that the University of Chicago’s statistics can’t hold over an entire population, unless there are
many more women than men. This means the statistics say a lot more about people filling out
studies than it does about sexual practices. (Namely, men are more likely to brag out and/or
exaggerate their sexual conquests, while women are more modest.)
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Some particularly useful graphs: Let G be a graph with vertices V and edges E, so we
write G = {V,E}. If we select subsets V ′ ⊂ V and E′ ⊂ E, with the condition that each edge in
E′ joins vertices in V ′, then we get a subgraph G′ = {V ′, E′}.

There are some particularly usefule graphs we’ll mention. The complete graph on n ver-
tices, which we write Kn has the vertex set {v1, . . . , vn} and an edge vi − vj so long as i 6= j,
that is there’s an edge joining all pairs of distinct vertices. Here’s a pitcure of the complete graph
on four vertices K4:

K4, the complete graph on four vertices
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There’s also the empty graph with n vertices, En. This graph has n vertices {v1, . . . , vn}
and no edges. Here’s E4:

E4, the empty graph with four vertices
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A path has the form G = {V,E}, where (after possibly renumbering the vertices) V =
{v1, . . . , vn} and the edges are

E = {v1 − v2, v2 − v3, . . . , vn−1 − vn}.

Similarly, a cycle has the form V = {v1, . . . , vn} and

E = {v1 − v2, v2 − v3, . . . , vn−1 − vn, vn − v1}.

In each case we observe that the vertices are all distinct, that is vi 6= vj for i 6= j. Here are a
path and a cycle with four vertices:
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Exercise: List all the paths in K4 starting at v1 and ending at v4.
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Exercise: Show that a path with n vertices always has exactly n− 1 edges, and that a cycle
with n vertices always has exactly n edges.

We say a graph is connected if it contains a path connecting any two of its edges. A tree
is a connected graph which doesn’t contain any cycles. A vertex in a tree which has degree 1 is
called a leaf.

Exercise: Show that the complete graph on n vertices is connected. Is it a tree?

Theorem 1. Let G = {V,E} be a tree. Then

1. There is a unique path between any pair of vertices.

2. Deleting any edge disconnects G.

3. Adding any edge creates a cycle.

4. Every tree with at least two vertices has at least two leaves.

5. #V = #E + 1.

Proof. First we choose two vertices v1 and v2. The fact that G is connected means there is some
path joining v1 to v2. Now suppose there are two different paths P1 and P2, both starting at v1.
Traverse along these paths simultaneously, until you get to the vertex u1 where P1 follows the
edge u1 − u2 and P2 follows the edge u1 − u′2. If we keep going along the path P1 until we get to
a vertex u3 which also lies in P2, we get a piece of the path P1, which we call P ′1. Similarly, we
denote by P ′2 the piece of the path P2 going from u1 to u3. Thus we’ve found a cycle by going
along P ′1 followed by P ′2 backwards, which contradicts the fact that G is a tree.

Now suppose we delete an edge e = v1 − v2. This edge e was the unique path connecting v1
to v2, so we’ve just disconnected G.

Choose two vertices v1 and v2 which are not connected by an edge. Then there’s a path P
joining v1 to v2, so adding this edge v1 − v2 creates a cycle.

Let G be a tree with at least two vertices, and let P be a path such that there are no other
paths in G with more edges. Traversing along P we see the vertices v1, v2, . . . , vm (listed in this
order). If v1 and vm were not both leaves, then we could extend P to find a longer path, which
contradicts the definiton of P . So we’ve found two leaves in G.

Finally, we show #V = #E + 1. (This is an induction argument, which is very common in
graph theory.) If G only has one vertex, then it can’t have any edges, so #V = 1 and #E = 0
and the formula holds. Now suppose a tree with n vertices has n− 1 edges, and let G be a tree
with n + 1 vertices. Let v be a leaf of G. If we delete v and the one edge incident to it, we get a
subtree G′ = {V ′, E′}. Here #E′ = #E − 1 and #V ′ = #V − 1 = n, so #V ′ = #E′ + 1. The
formula #V = #E + 1 follows.

Trees appear in many areas of science, from biology (animal classifications) to computer
science(searching algorithms). In fact, any connected G = {V,E} contains what is called a
spanning tree, that is a tree G′ = {V,E′} with the same vertex set.

Walks and tours: Here we describe various ways to traverse a graph. A walk on a graph
G is an alternating list of vertices and edges of the form

v0, v0 − v1, v1, v1 − v2, . . . , vn−1 − vn, vn.

This is pretty similar to a path, and in fact any path is a walk. However, a walk can include a
cycle, and it can go over an edge or a vertex many times. A walk is closed if v0 = vn, that is if
it starts and ends at the same place.

Exercise: Show that you can shorten any walk to a path that has the same starting and
ending vertices as the original walk.

An Euler walk on a graph G is a walk which goes over every edge of G exactly once, and an
Euler tour is an Euler walk which is closed. These are named after Leonard Euler, who invented
graph theory in

3



Theorem 2. A connected graph has a Euler tour if and only if every vertex has even degree.

Proof. Suppose a graph G = {V,E} has an Euler tour. If we see a vertex v as we traverse along
this walk k times, we arrive at v along k distinct edges, and leave v along k more distinct edges.
Thus deg(v) = 2k, and so every vertex has even degree.

Now suppose every vertex of G has even degree, and let W be the longest walk in G which
traverses each edge of G at most once. We write W as

W = v0, v0 − v1, v1, v1 − v2, v2, . . . , vn−1, vn−1 − vn, vn.

Now, if v0 6= vn and we can’t extend this walk, then vn−1 − vn must be the only edge incident to
vn, which means deg(vn) = 1, contradicting the fact that every vertex has even degree. (See the
picture below.) So we must have v0 = vn.
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Finally we show W is an Euler tour. Suppose otherwise, then there is some other edge in G
not in W . However, G is connected, so this edge must be incident to some vertex vi in W . Write
this mysterious edge as u− vi. Now, u is not a vertex in W , so we can construct the walk

W ′ = u, u− vi, vi, vi − vi+1, dots, vn−1 − vn, vn, v0 − v1, v1, v1 − v2, . . . , vi−1 − vi, vi.

Here we’ve used the fact that v0 = vn, as we’ve shown. This new walk W ′ is longer than W ,
which is a contradiction. Therefore, the walk W must traverse each edge exactly once, and so it’s
an Euler tour.

Corollary 3. A connected graph has an Euler walk if and only if the number of vertices with odd
degree is either 0 or 2.

Exercise: Resolve Euler’s seven bridges of Königsberg problem: can you walk over each of
the seven bridges of Königsberg exactly once? See the picture below:

A Hamiltonian walk is a walk that visits every vertex of a graph exactly once, and a
Hamiltonian cycle is a walk that starts and ends at the same vertex, and traverses every other
vertex exactly once. In general, it is very difficult to determine whether a graph has a Hamiltonian
walk or a Hamiltonian cycle.
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Hamitonian walks can be useful for ordering data. For instance, suppose we have a round
robin rugby tournament with n teams. This means every team plays each of the other n − 1
teams exactly once. Ok, so after this tournament, how do you determine a winner? How would
you rank the teams. If there are only three teams, this can already be difficult: team A could
beat team B, then team B could beat team C, then team C could beat team A.

We can order these teams if we write out a directed graph and find a directed walk; let’s do
this. First we need a directed graph G = {V,E}We write a vertex for each of the n teams, so we
have vertices v1, v2, . . . , vn. Now we drawn an edge from vi to vj if vi beat vj . Notice that if we
forget these direction arrows we just have the complete graph on n vertices, but the directions
are important! They tell us who beat whom. Here’s a picture of what could happen with four
teams:
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In this case, we see that v1 beat v3 and v4, but lost to v2; that v3 beat v2 but lost to v1 and
v4; and so on. So who’s the best team? Well, one way to rank everyone is to draw a Hamiltonian
walk which follows the directions of all the arrows. If this walk looks like

W = v1, v1 → v2, . . . , vn−1 → vn, vn,

then we have our ranking: v1, which beat v2, which beat v3, etc. It is a fact that we can always
find a directed Hamiltonian walk for these round robin tournament graphs. Try to prove it!

Adjaceny matrices: It might seem like it’s difficult to store the information of a graph in
a computer, but actually it’s easy. The key tool is something called the adjacency matrix of a
graph. If G = {V,E} is a graph with n vertices, then its adjacency matrix A is an n× n matrix,
all of whose entries are 0 or 1. Write the vertices of G as V = {v1, v2, . . . , vn}. Then the entry
Aij is 1 if there’s an edge joining vi to vj , and Aij = 0 otherwise. For instance, here’s a graph:
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and here’s its adjacency matrix: 
0 0 0 1 0
0 0 1 0 0
0 1 0 1 1
1 0 1 0 1
0 0 1 1 0

 .

Exercise: Write down the adjacency matrix for the complete graph on four vertices. Then
write down the adjacency matrix for the tournament graph with four teams which we drew above.

Exercise: Show that for an undirected graph an adjacency matrix always satisfies Aij = Aji.
Is this still true for a directed graph?

Theorem 4. Let G be a directed graph with vertices v1, v2, . . . , vn, and let A be its adjacency
matrix. Then the entry of Ak in the ith row, jth column, that is (Ak)ij, is exactly the number of
directed walks from vi to vj of length k.

Proof. If k = 1 then the number of directed walks from vi to vj of length 1 is either 0 or 1.
This number is 1 if there’s an edge from vi to vj , and 0 otherwise. By definition, this is the
corresponding entry of A.

Now we suppose for some k that the number of directed walks from vi to vj is exactly (Ak)ij ,
and let’s count the number of length k+ 1 walks from vi to vj . We can break up any length k+ 1
walk from vi to vj as a length k walk from vi to some intermediate vertex vm followed by a length
1 walk from vm to vj . (This second part can only be the edge from vm to vj .) Now, we already
know that the number of length k walks from vi to vm is (Ak)im, and that Amj = 1 if there’s a
directed edge vm → vj and Amj = 0 otherwise. To count up all the possible length k + 1 walks
from vi to vj , we sum over all the possible vertices vm to get

# length k+1 walks from vi to vj = (Ak)i1A1j+(Ak)i2A2j+· · ·+(Ak)inAnj = (Ak·A)ij = (Ak+1)ij .

Coloring graphs: Let’s suppose we’ve lost faith in the exams office’s ability to schedule
exams, and so we want to make the exam schedule for all UCT students. What sort of information
do we need to do this? Well, we need a list of all the courses which have exams, and then we
need a list of which of these courses have students in common, and so on. We can organize this
information as a graph! We draw a vertex for each course and draw an edge between two vertices
if they have students in common. For instance, the part of the graph for (some of) the first year
mathematics courses might look like this:
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sMAM1043 sMAM1044
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Hm, did that make the answer any easier? How many different exam periods do we need? Well,
we can see that we need three different exam periods, because MAM1000, MAM1019, MAM1043,
and MAM1044 all share students. If we look at the graph, we also see that the maximum degree
of any vertex is three. Is this an accident? No! To make sense of this, we need another definition.
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For a positive integer k, a graph G is called k-colorable if one can assign one of k colors to
each vertex of G in such a way that no two adjacent vertices have the same color. The minimum k
such that G is k-colorable is called the chromatic number of G. For instance, here’s a coloring
of the graph we made above with 4 colors:
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Exercise: Can you find a coloring of this graph with 3 colors? Or does it have chromatic
number 4?

Theorem 5. If every vertex of G has degree at most k then G is (k + 1)-colorable.

Proof. If G has 1 vertex, then it can’t have any edges, and you can color it with one color. So
the statement holds for the graph with one vertex.

Now suppose that every graph with n vertices such that each vertex has degree at most k is
(k + 1)-colorable, and let G be a graph with n+ 1 vertices, such that each vertex also has degree
at most k. Now remove any vertex v from G, it doesn’t matter which one. You’re left with a
graph G′ which has n vertices and each vertex has degree at most k, so it’s (k + 1)-colorable.
Now add v back in. It connects to G′ with at most k edges, so we have at least 1 color left over
to choose for the color of v, which means G is (k+ 1)-colorable. Now we’ve shown that all graphs
such that each vertex has degree at most k is (k + 1)-colorable.

The most famous application of coloring graphs (and the origin of the name) is the problem
of coloring countries on a map. Here’s a map of Africa:

Can you color all the countries on this map using six colors such that no two countries with
the same color share a border? How about five colors? How many colors do you think you really
need?
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The case of 2-colorable graphs are so special they have a special name: bipartite graphs.
The graph of men and women we saw all the way back at the beginning of these notes is an
example of a bipartit graph. For instance, you could color all the male vertices blue and all the
red vertices red.

Exercise: Show that every tree is a bipartite graph.
Exercise: Show that every cycle with an even number of vertices is bipartite.
In fact, there’s a nice characterization of bipartite graphs.

Theorem 6. A graph is bipartite if and only if it does not contain a cycle with an odd number
of vertices.

Proof. Suppose G = {V,E} has a cycle with an odd number of vertices, which we write as

C = {v1, v1 − v2, v2, . . . , v2k − v2k+1, v2k+1, v2k+1 − v1},

and attempt to color the graph with the two colors blue and green. The choice of which two
colors we use is unimportant, you can use two other colors if you don’t like blue or green. We
pick one color, say blue, for v1, but then the next vertex on our list for the first vertex v1. Then
v2 has to be the other color, say green. Now we’ve exhausted our choice of colors, and the rest of
the vertices in the cycle C must alternate blue and green, with the even number vertices being
green and the odd numbered vertices being blue. But then we get to the end of this list and see
that the blue vertex v2k+1 is adjacent to the blue vertex v1, which means we need more than
colors for the cycle C. Therefore we the whole graph G also needs more than two colors.

Notice that we’ve just proven that no cycle with an odd number of vertices is 2-colorable.
Now, if G is bipartite, i.e. 2-colorable, then this coloring will restrict to any cycle C in G, which
implies that G cannot have any cycle with an odd number of vertices.

Bipartite graphs are very useful for matching problems. To illustrate this, we consider a group
of men and women, and suppose we want to match them into marriagable pairs. Of course, we
should match every woman with a man she likes, otherwise the marriage is doomed. To model
this problem, we draw a graph representing all the men and women in our group, and which
women like which men. This is very much like the graph we drew for the social sciences study
we considered at the beginning of these notes, and part of it might look like this:
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CHere, the vertices on the left represent the women and the vertices on the right represent the

men. Given a woman vertex w and a man vertex m, there is an edge w −m precisely if w likes
m.

We want to find a marriage matching. This would be a subset of the edges such that each
woman has at least one edge incident, and each man has at most one edge incident to it. Such a
matching would find a marriage partner for each woman, such that no man gets partnered with
two women. (Notice that we do not require that each man gets a marriage partner.)
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Observe that this graph is bipartite. In fact, we can color all the women one color (say, blue),
and the men another color (say, green). This is because there are no edges between two women
or two men.

Now, we can do at least part of the matching by hand. For instance, it might look like we
can match Candice with either Bill or David, but actually we can’t because Dorothy is picky on
only likes David, which means we’d have to match Candice with Bill. Constructing the entire
matching in this way would be very tedious, so we won’t do it. Rather, before we start all that
work, whether such a matching is even possible.

There’s an obvious criterion we need in order that a matching exist: if we choose any subset
of women, the set of men they like collectively must be at least as large. For instance, if there’s
a set of four women who (as a group) like only three men, then we can’t match up these three
women, so we can’t match up the entire group. However, if every set of four women collectively
likes at least four men then we stand a chance of finding a matching. This turns out to be a
sufficient criterion.

Theorem 7. Let G = {V,E} be a women-men graph as above. That is, the vertex set is V =
W ∪M , and the only edges join a woman vertex w to a man vertex m. For each subset S ⊂ W
we denote by N(S) the set of all m ∈ M such that there is an edge from some w ∈ S to m.
Then there is a marriage matching as described above if and only if #N(S) ≥ #S for all subsets
S ⊂W .

Proof. First suppose that a marriage matching exists and choose a set S of women. Each woman
in this set S gets married to the man determined by this matching, so #N(S) ≥ #S for this
subset S.

Now suppose #N(S) ≥ #S for every subset S. We’ll prove the theorem using induction on
the number of women (i.e. the number of vertices in W ). If #W = 1, then there’s at least one
edge incident to that one vertex. Choosing one of these edges will give us a marriage matching.

We complete the proof using strong induction: assume the theorem is true for every woman-
man graph with less than n vertices, and prove it’s true for woman-man graphs with n vertices.
If #W = n ≥ 2 we have the two possibilities listed below.

• We could have that every strictly smaller subset W ′ of women likes a strictly larger set of
men. Symbolically, we can write this case as

#W ′ < #W ⇒ #N(W ′) > #W ′.

In this case, choose an arbitrary woman, match her with one of the men she likes, and
proceed. Now we have another woman-man graph with all the same conditions, but with
one fewer woman. So we can work our way down in this fashion to pair off all the woman,
and then we’re done.

• It could happen that there’s some smaller subset W ′ ⊂ W such that #N(W ′) = #W ′.
Now, by the induction hypothesis, we can match the women in W ′ exactly with the men
in N(W ′) = M ′, and so we do that. After this pairing, we’re left with the graph G′′ whose
vertex set is V = W ′′ ∪M ′′, where W ′′ is the set of women not in W ′, and M ′ is the set of
men not in M ′′. If we show that this new woman-man graph satisfies the marriage matching
condition, we’re done. So let S ⊂ W ′′ and consider N ′′(S), the set of men in M ′′ which
the women in S likes. We want to show that #N ′(S) ≥ #S. However, we know that the
combined set of women in S ∪W ′ like the combined set of men in N ′(S) ∪N(W ′), which,
because the original graph G satisfies the marriage matching condition, means

#(S ∪W ′) ≤ #(N ′(S) ∪N(W ′)) ≤ #(N ′(S)) + #N(W ′).

By pairing off all the women in W ′, we’ve subtracted #W ′ = #N(W ′) from both sides of
the inequality above, which leaves us with #S ≤ #N ′(S), which means exactly that the
new graph G′ satisfies the marriage matching condition.
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In both cases we’ve shown that if all woman-man graphs satisfying the marriage matching
condition with fewer than n women have marriage pairings, then so do all such graphs with n
women. Combined with the base case when the number of women is 1, we’ve completed the proof
of our theorem.

We can restate this theorem in terms of general bipartite graphs, so that we don’t always have
to discuss finding marriage partners. If we have a graph G = {V,E} and consider a subset S ⊂ V
of vertices, we denote its set of neighbors as N(S). That is, u ∈ N(S) precisely when there is a
v ∈ S adjacent to u.

Theorem 8. Let G = {V,E} be a bipartite graph, and write its vertex set as V = L ∪ R
(corresponding to the two colors). Then there is a matching for the vertices in L, which associates
exactly one vertex in R to each vertex in L, if and only if #N(S) ≥ #S for every subset S ⊂ V .

This theorem is called Hall’s theorem. It is a special case of the max-flow, min-cut theorem,
and is a very useful tool in linear programming.

10


