
Matrix Inversion

We saw in the last set of notes that one can rewrite a system of linear equations

A11x1 + A12x2 + · · ·+ A1nxn = b1
... =

...

Am1x1 + Am2x2 + · · ·+ Amnxn = bm

as a matrix equation
Ax = b,

where A is the m× n matrix with entries Aij , and x is the vector (x1, . . . , xn) ∈ Rn, and b is the
vector (b1, . . . , bm) ∈ Rm. Here we specialize to the case where m = n, so that we have the same
number of equations as unknowns and A is a square matrix.

In this case, we saw that (most of the time) we can apply row reductions to turn this into a
diagonal one:

Ax =


A11 0 · · · 0
0 A220 · · · 0
...

...
...

...
0 · · · 0 1




x1

x2

...
xn

 =


b̂1
b̂2
...

b̂n

 ,

the the b̂j coeffcients are the ones you get by applying the row operations to the vector b (multi-
plying on the left as before). Now it’s not too hard to turn the matrix on the left hand side into
the identity matrix: you divide the jth row by Ajj to get

x = Ix =


1

A11
0 · · · 0

0 1
A22

· · · 0
...

...
...

...
0 · · · 0 1

Ann




A11 0 · · · 0
0 A220 · · · 0
...

...
...

...
0 · · · 0 1




x1

x2

...
xn

 =


b̂1
A11

b̂2
A22

...
b̂n
Ann

 =


b̃1
b̃2
...

b̃n


Now, let’s pause for a moment and think about what we’re doing in terms of the matrix

equation. We’re starting with
Ax = b,

and we want to solve for the unknown vector x. Remember that A is an n×n matrix, so it could
very well have a multiplicative inverse A−1. In fact, most of the time A will have an inverse. If
it does, then we can multiply both sides of the equation by A−1 on the left to get

x = A−1Ax = A−1b.

So, in the last set of notes we saw one way to solve a system of linear equations, by performing
row operations. Now we see a second way to solve the system of equations, by finding the inverse
of a matrix. At this point, we pause to list some properties of matrix inversion.

1. Inverses are unique. That is, if AB = I and AC = I then B = C. Again, we write the
common inverse as A−1.

2. Let B be an n × n matrix such that AB = I. Then BA = I as well, and so B = A−1. In
particular inverses for multiplication on the left are the same as inverses for multiplication
on the right.

3. The n × n matrix A is invertible if and only if the matrix equation Ax = b has a unique
solution for every choice of right hand side b. Moreover, the solution is x = A−1b.
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4. If A and B are both invertible then (AB)−1 = B−1A−1.

Alright, so how do you find the inverse of a matrix? One method is to do row reduction. We
see this as follows. Start with

Ax = b,

and start to multiply on the left by the matrices we discussed last time which give you elementary
row operations. After some number of steps, let’s say k steps, we have

Â11 0 · · · 0

0 Â22 · · · 0
...

...

0 · · · 0 Ânn

 = EkEk−1 · · ·E2E1Ax = EkEk−1 · · ·E1b.

Next we multiply by the diagonal matrix (that is, matrix whose only nonzero entries are on the
diagonal from top left to bottom right) with 1/Ajj down the diagonal. Then we have

Ix =


1

Â11
0 · · · 0

0 1
Â22

· · · 0

...
...

0 · · · 0 1
Ânn

EkEk−1 · · ·E1x = A−1b.

This equation above has to be true regardless of which b we choose, so we must have

A−1 =


1

Â11
0 · · · 0

0 1
Â22

· · · 0

...
...

0 · · · 0 1
Ânn

EkEk−1 · · ·E1.

Now let’s see an example with a 3× 3 matrix. We start with

A =

 1 2 3
3 2 1
2 0 2

 .

We’ll just apply successive row operations to A and the identity matrix simultaneously. Each time
we apply a row operation, it’s the same as multiplying on the left by one of those row operation
matrixes. So by applying the row operatorings to I as well, e’re keeping track of the product
EkEk−1 · · ·E1. Remember that you always have to apply the same row operations t
both matriecs, in the same order. We write the two matrices side by side so we can see what
we’re doing:

A =

 1 2 3
3 2 1
2 0 2

 , I =

 1 0 0
0 1 0
0 0 1

 .

Start by subtracting three times the first row from the second row, and using the result to replace
the second row, so that we have 1 2 3

0 −4 −8
2 0 2

  1 0 0
−3 1 0

0 0 1

 .
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Next we replace the third row with −2 times the first row plus the third row, to get 1 2 3
0 −4 −8
0 −4 −4

  1 0 0
−3 1 0
−2 0 1

 .

Next we replace the third row with itself minus the second row, which gives us 1 2 3
0 −4 −8
0 0 4

  1 0 0
−3 1 0

1 −1 1

 .

Next we divide the second row by −4 and the first row by 4, so that we’re left with 1 2 3
0 1 2
0 0 1

  1 0 0
3/4 −1/4 0
1/4 −1/4 1/4

 .

Now, on the left hand side, we have the correct last row, so we leave it alone. To get the correct
third row we subtract twice the last row from the second row to get 1 2 3

0 1 0
0 0 1

  1 0 0
1/4 1/4 −1/2
1/4 −1/4 1/4

 .

Now we have the correct second and third rows, so we only need to worry about fixing up the
first row. First we subtract 2 times the second row from the first row, which gives us 1 0 3

0 1 0
0 0 1

  1/2 −1/2 1
1/4 1/4 −1/2
1/4 −1/4 1/4

 .

Finally, we subtract 3 times the last row from the first row, so that we’re left with 1 0 0
0 1 0
0 0 1

  −1/4 1/4 1/4
1/4 1/4 −1/2
1/4 −1/4 1/4

 .

We conclude that

A−1 =
1

4

 −1 1 1
1 1 −2
1 −1 1

 ,

which we can verify by multiplying:
AA−1 = I.

(You might want to check this last part yourself!)
Some people would write the computations above as a series of 3× 6 matrices, rather than a

series of side-by-side 3× 3 matrices. This is a good way to remember that you have to apply row
operations to both matrices, not just one.

You can use row operations to find the inverse of any invertible square matrix, just as we did
above. If A is not invertible, then somewhere in the process above you’d encounter a row of 0’s.
If this happens, you can stop and say that A is not invertible.

The computation we just did was fairly involved, and a lot of work. Later on we’ll learn one
or two other techniques for computing the inverse of a matrix, but they’re also complicated. It
turns out that inverting a matrix is usually a lengthy computation, and one we don’t want to
do. Instead, we look for ways to get the same information without computing the inverse of the
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matrix. For instance, we might only want to know whether or not a matrix is invertible, and
there’s a quick computation we can do to determine this, which we’ll learn later.

It turns out that there’s a nice formula for the inverse of a 2 × 2 matrix, which is worth
remembering. If A is a 2× 2 matrix, write it as

A =

[
a b
c d

]
.

Then, so long as det(A) = ad− bc 6= 0, we have

A−1 =
1

ad− bc

[
d −b
−c a

]
.

Again, we can verify this formula by direct computation, checking that

AA−1 = A−1A = I.

The quantity ad − bc is the determinant det(A) of the matrix A. Later on we’ll learn how to
compute the determinant of any square matrix. It turns out that in general A is invertible if and
only if det(A) 6= 0.
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