
Matrices as Mappings

Scaling: The simplest sort of linear transformation of the plane we can write down is a
rescaling (which is also called a dilation). If a is a positive number, we can send (x, y) to
a(x, y) = (ax, ay). Geometrically, we can imagine this transformation as taking the unit square
{0 ≤ x ≤ 1, 0 ≤ y ≤ 1} to a simliar square {0 ≤ x ≤ a, 0 ≤ y ≤ a}, which we represent in the
following picture.
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Actually, if we adopt the convention that we always start with the unit square {0 ≤ x ≤ 1, 0 ≤
y ≤ 1}, we really only need to draw the square on the right to have a geometric picture of or
transformation. If we want to write this transformation in terms of matrices, we can write[

x
y

]
7→
[
a 0
0 a

] [
x
y

]
=

[
ax
ay

]
.

In the previous example, we scaled the horizontal and vertical axes by the same factor, but
there’s no reason we have to do this. More generally, we might scale the horizontal axis by a > 0
and the vertical axis by b > 0. This time, we can write the transformation as[

x
y

]
7→
[
a 0
0 b

] [
x
y

]
=

[
ax
by

]
.

As before, we can represent this transformation with a picture.
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Rotations and reflections: Let’s suppose we want to write down a formula for a 30◦

counterclockwise rotation in the plane; call this rotation R30. For instance, we may have a
collection of data points we’d like to put into a database, but the coordinates of these datapoints
are all rotated by 30◦ in the clockwise direction, and so we want to undo this rotation, by rotating
through the same angle in the opposite direction. So let’s find out how to write down a formula
for the rotation. We start with a picture of the vectors (1, 0) and (0, 1) rotated by 30◦.
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We see that (1, 0) gets mapped to the point

R30

([
1
0

])
=

[
cos(30◦)
sin(30◦)

]
=

[ √
3/2
1/2

]
,

and that (0, 1) gets mapped to the point

R30

([
0
1

])
=

[
− sin(30◦)

cos(30◦)

]
=

[
−1/2√

3/2

]
.

Next observe that we can rescale the vectors (1, 0) and (0, 1), and, because rotations don’t
change lengths, the rotation will carry these scalings along:

R30

([
x
0

])
=

[ √
3x/2
x/2

]
, R30

([
0
y

])
=

[
−y/2√
3y/2

]
.

Finally, we can put this all together, because acts independently on the vectors (1, 0) and

(0, 1). This means R30 rotatates

[
1
0

]
and

[
0
1

]
independently, which we can write as

Rθ

([
1
0

]
+

[
0
1

])
= Rθ

([
1
0

])
+Rθ

([
0
1

])
.

(You can verify this formula geometrically, by seeing where the rotation carries the top right
corner of the unit square.) Adding these two vectors together, we have

R30

([
x
y

])
=

[ √
3x/2− y/2

x/2 +
√

3y/2

]
=

[ √
3/2 −1/2

1/2
√

3/2

] [
x
y

]
.

In this last step we used the rule for multiplying matrices we stated previously in the notes, which
starts to explain why we defined matrix multiplication the way we did.

We can redo this whole discussion with a rotation through any angle. Let Rθ be the rotation
through angle θ in the counterclockwise direction, whose action on the vectors (1, 0) and (0, 1) is
drawn below.
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Then, just as before, we have

Rθ

([
1
0

])
=

[
cos θ
sin θ

]
, Rθ

([
0
1

])
=

[
− sin θ

cos θ

]
,

and, by the same argument we have above,

Rθ

([
x
y

])
=

[
x cos θ − y sin θ
x sin θ + y cos θ

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
.

In this way, we can say that the rotation Rθ is given by multiplication (on the left) by the matrix

[Rθ] =

[
cos θ − sin θ
sin θ cos θ

]
.

Exercise: Verify that

[R−θ] =

[
cos θ sin θ
− sin θ cos θ

]
.

Exercise: Verify that [Rθ]
2 = [R2θ]. (You’ll need to remember double angle formulas from

trigonometry.)
Exercise: Verify that [Rθ][Rφ] = [Rθ+φ]. (You’ll need to remember the angle addition

formulas from trigonometry.) Notice that rotation matrices commute! That is, [Rθ][Rφ] =
[Rφ][Rθ].

Now that we’ve figured out how to write any rotation as multiplication by a matrix, let’s be a
little ambitious and see wht else we can write. The next natural thing to consider is a reflection.
The reflection through the x axis sends (x, y) to (x,−y). We can write this as a matrix product
by [

x
y

]
7→
[

x
−y

]
=

[
1 0
0 −1

] [
x
y

]
.

Now that we know how to write reflection through the y axis and any rotation, we can write down
any reflection through a line that intersections the origin (0, 0). Indeed, let l be a line passing
through the origin making an angle θ with the positive x axis, and let rl be reflection through
the line l. We build the matrix for rl by performing three transformations in succession. We first
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rotate our coordinates by −θ, then reflect through the x axis, and then rotate back by the angle
θ. The result is a reflection fixing the line l, so it must be rl, and it has the matrix representation

[rl] =

[
cos θ − sin θ
sin θ cos θ

] [
1 0
0 −1

] [
cos θ sin θ
− sin θ cos θ

]
=

[
cos2 θ − sin2 θ 2 cos θ sin θ

2 cos θ sin θ sin2 θ − cos2 θ

]
.

Let’s check quickly that we have the right matrix for the reflection through the line l. This
line l is uniquely determined by the two points (0, 0) and (cos θ, sin θ), so we only need to check
that [rl] fixes these two vectors. You can check for yourself that

[rl]

[
0
0

]
=

[
cos2 θ − sin2 θ 2 cos θ sin θ

2 cos θ sin θ sin2 θ − cos2 θ

] [
0
0

]
=

[
0
0

]
.

Now we check that [rl] fixes (cos θ, sinθ):

[rl]

[
cos θ
sin θ

]
=

[
cos2 θ − sin2 θ 2 cos θ sin θ

2 cos θ sin θ sin2 θ − cos2 θ

] [
cos θ
sin θ

]
=

[
cos3 θ − sin2 θ cos θ + 2 sin2 θ cos θ
2 cos2 θ sin θ − cos2 θ sin θ + sin3 θ

]
=

[
cos θ(cos2 θ + sin2 θ)
sin θ(cos2 θ + sin2 θ)

]
=

[
cos θ
sin θ

]
.

Sheers: The next sort of transformation we’ll talk about is a sheer, which you can imagine
as what happens to a deck of cards (as viewed from the side) when you push the top card to the
side and hold the bottom card still. This means a sheer will fix one direction, say the direction

of

[
1
0

]
, but it will move the other directions. We draw a picture of what this transformation

does the unit square {0 ≤ x ≤ 1, 0 ≤ y ≤ 1} below.
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(1, 0)

(1, 1)

We’ll call this sheer S.
We’ll construct the matrix for this sheer mapping S by seeing what it does to the two coor-

dinate vectors

[
1
0

]
and

[
0
1

]
, which, in a way, is how we constructed the rotation matrix. We

can see from the picture that

[
1
0

]
keeps the same direction, so we can rescale in the horizontal

direction to make

S

([
1
0

])
=

[
1
0

]
,

which tells us

[S] =

[
1 ∗
0 ∗

]
.
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Here the ∗’s can stand for any number, because we haven’t figured out yet what these parts of
[S] are.

On the other hand, the vector

[
0
1

]
gets tilted in the clockwise direction, and it looks like it

gets stretched as well. If we look a little more closely, we see

S

([
0
1

])
=

[
1
1

]
,

which tells us

[S] =

[
1 1
0 1

]
.

We can check this last formula by separating out the components:

S

([
x
0

]
+

[
0
y

])
= S

([
x
y

])
=

[
1 1
0 1

] [
x
y

]
.

We’ve just constructed the matrix of a particular sheer which fixes the horizontal direction.
In general, the vertical direction will go to some other direction, so that[

0
1

]
7→
[
a
1

]
,

where a 6= 0 is a number. Notice that we have the second component equal to 1, which we
can arrange by rescaling if necessary. We always have the second component nonzero, because
otherwise the sheer would collaps the unit square down to a (horizontal) line segment. Now,
following the same reasoning as we did above, we find the matrix of this sheer is

[S] =

[
1 a
0 1

]
.

Exercise: Notice that a can be negative in the formula just above. What does the paralel-
logram which is the image of the unit square {0 ≤ x ≤ 1, 0 ≤ y ≤ 1} look like in this case? In
particular, what can you say about the angle at the origin (0, 0)?

Exercise: Show that the general sheer which fixes the y axis is given by a matrix of the form

[S] =

[
1 0
a 1

]
,

where a 6= 0 is a number.

Exercise: Construct the general sheer which fixes the

[
1
1

]
direction. Hint: you might want

to apply a rotation.
General matrices as mappings: We just saw how to construct the matrix associated to a

sheer by tracking where the sheer transformation sends the basis vectors

[
1
0

]
and

[
0
1

]
. In fact,

this technique is exactly how we can produce the matrix associated to any linear transformation.
Let T : R2 → R2 be any linear transformation, which means T (v + w) = T (v) + T (w) for all
vectors v, w ∈ R2 and T (av) = aT (v) for all scalars a.

Exercise: Prove that T

([
0
0

])
=

[
0
0

]
for any linear mapping. Hint: suppose otherwise;

then what is T

(
2

[
0
0

])
?

We can construct a matrix associated to T , which we call [T ], as follows. The first column of

[T ] is T

([
1
0

])
, and the second column of [T ] is T

([
0
1

])
.
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Let’s check this is actually the right matrix. Suppose we have a linear mapping T : R2 → R2

with

T

([
1
0

])
=

[
a
c

]
, T

([
0
1

])
=

[
b
d

]
.

In this case we’d like to check that the matrix associated with T is

[T ] =

[
a b
c d

]
.

Indeed,

T

([
x
y

])
= T

([
x
0

]
+

[
0
1

])
= xT

([
1
0

])
+ yT

([
0
1

])
= x

[
a
c

]
+ y

[
b
d

]
=

[
ax+ by
cx+ dy

]
[T ]

[
x
y

]
=

[
a b
c d

] [
x
y

]
=

[
ax+ by
cx+ dy

]
.

In both computations we end up with the same answer, regardless of which x and y we choose,
so this matrix must be the correct choice.

Let’s look at an example. Suppose we want to find the linear map which takes the unit square
{0 ≤ x ≤ 1, 0 ≤ y ≤ 1} to the parallelogram with the vertices

(0, 0), (2, 1), (1, 2), (3, 3).

Here’s a picture.
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(2, 1)

(1, 2)

In fact, we have two choices for this linear mapping; we can either have

T

([
1
0

])
=

[
2
1

]
, T

([
0
1

])
=

[
1
2

]
,

or we can have

T

([
1
0

])
=

[
1
2

]
, T

([
0
1

])
=

[
2
1

]
.

In the first case we have

[T ] =

[
2 1
1 2

]
,
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and in the second case we have

[T ] =

[
1 2
2 1

]
.

Notice that we can get from one of these matrices to the other by swapping the columns, which

geometrically corresponds to the swapping

[
1
0

]
and

[
0
1

]
. We can write this in terms of matrix

multiplication as [
2 1
1 2

]
=

[
1 2
2 1

] [
0 1
1 0

]
.

(You should check the matrix product.) This should not surprise you. The matrix

[
0 1
1 0

]
corresponds to the reflection through the line y = x, which maps our parallelogram to itself and

interchanges the vectors

[
1
0

]
and

[
0
1

]
. Thus we see that we represent the composition

of linear mappings as matrix multiplication. We will return to this important idea later
on in these notes.

Exercise: Why can’t we have T

([
1
0

])
=

[
3
3

]
? Hint: what is

[
1
0

]
+

[
0
1

]
?

In fact, we can reverse this process. Suppose we have a matrix, let’s say

[T ] =

[
1 −3
4 1

]
,

and we want to understand the linear transformation associated to this matrix. We can draw the
parallelogram that T sends the unit square {0 ≤ x ≤ 1, 0 ≤ y ≤ 1} onto, which gives us all the
geometric information about T . We see from the matrix that

T

([
1
0

])
=

[
1
4

]
, T

([
0
1

])
=

[
−3

1

]
.

To draw the parallelogram, all we need to do is draw in these two edges starting at

[
0
0

]
and

connect them. We end up with the following picture.
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(1, 4)

(−3, 1)

Exercise: Can you explain why the image of a square is always a parallelogram? (Or a line
segment, which is really a degenerate parallelogram, with one pair of opposite angles collapsed
to 0 . . . )

Beyond two dimensions: So far we’ve seen how to write down the matrix of a linear
transformation taking the unit square to an arbitrary parallelogram, and how to draw the par-
allelogram which is the image of the unit square under an arbitrary linear mapping. However,
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nothing we’ve done so far is special to two dimensions, and everything works in higher dimensions.
Let’s suppose T : Rn → Rm is a linear mapping, which means

T (v + w) = T (v) + T (w), T (av) = aT (v),

where v, w ∈ Rn are vectors and a ∈ R is a scalar. Also let {e1, e2, e3, . . . , en} be the vectors in
Rn where ei has a 1 in the ith component and 0 elsewhere. Then we can write down a matrix
[T ], where the ith column of T is T (ei). We have

[T ] =


...

...
T (e1) T (e2) · · · T (en)

...
...

 .
We can do a quick example, and write down the linear mapping T : R3 → R3 taking the unit

cube {0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1} to the parallelpiped which has the vertices

(0, 0, 0) (3, 1, 1) (1, 3, 1) (1, 1, 3)
(4, 4, 2) (4, 2, 4) (2, 4, 4) (5, 5, 5)

.

This time there are actually six such examples; we’ll write one of them down, and leave the other
five to you. If we want

T

 1
0
0

 =

 3
1
1

 , T

 0
1
0

 =

 1
3
1

 , T

 0
0
1

 =

 1
1
3

 ,
then we must have

[T ] =

 3 1 1
1 3 1
1 1 3

 .
Exercise: Write down the matrices of the other five possible linear mappings which carry the

unit cube onto this parallelpiped.
Composition of mappings and matrix multiplication: There is one very important

thing we mentioned above, which we emphasize here. Namely, the composition of linear trans-
formations is given by matrix multiplication. More precisely, if T1 : Rn → Rk and T2 : Rk → Rm
are linear mappings, then the composition

T2 ◦ T1 : Rn → Rm, T2 ◦ T1(v) = T2(T1(v))

is also linear, and the matrix associated to the composition is the product of the matrices:

[T2 ◦ T1] = [T2][T1].

This explains why the definition of matrix multiplication is the way it is. As a quick check, it’s
good to see that the matrix product is well-defined. We have T1 : Rn → Rk, so that [T1] is a
k × n matrix, and (similarly) [T2] is a m × k matrix. Then the product [T2][T1] is well-defined,
and it is an m × n matrix. Also, the composition T2 ◦ T1 : Rm → Rn corresponds to an m × n
matrix. And so everything fits together nicely.

In a later set of notes we’ll concentrate on n×n matrices, and see how a linear mapping effects
volume. This leads naturally to the idea of determinants, which we saw earlier in the special case
of 2× 2 matrices. But this is a story for another day . . .
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