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In these pages we collect some relevant terminology and background material from analysis
and linear algebra.

Some terminology and notation: We’ll be integrating a lot of functions, and so we’ll need
a decent notation for integration. First of all, we call an open connected set D ⊂ Rn a domain.
We will pay particular attention to a ball of radius R centered at x0, which we denote as

BR(x0) = {x ∈ Rn : |x− x0| < R}.

We use the number ωn to denote the volume of the unit ball in Rn, so that

Vol(BR(x0)) = ωnR
n, Area(∂BR(x0)) = nωnR

n−1.

If D ⊂ Rn is a domain and u : D → R is a continuous (or, more generally, measurable) function
we write the volume integral of u over D as

∫
D
u(x)dV (x). That is, we denote the volume element

as dV (x), with the x indicating the variable of integration. If it is clear from the context, we will
leave out the x, just writing the volume element as dV . Sometimes we will also write the volume
element as dµ, so that a volume integral is

∫
D
u(x)dµ(x). If D has at least a Lipschitz boundary

∂D (see below) then we can integrate functions on the boundary, and we write these boundary
integrals as

∫
∂D

u(x)dA(x), or sometimes
∫
∂D

u(x)dσ(x). Again, if it is clear we just write the
area element as dA or dσ.

It will also be useful to define the support of a function.

Definition 1. If D ⊂ Rn is a domain, and u : D → Rn then the support of u is the set spt(u),
which is the closure of the set {x ∈ D : u(x) 6= 0}. That is, spt(u) is the smallest closed set on
which u is nonzero.

Linear algebra: Recall that a linear map T : Rn → Rm satisfies

T (αv + βw) = αT (v) + βT (w)

for all α, β ∈ R and v, w ∈ Rn. If we choose bases {e1, . . . , en} for Rn and {f1, . . . , fm} for Rm,
we can represent T with an n×m matrix [T ] with entries Tij , where

T (ei) =

m∑
j=1

Tijfj .

In this way we can identify the linear map T with left-multiplication by the matrix [T ]. There
are an assortment of operations you can do on the matrix [T ] which you should recall, including
multiplication (which corresponds to the composition of linear maps), and in the case n = m you
can do things like take the determinant and trace of [T ]. It is a good exercise to check that if
n = m then det([T ]) and tr([T ]) are actually independent on the choice of bases.

An eigenvector v ∈ Rn\{0} with eigenvalue λ ∈ R satisfies T (v) = λv. In particular, this
means (T − λId)(v) = 0, and so det(T − λId) = 0. This gives the eigenvalues as the roots of an
nth degree polynomial, and so an n × n matrix has precisely n eigenvalues (counting multiplic-
ity). Some particular cases warrant mention. T is called positive definite if all its eigenvalues
are positive, and positive semi-definite if all its eigenvalues are non-negative. Similarly, a
negative definite matrix has negative eigenvalues, while a negative semi-definite matrix has
non-positive eigenvalues. If A and B are both n× n matrices, we say A > B if A−B is positive
definite, and we say A ≥ B if A−B is positive semi-definite.

It is also useful to recall the spectral theorem:
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Theorem 1. If A is a positive semi-definite, symmetric matrix then there exists an orthogonal
matrix O such that OtAO = O−1AO = D is diagonal, with the diagonal entries of D being the
eigenvalues of A. In fact, on can take the columns of O to be the eigenvectors of A.

A version of the spectral theorem remains true for a positive semi-definite, symmetric, bilinear
form on a Hilbert space.

Some function spaces: In these paragraphs we quickly recall some notions of regularity
for functions. We consider a domain (i.e. open, connected subset) D ⊂ Rn and a function
u : D → R. For simplicity, most of the time we will take D to be bounded, and for most
examples it will suffice to take D to be the unit ball centered at the origin 0.

Definition 2. The space of continuous functions u : D → R is written C0(D), and it has the
norm

‖u‖C0(D) = sup
x∈D
|u(x)|.

For k ≥ 1, we say u ∈ Ck(D) if u has all partial derivatives up to (and including) order k, and
they are all continuous. We can place the norm

‖u‖Ck(D) = ‖u‖C0(D) +

k∑
l=1

sup
x∈D

√√√√ ∑
i1<i2<···il

(
∂lu

∂xi1 · · · ∂xil

)2

.

For instance, we u ∈ C1(D) if its gradient exists and is continuous, and it has C1(D)-norm

‖u‖C1(D) = sup
x∈D
|u(x)|+ sup

x∈D

√√√√ n∑
i=1

(
∂u

∂xi

)2

= ‖u‖C0(D) + ‖|∇u|‖C0(D).

We’ll also use certain spaces of integrable functions. A functions u : Rn → R is integrable if∫
Rn |u(x)|dV (x) <∞, where the integral is with respect to the Lebesque measure, and we denote

the space of integrable functions as L1(Rn). More generally, if p > 0 we denote

Lp(Rn) = {u : Rn → R :

∫
Rn

|u(x)|pdV (x) <∞},

and we endow Lp(Rn) with the norm

‖u‖Lp(Rn) =

(∫
Rn

|u(x)|pdV (x)

)1/p

.

It is a fact that this norm makes Lp(Rn) into a Banach space; in particular it is a complete metric
space. One can make similar definitions for funtions defined on a domain D ⊂ Rn, obtaining the
spaces Lp(D) for p > 0. We’ll usually restrict our attention to the case p ≥ 1.

It follows from the definitions of Lebesque measure that the space of simple functions

f =

k∑
i=1

αiχUi , αi ∈ R, Ui measurable

are dense in Lp. (Here χUi is the indicator function of Ui; it is 1 for points in Ui and 0 otherwise.)
Two important convergence theorems you will see in the Measure Theory course are the monotone
convergence theorem and the dominated convergence theorem.

Theorem 2. Let fn be a sequence of measurable functions such that

• 0 ≤ fn(x) ≤ fn+1(x) for almost every x and
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• there is a measurable function f such that fn(x)→ f(x) for almost every x.

Then

lim
n→∞

∫
fn =

∫
f,

where we interpret the limit as going towards ∞ if the integral of f is infinite.

Theorem 3. Let fn, g be measurable functions with |fn(x)| ≤ g(x) for almost every x, and
suppose fn(x)→ f(x) for almost every x. Then

lim
n→∞

∫
fn =

∫
f.

Exercise: Show that if D ⊂ Rn is bounded and 1 ≤ p < q then Lq(D) ⊂ Lp(D). (Hint:
Hölder’s inequality.) Why do you need D to be bounded? Can you weaken that assumption at
all?

It turns out that, at least for bounded domains, if u ∈ Lp(D) for large enough p then it is also
continuous. This is one part of the Sobolev embedding theorem, and you’d see it in an advanced
functional analysis course. (Or you can look in chapter 7 of Gilbarg and Trudinger’s book on
second order, elliptic PDE.)

It turns out that usual continuity is often not enough to prove the results we want, and we
will need something slightly stronger, called Hölder continuity.

Definition 3. For 0 < α < 1 and a bounded domain D, we say u ∈ C0,α(D) if

‖u‖C0,α(D) = ‖u‖C0(D) + sup
x 6=y

|u(x)− u(y)|
|x− y|α

<∞.

There is a corresponding notion of Hölder continuous for unbounded domains, but you need
to phrase the definition a little more carefully. Basically, the idea is the same, but you only want
to compare two points which are close together.

We can allow the limit case of α → 1, and in this case we say u ∈ C0,1(D) is Lipschitz
continuous. You might recall the following theorem from your course in measure theory:

Theorem 4. If u ∈ C0,1(D) then u is differentiable almost everywhere.

Exercise: Show that u(x) = x1/3 ∈ C0,α(−1, 1) precisely for 0 < α ≤ 1/3. Is there anything
special about the exponent 1/3, or can you make a similar statement about the function u(x) =
|x|p for any exponent 0 < p < 1?

Exercise: If D is bounded, show that any u ∈ C1(D) is also Lipschitz continuous: C1(D) ⊂
C0,1(D) if D is bounded.

Exercise: Show that if 0 < α < β < 1 and u ∈ C0,β(D) then we also have u ∈ C0,α(D). We
can write this containment as

C0,1(D) ⊂ C0,β(D) ⊂ C0,α(D) ⊂ C0(D).

Exercise: Show that if α > 1 and u ∈ C0(0, 1) satisfies

sup
x6=y

|u(x)− u(y)|
|x− y|α

<∞

then u is constant.
Finally, we say a domain D has a Ck boundary, for k ≥ 0, if one can locally write ∂D as the

graph of a Ck function. This means, for any x0 ∈ ∂D there is a neighborhood U of x0, and a
coordinate system {x1, . . . , xn} in U such that ∂D ∩ U = {(x1, x2, . . . , xn−1, f(x1, . . . , xn−1))},
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and f is a Ck function. Similarly, D has a Lipschitz boundary, written ∂D ∈ C0,1, if we can
locally write ∂D as the graph of a Lipschitz function.

The Arzela-Ascoli theorem: The Arzela-Ascoli theorem (or Ascoli-Arzela theorem, or
Montel’s theorem, or . . . ) is one of the most useful theorems in analysis, because it’s one of
the easiest ways to produce a convergent sequence of functions. The proof is also an instuctive
example of the Cantor diagonalization trick. To prove this theorem, we will first need to recall
some definitions.

Definition 4. Let X be a metric space. A subset A is dense in X if its closure Ā is all of X. A
metric space X is called separable if it contains a countable, dense subset.

For example, the real line is separable, because the rational numbers for a countable, dense
subset. In the same way, Rn is separable for any n, which in particular means any domain
D ⊂ Rn is separable.

Definition 5. Let X be a metric space and let F be a family of functions from X to R. The
family F is equicontinuous if for every ε > 0 there is a δ > 0 such that

dist(x1, x2) < δ ⇒ |f(x1)− f(x2)| < ε

for all f ∈ F .

Notice that in the definition we choose the same δ for all the functions f ∈ F , and so this
is a very strong condition. In particular, each f ∈ F is uniformly continuous. For instance, the
family F1 = {fn(x) = xn : n = 1, 2, 3, . . . , 0 ≤ x ≤ 1} is not equicontinuous, but the family
F2 = {xn : n = 1, 2, 3, . . . , 0 ≤ x ≤ 1/2} is.

As far as the definition is concerned, it is not important that the target space is R, and one
can define equicontinuous familes of functions with the target space being any metric space Y at
all. However, the main use of equicontinuity is the Arzela-Ascoli theorem below, so most of the
time one will want the target to at least be a vector space.

Theorem 5. (The Arzela-Ascoli Theorem) Let X be a separable metric space, and let F be an
equicontinuous, pointwise bounded family of functions. (That is, there is a function M : X →
(0,∞) such that for all x and all f ∈ F we have |f(x)| ≤ M(x).) Then every sequence {fn} of
functions in F has a subsequence {fnk} which converges uniformly on all compact subsets of X.

Proof. The space X is separable, so it contains a countable dense subset A. Enumerate the points
in A as

A = {x1, x2, x3, . . . }.

Now consider our sequence {fn} of functions in the family F . The sequence of numbers

{f1(x1), f2(x1), f3(x1), . . . }

is a bounded seqence of real numbers and so it has a convergent subsequence {fn,1(x1)} → y1.
We proceed to the point x2, and we see that

{f1,1(x2), f2,1(x2), f3,1(x2), . . . }

is also a bounded sequence of real numbers, and so it also has a convergent subsequence {fn,2(x2)} →
y2. Notice that we automatically have {fn,2(x1)} → y1, because we selected it as a subseqence of
the convergent sequence {fn,1(x1)}. We proceed inductively, so that after the kth step we have
a convergent sequence {fn,k(xk)} → yk, where we automatically have {fn,k(xj)} → yj for j ≤ l.
Now we are ready to extract our convergent subsequence. We define gk = fk,k and observe that
for every l we have

lim
k→∞

gk(xl) = lim
k→∞

fk,k(xl) = yl.
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This is exactly the Cantor diagonal trick, and it’s very useful to remember.
Now choose a compact set K ⊂ X, and let ε > 0. The family of functions F is equicontinuous,

so there is a δ > 0 such that for all p, q ∈ X

dist(p, q) < δ ⇒ |gk(p)− gk(q)| = |fk,k(p)− fk,k(q)| < ε

for all k = 1, 2, 3 . . . . Cover K with open balls of radius δ
2 and extract a finite subcover

B1, B2, . . . , Bm. The set A is dense in X, so for each i = 1, . . . ,m there is a point xi ∈ A ∩ Bi.
However, limk→∞ gk(xi) = yi exists, which means there is an integer N such that

|gk(xi)− gl(xi)| < ε

so long as k, l > N . (This last line is just the fact that {gk(xi)} is a Cauchy sequence written
out.) Notice that we can choose one N to work for all the points x1 ∈ B1, x2 ∈ B2, . . . , xm ∈ Bm,
because there are only finitely many of these balls which cover K.

Finally, pick an arbitrary x ∈ K. Then x ∈ Bi for some i, and so dist(x, xi) < δ. We combine
the equicontinuity of F and the convergence {gk(xi)} → yi to get that for k, l > N we have

|gk(x)− gl(x)| ≤ |gk(x)− gk(xi)|+ |gk(xi)− gl(xi)|+ |gl(xi)− gl(x)| < ε+ ε+ ε = 3ε.

In other words, we’ve just shown that when restricted to k the sequence {gk} = {fk,k} converges
uniformly, because it satisfies the Cauchy criterion.

We’ll use the Arzela-Ascoli theorem several times in class (see the proof of Weyl’s lemma, for
instance), and it illustrates the power of a priori bounds.
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