
Partial Differential Equations Notes II
by

Jesse Ratzkin

In this set of notes we closely examine the Laplace operator ∆(u) = div(∇(u)) =
∑n
i=1

∂2u
∂x2

i
.

As the Laplacian will serve as our model operator for second order, elliptic, differential operators,
we will be well-served to understand it as well as we can.

Some basic definitions: We fix some bounded domain D ⊂ Rn, and suppose that the
boundary ∂D of D is at least C1. For most purposes, it will suffice to work on the ball BR(0) of
radius R, centered at 0. A harmonic function u on D satisfies ∆u(x) = 0 for all x ∈ D. More
generally, we are interested in solving the Poisson equation:

∆u = φ(x) (1)

for some continuous function φ. In this equation, the given information is the domain D and
the function φ on the right-hand-side, and the unknown (i.e. the thing we’re solving for) is the
function u. In order to specify a solution, we still need to prescribe boundary data for u. The
two most common boundary data are Dirichlet boundary values and Neumann boundary values,
which we define now.

Definition 1. The function u ∈ C2(D)∩C0(D̄) solves the Dirichlet boundary value problem for
(1) if

∆u = φ, u|∂D = f, (2)

where f ∈ C0(∂D) is given. Similarly, we say u ∈ C2(D)∩C0(D̄) solves the Neumann boundary
value problem for (1) if

∆u = φ,
∂u

∂N

∣∣∣∣
∂D

= 〈∇u,N〉|∂D = g (3)

for some given g ∈ C0(∂D). Here N is the outward unit normal vector for ∂D.

In general, if u solves the Poisson equation (1), then we call u|∂D the Dirichlet data of u,
and we call ∂u

∂N

∣∣
∂D

the Neumann data of u. Either of these boundary data will determine u, so
we can only prescribe one the Dirichlet data or the Neumann data, but not both. One can look
at more general boundary value problems than (2) and (3), but most of the time these two will
give you all the information you could need.

Some properties of harmonic functions: We begin with the equation ∆u = 0.

Theorem 1. Let D be bounded and let ∂D be C1. If u is harmonic with zero Dirichlet data
(that is, u|∂D = 0) then u(x) = 0 for all x ∈ D. If u is harmonic with zero Neumann data
( ∂u
∂N

∣∣
∂D

= 0), then u is constant.

Proof. We need to recall the product rule and the divergence theorem. If X is any vector field
and f is a function, then the product rule states

div(fX) = 〈∇f,X〉+ f divX.

Also, the divergence theorem says∫
∂D

〈X,N〉dA =

∫
D

div(X)dV.

Now apply the divergence theorem to the vector field u∇u and use the product rule to get∫
∂D

u
∂u

∂N
dA =

∫
D

|∇u|2 + u∆udV =

∫
D

|∇u|2dV.

If u has either Dirichlet or Neumann boundary data, this integral is zero, and so |∇u|(x) = 0 for
all x ∈ D, which in turn (because D is connected) forces u to be constant. In the case that u has
Dirichlet boundary data, this constant must be zero.
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Recall that ωn is the volume of the unit ball in Rn, so that for any x0 ∈ Rn and r > 0 we
have Vol(Br(x0)) = ωnr

n and Area(∂Br(x0)) = nωnr
n−1.

Theorem 2. Let u ∈ C2(D) be harmonic, let x0 ∈ D, and let R > 0 be small enough so that
BR(x0) ⊂ D. Then

u(x0) =
1

nωnRn−1

∫
∂BR(x0)

u(x)dA(x) =
1

ωnRn

∫
BR(x0)

u(x)dV (x).

Proof. For any domain D with C1 boundary, the divergence theorem tells us

0 =

∫
∂D

∂u

∂N
dA =

∫
D

∆udV = 0.

We use this fact to conclude that, for 0 < r < R,

0 =

∫
∂Br(x0)

∂u

∂N
(x)dA(x) = rn−1

∫
Sn−1

∂u

∂r
(x0 + ry)dA(y)

= rn−1 ∂

∂r

∫
Sn−1

u(x0 + ry)dA(y),

and so
∫
Sn−1 u(x0 + ry)dA(y) is a constant function of r. Now integrate the derivative of this

function from r = 0 to r = R and interchange the order of integration to get

0 =

∫ R

0

∂

∂r

(∫
Sn−1

u(x0 + ry)dA(y)

)
dr =

∫
Sn−1

∫ R

0

∂

∂r
u(x0 + ry)drdA(y)

=

∫
Sn−1

u(x0 +Ry)− u(x0)dA(y)

=

∫
Sn−1

u(x0 +Ry)dA(y)− nωnu(x0).

It follows that

u(x0) =
1

nωn

∫
Sn−1

u(x0 +Ry)dA(y) =
1

nωnRn−1

∫
∂BR(x0)

u(x)dA(x).

This last equation is in fact valid for all r ∈ (0, R), so we can integrate it to obtain the solid
mean value theorem:

u(x0) =
1

ωnRn

∫
BR(x0)

u(x)dV (x).

We’ll see later on that a continuous function is harmonic if and only if it satisfies the mean
value property. First, let’s see why the mean value property might be useful.

Theorem 3. Let D ⊂ Rn be a bounded domain with C1 boundary and let u ∈ C2(D) ∩ C0(D̄)
be harmonic. Then

sup
x∈D

u(x) = sup
x∈∂D

u(x), inf
x∈D

u(x) = inf
x∈∂D

u(x).

Moreover, if there is an interior point x0 ∈ D such that either u(x0) = supx∈D u(x) or u(x0) =
infx∈D u(x) then u is constant.

The part of this theorem regarding the supremum of u is called the maximum principle for
harmonic functions, and the part regarding the infimum is called the minimum principle. It
actually holds for solutions to a wide class of elliptic differential equations; we will give a different
proof of this in a later set of notes.
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Proof. We prove the maximum principle. Suppose there is an interior point x0 ∈ D such that
u(x0) = supx∈D u(x) and choose R > 0 small enough so that BR(x0) ⊂ D. Then for 0 < r < R
we have

u(x0) =
1

nωnrn−1

∫
∂Br(x0)

u(x)dA(x)

by the mean value property. On the other hand, the fact that u(x0) is the largest possible value
for u tells us that u(x) = u(x0) for all x ∈ ∂Br(x0). This holds for all r ∈ (0, R), so u is constant
on the ball BR(x0).

Now suppose that there is some x∗ with u(x∗) < u(x0). (Notice we can’t have u(x∗) > u(x0)
by definition.) Join x0 to x∗ with a continuous path γ, say with γ(0) = x0 and γ(1) = x∗.
There is some τ ∈ (0, 1) such that u(γ(t)) < u(x0) for t > τ but u(γ(τ)) = u(x0). However, we
can then draw a small sphere about x∗∗ = γ(τ) , and the average value of u over this sphere
will be strictly less than the value at the center, which contradicts the average value property
of harmonic functions. Therefore, such an x∗ cannot exist, and we conclude that u is constant
over D. The fact that supx∈D u(x) = supx∈∂D u(x) follows, because otherwise u would have an
interior maximum.

The minimum principle follows by applying the maximum principle to −u, which is still
harmonic.

The main application of the maximum principle is the following comparison principle.

Corollary 4. Let u and v be harmonic on the domain D, and suppose u|∂D ≤ v|∂D. Then u ≤ v
on all of the domain D.

Proof. Apply the maximum principle to w = u− v.

We can use the maximum principle to prove uniqueness of harmonic functions with given
boundary values.

Theorem 5. Let D ⊂ Rn be a bounded domain with ∂D ∈ C1, and let f ∈ C0(∂D). If
u, v ∈ C2(D) ∩ C0(D̄) both solve

∆u = φ(x) = ∆v, u|∂D = f = v|∂D

then u(x) = v(x) for all x ∈ D.

Proof. If we apply the maximum principle to w+ = u− v then we see u ≤ v in D. Conversely, if
we apply the maximum principle to w− = v − u then we see u ≥ v in D.

In fact, we can improve this last theorem by giving estimates.

Theorem 6. Let D ⊂ BR(0) ⊂ Rn be a domain in with C1 boundary and let u, v ∈ C2(D) ∩
C0(D̄) satisfy

|∆u−∆v| ≤ ε1, |u|∂D − v|∂D| ≤ ε2.

Then for all x ∈ D we have the estimate

|u(x)− v(x)| ≤ ε1R
2

2n
+ ε2.

Proof. If we apply the maximum principle to

u(x)− v(x)− ε2 −
ε1
2n

(R2 − |x|2)

we get the estimate

u(x) ≤ v(x) + ε2 +
ε1R

2

2n
,
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while if we apply the maximum principle to

v(x)− u(x)− ε2 −
ε1
2n

(R2 − |x|2)

we get

v(x) ≤ u(x) + ε2 +
ε1R

2

2n
.

As another application of the mean value property we prove some interior gradient estimates
for harmonic functions. Let u be harmonic in D, let y ∈ D, and choose R > 0 so that BR(y) ⊂ D.
We can interchange derivatives so see that ∂u

∂xi
is also harmonic for i = 1, 2, . . . , n. Then the mean

value property and the divergence theorem tells us

∇u(y) =
1

ωnRn

∫
BR(y)

u(x)dV (x) =
1

ωnRn

∫
∂BR(y)

u(x)dA(x).

Taking the length of the vectors on both sides of this inequality we have

|∇u(y)| ≤ n

R
sup

x∈∂BR(y)

|u(x)| ⇒ |∇u(y)| ≤ n

dist(y, ∂D)
sup
x∈D
|u(x)|. (4)

The first application of our gradient estimate is Liouville’s theorem. (We’ll strengthen this
theorem later.)

Theorem 7. A bounded, harmonic function defined on all of Rn is constant.

Proof. Let u ∈ C2(Rn) be bounded and harmonic, and choose M > 0 such that |u(x)| ≤ M for
all x. Then, for any y we have

|∇u(y)| ≤ nM

dist(x, y)
.

The theorem follows if we let dist(x, y)→∞.

We can iterate (4) to get estimates for the higher order derivatives of u. To write this out, it is
useful to use multi-index notation. A multi-index α = (α1, α2, . . . , αn) is a list of n non-negative
numbers, and we write |α| = α1 + α2 + · · · + αn. Then we can write the higher order partial
derivatives of u as

∂|α|u

∂xα1
1 ∂xα2

2 · · · ∂x
αn
n

= Dαu.

Theorem 8. Let u be harmonic in D and let D′ ⊂ D̄′ ⊂ D with D̄′ compact. Then

sup
y∈D′

|Dαu(y)| ≤
(
n|α|
d

)|α|
sup
x∈D
|u(x)|, d = dist(D′, ∂D) = inf{dist(x, y) : y ∈ D′, x 6∈ D}, (5)

where α is any multi-index.

We can combine (5) and the Arzela-Ascoli theorem to prove the following convergence theorem.

Theorem 9. A bounded sequence of harmonic functions on a domain D has a subsequence which
converges uniformly on compact subsets.

We will see later that the limit function is also harmonic. This sort of theorem is usually
called a pre-compactness result. It says that the space of harmonic functions is pre-compact,
i.e bounded subsets of the space of harmonic functions are compact in the appropriate topology.

The last theorem we prove in this section is a version of the Harnack inequality. We will prove
more general versions later.
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Theorem 10. Let R > 0 and u ∈ C2(B2R(0))∩C0(B2R(0)) be a non-negative, harmonic function.
Then there is a constant c = c(n) depending only on the dimension n such that

sup
x∈BR(0)

u(x) ≤ c(n) inf
x∈BR(0)

u(x).

Proof. Let x, y ∈ BR(0). We aim to show that u(y) ≤ cu(x), and to that end we pick two
intermediate points w, z to compare. More precisely,

w =
2

3
x+

1

3
y, z =

1

3
x+

2

3
y;

geometrically, w and z are the points 1/3 and 2/3 of the way along the line segment joining x
and y, respectively. Now, Br/3(w) ⊂ Br(x), so by the mean value theorem we have

u(w) =
1

Vol(Br/3(w))

∫
Br/3(w)

u =
3n

Vol(Br(x))

∫
Br/3(w)

u

≤ 3n

Vol(Br(x))

∫
Br(x)

u = 3nu(x)

We use a similar calculation to get u(z) ≤ 3nu(w) and u(y) ≤ 3nu(z), so that in the end we have

u(y) ≤ (3n)
3
u(x) = 33nu(x).

Remark 1. The constant in the proof is clearly not optimal, but in practice this never matters.
All we really care about is the fact that the constant depends only on the dimension.

Exercise: Where in the proof did we use the fact that u ≥ 0?
Harnack’s inequality is very useful, and it says that harmonic functions can’t oscillate too

much.
Exercise: Prove the following strengthening of Harnack’s inequality: if u ∈ C2(BR(0)) is

harmonic, with u ≥ 0 then for any r ∈ (0, R) there is a constant c = c(n, r,R) such that
supx∈Br(0) u(x) ≤ c infx∈Br(0) u(x). (Hint: this is basically the same argument as in the proof of
Harnack’s inequality above, but comparing u at more points.)

In fact, we can use the same technique to prove the following generalized version of the Harnack
inequality for the Laplacian.

Theorem 11. Let D ⊂ Rn and let D′ ⊂ D̄′ ⊂ D, with D̄′ compact, and let u ∈ C2(D) be a
non-negative harmonic function. Then there is a constant C = C(n,D,D′) such that

sup
x∈D′

u(x) ≤ C inf
x∈D′

u(x).

Again, the value of the constant C is unimportant; it is only important that C is independent
of u.

Proof. Let
d1 = dist(D′,Rn\D) = inf{dist(x, y) : x ∈ D′, y 6∈ D}

and let
d2 = diam(D′) = sup

x,y∈D′
(dist(x, y)).

These are both finite, positive numbers because D̄′ ⊂ D is compact. Now choose x, y ∈ D′; as
before, we want to show that u(x) ≤ cu(y) for some constant c which does not depend on u.
Connect x to y with a curve γ, such that

γ(0) = x, γ(1) = y, length(γ) ≤ d2 + 1.
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Notice that for any z ∈ γ the ball Bd1(z) ⊂ D, so we can apply Theorem 10 with 2R = d1.
We complete the proof with a chaining argument, by choosing a sequence of points z0, z1, . . . , zk
along γ, with

z0 = x, zk = y,
d1

2
≤ dist(zj , zj+1) ≤ d1,

and repeatedly applying Theorem 10 to get u(zj) ≤ c1u(zj+1), where c1 depends only on n and

d1. The number k of points we have to choose is bounded above by 2(d2+1)
d1

, which is independent
of u, and so we get

u(x) ≤ c2(d2+1)/d1
1 u(y).

The Greens function and the Poisson integral: In this section we solve the boundary
value problem (2):

∆u = 0, u|∂D = f

for some continuous function f on ∂D. It will be helpful to define the function

Γn : (0,∞)→ R, Γn(r) =

{ 1
2π log(r) n = 2

− 1
n(n−2)ωn

r2−n n ≥ 3.

Exercise: Verify by direction computation that ∆(Γn(|x|)) = 0 on the domain Rn\{0}. It

will be useful to recall the form of ∆ in polar coordinates, which is ∆ = ∂2

∂r2 + n−1
r

∂
∂r + ∆θ, where

∆θ collects all the terms in ∆ involving angular derivatives. In particular, ∆(Γn) = Γ′′n + n−1
r Γ′n

because Γn is radially symmetric.
We’ll also need to recall some integration by parts formulas. The divergence theorem (or

Green’s formula, or the Gauss divergence theorem, or.....) says that∫
D

u∆vdV (x) =

∫
∂D

u
∂v

∂N
dA(x)−

∫
D

〈∇u,∇v〉dV (x).

Taking the difference
∫
D

(u∆v − v∆u)dV we have∫
D

(u∆v − v∆u)dV (x) =

∫
∂D

u
∂v

∂N
− v ∂u

∂N
dA(x).

Theorem 12. If n ≥ 3 and u ∈ C2(D) ∩ C1(D̄) then for y ∈ D we have

u(y) =

∫
D

∆u(x)Γn(|x− y|)dV (x) +

∫
∂D

(
u(x)

∂

∂N
Γn(|x− y|)− Γn(|x− y|) ∂u

∂N
(x)

)
dA(x).

Proof. Let r > 0 be small enough so that Br(y) ⊂ D and apply the second Green’s formula to u
and v = Γn(|x− y|) on the domain D\Br(y). We obtain∫

D\Br(y)

Γn(|x− y|)∆udV (x) =

∫
∂D

Γn(|x− y|) ∂u
∂N
− u ∂

∂N
Γn(|x− y|)dA(x)

−
∫
∂Br(y)

Γn(|x− y|) ∂u
∂N
− u ∂

∂N
Γn(|x− y|)dA(x);

we want to keep the first term of this expression as is, but we need to analyze the second term
as r → 0. First, we realize that Γn(|x− y|) is a radial function on Br(y), so

∂

∂N
Γn(|x− y|) =

d

dr
Γn(r) = Γ′n(r) =

r1−n

nωn
.
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This means ∫
∂Br(y)

u(x)
∂

∂N
Γn(|x− y|) =

1

nωnrn−1

∫
∂Br(y)

u(x)dA(x)→ u(y)

as r → 0, because the latter integral is just the average value of u over the ball Br(y). Finally,
we estimate the remaining term as∣∣∣∣∣

∫
∂Br(y)

Γn(|x− y|) ∂u
∂N

dA

∣∣∣∣∣ ≤ |Γn(r)|nωnrn−1 sup
Br(y)

|∇u|

=
r

n− 2
sup
Br(y)

|∇u| → 0.

When we take the limit as r → 0 we put all these estimates together to read∫
D

Γn(|x− y|)∆udV (x) =

∫
∂D

Γn(|x− y|) ∂u
∂N
− u ∂

∂N
Γn(|x− y|)dA(x) + u(y).

The theorem follows.

Exercise: Check that the theorem also holds for n = 2. (In fact, the proof is almost the
same.)

Notice that if ∆u = 0 then we have a formula for u(y) entirely in terms of the boundary data
of u. We will derive a better integral formula for harmonic functions soon. Also, as a function of
y ∈ ∂D, the function Γn(|x− y|) is analytic, and so we get the following corollary.

Corollary 13. Let D ⊂ Rn be a bounded domain with C1 boundary, and let u ∈ C2(D)∩C1(D̄)
be a harmonic. Then u is analytic on the interior of D.

We’re led at this point to define the Green’s function of the Laplace operator on the domain
D.

Definition 2. Let D ⊂ Rn be a bounded domain with ∂D ∈ C1. For x, y ∈ D we define the
function G(x, y) by G(x, y) = Γn(|x− y|) + hy(x), where hy solves the boundary value problem

∆hy = 0, hy|∂D = − Γn(|x− y|)|∂D .

We list some properties of the Green’s function G.

Proposition 14. If D ⊂ Rn is a bounded domain with C1 boundary then

• For x 6= y the function x 7→ G(x, y) is harmonic.

• For y ∈ D and x ∈ ∂D, we have G(x, y) = 0.

• The Green’s function in symmetric: G(x, y) = G(y, x).

• If u ∈ C2(D) ∩ C0(D̄) then

u(y) =

∫
∂D

u(x)
∂G

∂N
(x, y)dA(x) +

∫
D

G(x, y)∆u(x)dV (x).

The first two of these properties is immediate from the definition of G(x, y), we will prove the
symmetry property later, and the last property follows from Theorem 12.

Proposition 15. The Green’s function on the ball BR(0) is given by

G(x, y) = Γn(|x− y|)− Γn

(∣∣∣∣ R|x|x− |x|R y

∣∣∣∣) .
7



Proof. First, it is easy to check that∣∣∣∣ R|x|x− |x|R y

∣∣∣∣2 = R2 +
|x|2|y|2

R2
− 2〈x, y〉,

and so

lim
x→0

ΓN

(∣∣∣∣ R|x|x− |x|R y

∣∣∣∣) = Γn(R).

Next, notice that

R

|x|
x =

|x|
R
y ⇔ y =

R2

|x|2
x⇒ |y| = R2

|x|
> R⇒ y 6∈ BR(0),

so the function

Γn

(∣∣∣∣ R|x|x− |x|R y

∣∣∣∣)
is actually smooth for x, y ∈ BR(0). Next, for fixed y and x 6= y,

G(x, y)− Γn(|x− y|) = −Γn

(∣∣∣∣ R|x|x− |x|R y

∣∣∣∣)
is a harmonic function of x, so we only need to check that x 7→ G(x, y) has the correct boundary

values. Indeed, if x ∈ ∂BR(0) then |x|R = R
|x| = 1, so that in this case G(x, y) = 0.

Lemma 16. On the ball, G(x, y) = G(y, x).

Proof. We have two terms to evaluate. First, Γn(|x − y|) = Γn(|y − x|) by the properties of the
absolute value function. Next we compute∣∣∣∣ R|x|x− |x|R y

∣∣∣∣2 = R2 +
|x|2|y|2

R2
− 2〈x, y〉 =

∣∣∣∣ R|y|y − |y|R x

∣∣∣∣2 ,
so that

Γn

(∣∣∣∣ R|x|x− |x|R y

∣∣∣∣) = Γn

(∣∣∣∣ R|y|y − |y|R x

∣∣∣∣) .
Lemma 17. On the ball, fix y ∈ BR(0) and take the normal derivative of G(x, y) with respect to
x. The result is

∂G

∂Nx
=
R2 − |y|2

nωnR
|x− y|−n.

Proof. We use the symmetry of the Greens function, which we’ve just proved, so that

∂

∂xi
G(x, y) =

∂

∂xi

(
Γn(|x− y|)− Γn

(∣∣∣∣ R|y|y − |y|R x

∣∣∣∣)) =
1

nωn

 xi − yi
|x− y|n

−

(
R
|y|yi −

|y|
R x0

)(
−|y|
R

)
|x− y|n

 .

Now we evaluate

∂G

∂Nx
= 〈∇G, x

|x|
〉 =

1

nωn|x− y|n
· 1

|x|

(
|x|2 − 〈x, y〉+ 〈x, y〉 − |x|

2|y|2

R2

)
=

R2 − |y|2

nωn|x− y|n
.
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As a corollary of the lemma immediately above and the last point in Proposition 14, we have
a version of the Poisson integral formula.

Theorem 18. If f ∈ C1(∂D) then the solution to (2) on BR(0), which is

∆u = 0, u|∂BR(0) = f,

is given by

u(y) =
R2 − |y|2

nωnR

∫
∂BR(0)

f(x)dA(x)

|x− y|n
.

We will prove later that in fact we only need the boundary data f to be continuous, in order
that the Poisson integral formula holds.

It will be convenient to define the Poisson integral kernel

K(x, y) =
R2 − |y|2

nωnR
· |x− y|−n.

We can rewrite this expression as follows. First rescale the Poisson integral so that we integrate
over a unit sphere instead of a sphere of radius R. To do this we write x = Rη and y = rξ, and
let θ be the angle between η and ξ, so that the Poisson integral becomes

u(y) = u(rξ) =
Rn−2(R2 − r2)

nωn

∫
Sn−1

f(Rη)

(R2 + r2 − 2Rr cos θ)n/2
dA(η)

=

∫
Sn−1

f(Rη)K̂(Rη, rξ)dA(η),

where

K̂(x, y) = K̂(Rη, rξ) =
Rn−2(R2 − r2)

nωn(R2 + r2 − 2Rr cos θ)n/2
.

This normalized Poisson kernel has the advantage of being homogeneous of degree zero: for any
ρ > 0 we have K̂(ρRη, ρrξ) = K̂(Rη, rξ). It is also symmetric: K̂(Rη, rξ) = K̂(Rξ, rη). We use
these two properties to prove that harmonic functions satisfy the unique continuation property.

Theorem 19. Let u, v be harmonic in the domain D and suppose that u ≡ v on a nonempty
open set. Then u ≡ v on all of D.

There are a number of different proofs of this fact; the proof you’d see in a typical complex
analysis course relies on the power series representation of a harmonic function. This proof is due
to W. Gustin, and was published in the American Journal of Mathematics (Vol. 70, No. 1, pg.
212–220).

To prove the unique continuation we need some technical results. Let u1 be harmonic in the
domain D1 and u2 harmonic in the domain D2. If p1 ∈ Br1(p1) ⊂ D1 and p2 ∈ Br2(p2) ⊂ D2 we
define the bilinear form

Ψ(r1, r2) =

∫
Sn−1

u1(p1 + r1ξ)u2(p2 + r2ξ)dA(η).

Lemma 20. Let u1, u2, p1, p2, r1, r2 be as above, and suppose that ρ1 and ρ2 satisfy p1 ∈ Bρ1(p1) ⊂
D1 and p2 ∈ Bρ2(p2) ⊂ D2 and r1r2 = ρ1ρ2. Then Ψ(r1, r2) = Ψ(ρ1, ρ2).

Proof. We can translate D1 by −p1 and D2 by −p2, so without loss of generality we can suppose
that both p1 and p2 are the origin. We will also assume without loss of generality that 0 < r1 < ρ1,
which implies 0 < ρ2 < r2. Define k = r1

ρ2
= ρ1

r2
and observe that

K̂(ρ1η, r1ξ) = K̂(kr2η, kρ2ξ) = K̂(r2η, ρ2ξ) = K̂(r2ξ, ρ2η).

9



Now use the Poisson integral formula to write

u1(r1ξ) =

∫
Sn−1

K̂(ρ1η, r1ξ)u1(ρ1η)dA(η), u2(ρ2η) =

∫
Sn−1

K̂(r2ξ, ρ2η)u2(r2ξ)dA(ξ)

so that

Ψ(r1, r2) =

∫
Sn−1

u1(r1ξ)u2(r2ξ)dA(ξ) =

∫
Sn−1

(∫
Sn−1

K̂(ρ1η, r1ξ)u1(ρ1η)dA(η)

)
u2(r2ξ)dA(ξ)

=

∫
Sn−1

(∫
Sn−1

K̂(r2ξ, ρ2η)u2(r2ξ)dA(ξ)

)
u1(ρ1ηdA(η)

=

∫
Sn−1

u2(ρ2η)u1(ρ1η)dA(η) = Ψ(ρ1, ρ2).

As an immediate consequence of this lemma, we find the following proposition.

Proposition 21. Let u be harmonic in D, let p ∈ D and suppose 0 ≤ a < b < c with ac = b2

and Bc(p) ⊂ D. Then∫
Sn−1

u(p+ aξ)u(p+ cξ)dA(ξ) =

∫
Sn−1

u2(p+ bξ)dA(ξ). (6)

Proof. Apply the lemma with u1 = u2 = u, p1 = p2 = p, r1 = a, r2 = c and ρ1 = ρ2 = b.

Exercise: With the notation as in the proposition above, prove that if u vanishes on Ba(p)
then u also vanishes on Bb(p).

Exercise: Use the fact you’ve just proven and a chaining argument to prove the unique
continuation property of harmonic functions: if u and v are harmonic functions on a domain D
and u ≡ v on a nonempty open set then u ≡ v on all of D.

Exercise: Show that if u satisfies (6) then it is harmonic. (Hint: take a = 0 and show u
satisfies the mean value property on small enough spheres.)

In fact, we can wring more information out of our integral representations of functions.

Theorem 22. If f ∈ C1(∂BR(0)) and φ ∈ C0(BR(0)) then the solution to (2)

∆u = φ, u|∂BR(0) = f

is given by

u(y) =

∫
BR(0)

φ(x)

(
Γn(|x− y|)− Γn

(∣∣∣∣ R|x|x− |x|R y

∣∣∣∣)) dV (x) +
R2 − |y|2

nωnR

∫
∂BR(0)

f(x)dA(x)

|x− y|n
.

Proof. We break this up into two separate problems: write u = u0 + u1, where u0 is harmonic
with u0|∂BR(0) = f , and u1 satisfies ∆u1 = φ with u1|∂BR(0) = 0. By Theorem 18 we have

u0 =
R2 − |y|2

nωnR

∫
∂BR(0)

f(x)dA(x)

|x− y|n
,

and by the last point in Proposition 14

u1 =

∫
BR(0)

φ(x)G(x, y)dV (x) =

∫
BR(0)

φ(x)

(
Γn(|x− y|)− Γn

(∣∣∣∣ R|x|x− |x|R y

∣∣∣∣)) dV (x).
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Regularity and convergence: In this section we sharpen some of the regularity statements
of our theorems above. For instance, we will prove that we only need f ∈ C0(∂BR(0)), rather
than f ∈ C1(∂BR(0)) in the Poisson integral formula of Theorem 18. As a basic application, we
will prove some convergence theorems for families of harmonic functions.

Proposition 23. Let f ∈ C0(∂BR(0)) and let

u(y) =

{
R2−|y|2
nωnR

∫
∂BR(0)

f(x)dA(x)
|x−y|n |y| < R

f(y) |y| = R.

Then u ∈ C2(BR(0)) ∩ C0(B̄R(0)) and u is harmonic inside BR(0).

Proof. For y ∈ BR(0), we can differentiate underneath the integral sign to conclude u ∈ C2(BR(0)).
Similarly, we can take the Laplacian of u with respect to y to get

∆yu = ∆y

(∫
∂BR(0)

f(x)
∂G

∂N
(x, y)dA(x)

)
=

∫
∂BR(0)

f(x)

〈
∇x∆yG(x, y),

∂

∂r

〉
dA(x) = 0.

It remains to verify that u ∈ C0(B̄R(0)). First, observe that by Theorem 18 we have that for
all y ∈ B̄R(0)

1 =
R2 − |y|2

nωnR

∫
∂BR(0)

dA(x)

|x− y|n
.

Now let M = supx∈∂BR(0) |f(x)| (this is finite because f is a continuous function on a compact
set) and for ε > 0 choose δ > 0 so that |f(x) − f(x0)| < ε for |x − x0| < δ. Now let y ∈ BR(0)
with |y−x0| < δ

2 . Notice that y is inside the ball BR(0), so u(y) is given by the Poisson integral,
and that

u(x0) = u(x0) · 1 = u(x0)

∫
∂BR(0)

K(x, y)dA(x).

Then

|u(y)− u(x0)| ≤
∫
∂BR(0)

K(x, y)|f(x)− f(x0)|dA(x)

≤
∫
|x−x0|<δ

K(x, y)|f(x)− f(x0)|dA(x) +

∫
|x−x0|>δ

K(x, y)|f(x)− f(x0)|dA(x)

≤ ε+
2M(R2 − |y|2)Rn−2

(δ/2)n
.

We conclude that if |y−x0| is sufficiently small then |u(y)−u(x0)| < 2ε, and so u ∈ C0(∂BR(0)).

A consequence of the Poisson integral formula is another way the characterize harmonic func-
tions.

Corollary 24. Let D ⊂ Rn be a domain, and let u ∈ C0(D̄). Then u is harmonic in D if and
only if u satisfies the mean value property: for every ball BR(x0) with B̄R(x0) ⊂ D we have

u(x0) =
1

nωnRn−1

∫
∂BR(x0)

u(x)dA(x).

Proof. We’ve already shown that if u is harmonic then it satisfies the mean value property.
Conversely, suppose u is continuous and satisfies the mean value property in D, let x0 ∈ D and
choose R > 0 so that B̄R(x0) ⊂ D. On this ball, let v be given by the Poisson integral, that is

v(x) =

{
R2−|x−x0|2

nωnR

∫
∂BR(x0)

u(y)dA(y)
|y−x−x0|n |x− x0| < R

u(x) |x− x0| = R.

11



By Proposition 23, v is harmonic. Moreover, evaluating at x = x0 we have

v(x0) =
1

nωnRn−1

∫
∂BR(x0)

u(x)dA(x) = u(x0),

because u satisfies the mean value property. Thus, for any x0 ∈ D, we have that u(x0) = v(x0),
where v is harmonic, and so we conclude that u must be harmonic.

Corollary 25. Let {un} be a sequence of harmonic functions in a domain D with un → u
uniformly. Then u is also harmonic.

Proof. The limit u is continuous and satisfies the mean value property, so it is harmonic.

As an application of this last result, we can prove Harnack’s convergence theorem.

Theorem 26. Let {un} be a monotone nondecreasing sequence of harmonic functions (that is,
un − um ≥ 0 for n ≥ m) in a domain D, and suppose there is some y ∈ D such that {un(y)}
converges. Then {un} converges uniformly to a harmonic function on any subdomain D′ ⊂ D,
when D̄′ is compact.

Proof. Choose ε > 0. Because {un(y)} converges, there is N such that if n ≥ m ≥ N we have

0 ≤ un(y)− um(y) < ε.

By the generalized Harnack inequality (Theorem 11), there is a constant C = C(n,D,D′) such
that

sup
x∈D′

|un(x)− um(x)| = sup
x∈D′

(un(x)− um(x)) ≤ C inf
x∈D′

(un(x)− um(x))

≤ C(un(y)− um(y)) < Cε.

Thus {un} converges uniformly on D′ and, by the previous theorem, the limit function is also
harmonic.

One of the best features of the Laplace operator is that it is smoothing: for instance, if we start
by knowing that u is continuous and satisfies enought of the properties of a harmonic function,
then it is in fact C∞ and harmonic. To prove these regularity results, we will need some tools.

Exercise: Show that the function

χ(t) =

{
e−1/t t > 0
0 t ≤ 0

is smooth (that is it has derivatives to all orders), and evaluate the kth derivative of χ at t = 0.
(Hint: evaluate the first derivative using L’Hospital’s rule, and then apply induction to compute
the higher order derivatives.)

Exercise: Show that the function ρ(x) = cnχ(1−|x|2), where we choose cn so that
∫
Rn ρ(x)dV (x) =

1, is smooth, ρ(0) = cn > 0, and spt(ρn) ⊂ B1(0). Why is ρ called a ”bump function?”
Exercise: For r > 0 let ρr(x) = r−nρ(x/r), and show that for all r > 0 we have

∫
Rn ρr(x)dV (x) =

1. What is the support fo ρr? If x 6= 0, what is limr→0 ρr(x)? What is limr→0 ρr(0)?
For small choices of r > 0, the function ρr is called an approximate identity, or a mollifier.

This is because, for any u ∈ L1(Rn), convolution with ρr produces a smooth function

ur(x) = ρr ∗ u(x) =

∫
Rn

ρr(x− y)u(y)dV (y).

which is very close to u, both in the L1(Rn) norm and pointwise. In fact, when we take the
limit as r → 0 we obtain something which is not exactly a function (it’s a distribution), but is

12



commonly called the Dirac delta function δ0, which you may have seen in a physics class. You
probably didn’t construct the Dirca delta function in your physics class, but instead you listed
some of its properties (such as

∫
Rn f(x)δ0(x)dV (x) = f(0) for all continuous functions f). Now

we see that it’s not too hard to properly construct this ”function.” In fact, there are a number
of other choices we can make for the starting function ρ, such as cne

− 1
2 |x|

2

, and still end up with
the same thing in the limit.

Next we need to define the notion of a weak derivative.

Definition 3. Let u ∈ L1(Rn). If it exists, the weak derivative Diu in the ith direction is a
function Diu ∈ L1(Rn) such that∫

Rn

DiuφdV (x) = −
∫
Rn

u
∂φ

∂xi
dV (x), ∀φ ∈ C1(Rn), spt(φ) compact.

Notice that if u ∈ C1(Rn) then (after integrating by parts) we see Diu = ∂u
∂xi

. Moreover, the
weak derivative is unique (if it exists) by basic properties of the Lebesque integral.

Definition 4. We say a function u ∈ L1(Rn) is weakly harmonic if for all compactly supported
φ ∈ C2(Rn) we have

∫
Rn u∆φdV (x) = 0.

Notice that if u ∈ C2(Rn) is in fact harmonic, we can integrate by parts twice to get, for all
φ ∈ C2(Rn) with compact support,

0 =

∫
Rn

φ∆udV (x) =

∫
Rn

u∆φdV (x),

so that any C2 harmonic function is also weakly harmonic.

Lemma 27. The weak Laplacian of Γn(|x|) is the Dirac delta function δ0. In other words, if
φ ∈ C2(Rn) with spt(φ) compact, then we have∫

Rn

Γn(|x|)∆φ(x)dV (x) = φ(0)

Proof. Choose R > 0 so that spt(φ) ⊂ BR(0) and choose r > 0 sufficiently small. Then by (12)
we have ∫

Rn\Br(0)

Γn(|x|)∆φ(x)dV (x) =

∫
∂Br(0)

(
Γn(|x|)∂φ

∂r
− φ(x)

∂

∂r
Γn(|x|)

)
dA(x).

Letting r → 0 we have∫
Rn\Br(0)

Γn(|x|)∆φ(x)dV (x)→
∫
Rn

Γn(|x|)∆φ(x)dV (x).

On the other hand, we have∣∣∣∣∣
∫
∂Br(0)

Γn(|x|)∂φ
∂r
dA(x)

∣∣∣∣∣ ≤ rn−1

(n− 2)rn−2
sup |∇φ| → 0,

and

−
∫
∂Br(0)

φ(x)
∂

∂r
Γn(|x|)dA(x) =

1

nωnrn−1

∫
∂Br(0)

φ(x)dA(x)→ φ(0).

Corollary 28. For a general bounded domain D ⊂ Rn, with C1 boundary, the Green’s function
G is symmetric: G(x, y) = G(y, x).
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Proof.

G(x, y)−G(y, x) =

∫
D

(G(x, z)δ0(y − z)−G(y, z)δ0(x− z))dV (z)

=

∫
D

(G(x, z)∆zΓn(|y − z|)−G(y, z)∆zΓn(|x− z|))dV (z)

=

∫
∂D

(G(x, z)
∂

∂N
Γn(|y − z|)−G(y, z)

∂

∂N
Γn(|x− z|))dA(z)

= 0.

Here we have integrated by parts, and used the fact that G is harmonic inside D and 0 on its
boundary.

We will now prove Weyl’s lemma, which says that any weakly harmonic function is in fact
harmonic.

Theorem 29. If D ⊂ Rn is a domain with a C1 boundary and u ∈ L1(D) satisfies
∫
D
u∆φdV (x) =

0 for all compactly supported function φ ∈ C2(D) then u is in fact smooth and harmonic.

Proof. Recall that

ur(x) = ρr ∗ u(x) = r−n
∫
D

ρ

(
|x− y|
r

)
u(y)dV (y)

is a smooth, compactly supported function (at least for r > 0 sufficiently small). We begin by
showing that for all f, g ∈ C2(D) we have

∆y

∫
D

f(x− y)g(x)dV (x) = ∆y

∫
D

f(z)g(y − z)DV (z) (7)

=

∫
D

f(z)∆yg(y − z)dV (z)

=

∫
D

f(y − x)∆g(x)dV (x).

We apply (7) to ur and φ to get∫
D

ur(x)∆φ(x)dV (x) =
1

rn

∫
D

(∫
D

ρ

(
|x− y|
r

)
u(y)∆φ(x)dV (y)

)
dV (x) (8)

=

∫
D

u(y)

(∫
D

1

rn
ρ

(
|x− y|
r

)
∆φ(x)dV (x)

)
dV (y)

=

∫
D

u(y)∆y

(
r−n

∫
D

ρ

(
|x− y|
r

)
φ(x)dV (x)

)
dV (y)

=

∫
D

u(y)∆yφr(y)dV (y).

We can now check by that ur is harmonic by choosing φ ∈ C2(D) with spt(φ) ⊂ D. The
function u is weakly harmonic, so, using (8)

0 =

∫
D

u(y)∆yφr(y)dV (y) =

∫
D

ur(y)∆φ(y)dV (y).

However, ur ∈ C∞(D) so we can integrate by parts twice to get∫
D

φ(y)∆ur(y)dV (y) = 0.
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This is true for all compactly supported φ, so we must have ∆ur ≡ 0.
Next we look at the family {ur}r>0. We’d like to show this family is bounded and equicon-

tinuous, so that we can apply the Arzela-Ascoli theorem to extract a convergent subsequence as
r → 0. Now, because ur = ρr ∗ u and ‖ρ‖L1(Rn) = 1 we have

‖ur‖L1(D) ≤ ‖ρr‖L1(D)‖u‖L1(D) ≤ ‖u‖L1(D).

However, ur is harmonic, so for any R > 0 we have

|ur(y)| = 1

ωnRn

∣∣∣∣∣
∫
BR(y)

ur(x)dV (x)

∣∣∣∣∣ ≤ ‖ur‖L1(D)

ωnRn
≤
‖u‖L1(D)

ωnRn
,

which shows {ur} is uniformly bounded. To show {ur} is equicontinuous, it suffices (by the
Fundamental Theorem of Calculus) to find a uniform bound on |∇ur|. If we do have |∇ur| ≤ L
independent of r, then we can integrate this out to obtain |ur(x)− ur(y)| ≤ L|x− y| where L is
independent of r, which shows {ur} is equicontinuous. Because ur is harmonic, for every Ω with
Ω̄ a compact subset of D we have

sup
Ω
|∇ur| ≤ c1 sup

D
|ur| ≤ c2‖u‖L1(D).

Now that we have {ur} a bounded, equicontinuous family of functions, we extract a sub-
sequence uri such that uri → v ∈ C∞ uniformly on every compact subset Ω ⊂ D. However,
uri = ρri ∗ u→ u in L1(D), and L1(D) is Hausdorff, so we must have u = v. Thus u ∈ C∞(D),
and we can integrate by parts properly to see

0 =

∫
D

u∆φdV =

∫
D

φ∆udV

for all compactly supported φ ∈ C2(D), which implies ∆u = 0.

Our final theorem in this section is a removable singularities theorem. Recall that we say
f = o(g) near x0 if

lim
x→x0

(
|f(x)|
|g(x)|

)
= 0,

and that f = O(g) near x0 if there is a constant M > 0 and an open set U containing x0 such
that |f(x)| < M |g(x)| for all x ∈ U .

Theorem 30. Suppose u ∈ C2(BR(0)\{0}) and u is harmonic on this domain. Furthermore,
suppose that

u(x) =

{
o(log(|x|)) n = 2
o(|x|2−n) n ≥ 3.

Then u extends to a harmonic function on BR(0); in other words, there if a harmonic function
v ∈ C2(BR(0)) such that v(x) = u(x) for x 6= 0.

Proof. On the ball BR/2(0) we define the function

v(y) =
(R/2)2 − |y|2

nωn(R/2)

∫
∂BR/2(0)

u(x)dA(x)

|x− y|n
.

By Theorem 18 we have v ∈ C∞(B̄R/2(0)) and ∆v = 0. Now choose ε > 0 and let

w(x) =

 u(x)− v(x) + ε log
(

2|x|
R

)
n = 2

u(x)− v(x)− ε
(
|x|2−n − R2−n

22−n

)
n ≥ 3.
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We know that for any δ ∈ (0, R/2) we have ∆w = 0 on BR/2(0)\Bδ(0), because w is the sum of
harmonic functions. Also, w|∂BR/2(0) = 0.

Now we need to examine the behavior of w on ∂Bδ(0). If δ > 0 is sufficently small, then the
term −ε|x|2−n (or ε log |x|, for n = 2) dominates everything else, and this term is negative. Thus,
by the maximum principle,

w ≤ 0 on ∂BR/2(0) ∪ ∂Bδ(0)⇒ w ≤ 0 on BR/2(0)\Bδ(0),

which we can rearrange to read

u(x) ≤ v(x) + ε

(
|x|2−n −

(
R

2

)2−n
)
, ∀x ∈ BR/2(0)\Bδ(0)

for n ≥ 3. (The corresponding statement holds with a logarithm replacing the power of |x| for
n = 2.) Now, for any fixed δ we can let ε → 0 to get u(x) ≤ v(x) for all x ∈ BR/2(0)\Bδ(0) for
all δ > 0 sufficiently small, which in turn tells us

u(x) ≤ v(x) ∀x ∈ BR/2(0)\{0}.

We can swap u and v and use the exact same argument on the function

w̃ =

 v(x)− u(x) + ε log
(

2|x|
R

)
n = 2

v(x)− u(x)− ε
(
|x|2−n − R2−n

22−n

)
n ≥ 3.

We conclude
u(x) ≥ v(x) ∀x ∈ BR/2(0)\{0},

and so we must have u(x) = v(x) for all x ∈ BR/2(0)\{0}.

Subharmonic and superharmonic functions: It will turn out to be useful to consider
functions which satisfy a differential inequality involving the Laplace operator. As an application,
we will use Perron’s method to prove that one can solve the Dirichlet problem (2) on a very large
class of domains.

Definition 5. Let D ⊂ Rn be a domain with ∂D ∈ C1. A function u ∈ C2(D) ∩ C0(D̄) is
subharmonic if ∆u ≥ 0, and u is superharmonic if ∆u ≤ 0.

This definition might seem counter-intuitive: a subharmonic function satisfies that ∆u is
larger than what you get for a harmonic function. We will see in a moment that this is actually
a very sensible definition.

Theorem 31. If u ∈ C2(D) is subharmonic in D, and x0 ∈ D, and R > 0 small enough so that
BR(x0) ⊂ D then u satisfies a sub-mean value property:

u(x0) ≤ 1

nωnRn−1

∫
∂BR(x0)

u(x)dA(x).

Proof. We can still use the divergence theorem, which in this case tells us that for 0 < r < R

0 ≤
∫
Br(x0)

∆udV (x) =

∫
∂Br(x0)

∂u

∂N
(x)dA(x) = rn−1

∫
Sn−1

∂u

∂r
(x0 + ry)dA(y)

= rn−1 ∂

∂r

∫
Sn−1

u(x0 + y)dA(y),
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and so
∫
Sn−1 u(x0 + ry)dA(y) is an increasing function of r. Now integrate the derivative of this

function from r = 0 to r = R and interchange the order of integration to get

0 ≤
∫ R

0

∂

∂r

(∫
Sn−1

u(x0 + ry)dA(y)

)
dr =

∫
Sn−1

∫ R

0

∂

∂r
u(x0 + ry)drdA(y)

=

∫
Sn−1

u(x0 +Ry)− u(x0)dA(y)

=

∫
Sn−1

u(x0 +Ry)dA(y)− nωnu(x0).

It follows that

u(x0) ≤ 1

nωn

∫
Sn−1

u(x0 + ry)dA(y) =
1

nωnRn−1

∫
∂BR(x0)

u(x)dA(x).

This last equation is in fact valid for all r ∈ (0, R), so we can integrate it to obtain the solid
mean value theorem:

u(x0) ≤ 1

ωnRn

∫
BR(x0)

u(x)dV (x).

Theorem 32. If u ∈ C2(D) ∩ C0(D̄) is subharmonic then supx∈D u(x) = supx∈∂D u(x). More-
over, if there is an interior point x0 ∈ D such that u(x0) = supx∈D u(x) then u is constant.

Remark 2. Notice that this theorem does not say that the minimum of a subharmonic function
will occur on the boundary of D; usually the minimum occurs at an interior point.

Exercise: Prove the maximum principle for subharmonic functions, mimicking the proof for
harmonic functions.

We’ll give a different, independent proof of the maximum principle in the case that D is
bounded now, because sometimes it’s useful to know two different ways to prove something.

Proof. We first assume the easy case, that ∆u > 0. Suppose that u achieves its maximum at
an interior point x0 ∈ D. Then, by the second derivative test, we have ∆u(x0) ≤ 0, which
contradicts the fact that ∆u > 0.

In the case we only have ∆u ≥ 0 we choose ε > 0 and define uε(x) = u(x) + ε|x|2. Then

∆uε = ∆u+ 2nε > 0,

so uε cannot have an interior maximum by the version of the maximum principle we’ve just
proved. Also, because D is bounded, we have D ⊂ BR(0) for some R > 0. Thus

sup
x∈D

u(x) ≤ sup
x∈D

uε(x) = sup
x∈∂D

uε(x) ≤ sup
x∈∂D

u(x) + εR2.

Letting ε→ 0 we have supx∈D u(x) = supx∈∂D u(x).
Finally, if u has an interior maximum we violate the sub-mean value property of subharmonic

functions.

Corollary 33. If u ∈ C2(D)∩C0(D̄) is superharmonic then infx∈D u(x) = infx∈∂D u(x). More-
over, if there is an interior point x0 ∈ D such that u(x0) = infx∈D u(x) then u is constant.

Proof. Apply the maximum principle for subharmonic functions to −u.

Corollary 34. Suppose u, v ∈ C2(D) ∩ C0(D) satisfy

∆u ≥ 0, ∆v = 0, u|∂D ≤ v|∂D .

Then u ≤ v on all of D.
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Proof. Apply the maximum principle for subharmonic functions to w = u− v.

This last corollary explains why we call a function u with ∆u ≥ 0 subharmonic. Indeed, the
subharmonic functions in D are all the functions which are less than the harmonic function in
D with the same boundary values. In other words, if we fix the boundary values, the graph of a
subharmonic function will always lie below the graph of a harmonic function.

We next prove a version of the Hadamard three circles theorem and use it to generalize
Liouville’s theorem to subharmonic functions.

Theorem 35. Let u be subharmonic in a domain D ⊂ R2 and suppose B̄r2(0)\Br1(0) ⊂ D for
some 0 < r1 < r2. Then the maximum modulus function

M(r) = sup
|x|=r

u(x)

satisfies

M(r) ≤ M(r1) log(r2/r) +M(r2) log(r/r1)

log(r2/r1)
. (9)

Moreover, equality occurs if and only if u is the function on the right hand side of (9).

The content of this theorem is the statement that M(r) is a convex function of log(r).

Proof. We can check that the function

φ(r) =
M(r1) log(r2/r) +M(r2) log(r2/r)

log(r2/r1)

satisfies
∆φ = 0, φ(r1) = M(r1), φ(r2) = M(r2)

in the annulus Br2(0)\Br1(0). Then the function v(x) = u(x)− φ(|x|) satisfies

∆v ≥ 0 on Br2(0)\Br1(0), v|∂(Br2 (0)\Br1 (0)) ≤ 0.

The theorem now follows from the maximum principle.

Theorem 36. Let u be subharmonic on R2\{0} and suppose there is a constant M such that
u(x) ≤M for all x. Then u is constant.

Proof. For a fixed r1 and r, let r2 →∞ in (9):

M(r) ≤M(r1) lim
r2→∞

(
log(r2)− log(r)

log(r2)− log(r1)

)
+ lim
r2→∞

(
M(r2)

log(r)− log(r1)

log(r2)− log(r1)

)
= M(r1),

so that M(r) ≤M(r1) for r > r1. (Here we have used M(r2) ≤M to take a limit.) On the other
hand, we can let r1 → 0 to get M(r) ≤M(r2) for r < r2. These inequalities hold for any r1 < r2,
so we conclude M(r) is constant. The maximum principle them implies u is constant.

There is a version of Hadamard’s theorem for higher dimensions.

Theorem 37. Let u be subharmonic in D ⊂ Rn, with B̄r2(0)\Br1(0) ⊂ D, and (as above) let

M(r) = sup
|x|=r

u(x).

Then

M(r) ≤ M(r1)(r2−n − r2−n
2 ) +M(r2)(r2−n

1 − r2−n)

r2−n
1 − r2−n

2

, (10)

with equality if and only if u(x) = a+ b|x|2−n for some a and b.
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Exercise: Mimic the proof of Theorem 35 to prove Theorem 37.
Example: Theorem 37 does not imply a Liouville theorem for subharmonic functions in

higher dimensions. In fact, the function

u(x) =

{
− 1

8 (15− 10|x|2 + 3|x|4), |x| ≤ 1
− 1
|x| , |x| > 1

is a bounded, subharmonic functions which is non-constant.
Recalling that harmonic functions are exactly the continuous functions which satisfy the mean

value property, we make the following definition.

Definition 6. A continuous function v ∈ C0(D) is subharmonic if it satisfies the sub-mean value
property: for all p ∈ D and r > 0 with Br(p) ⊂ D we have

v(p) ≤ 1

ωnrn

∫
Br(p)

v(x)dV (x).

Exercise: Show that these two definitions of subharmonic functions agree for functions v ∈
C2(D).

Exercise: Show that in fact it suffices to check the sub-mean-value property on small balls.
We close this set of notes with Perron’s method of solving boundary value problems by finding

barriers. This method is not constructive; it tells you that a solution to the problem exists, but
doesn’t actually hand you that solution. To do this we need some tools.

Definition 7. Let D ⊂ Rn be a domain and let y ∈ ∂D. A barrier at y is a function Qy which
is subharmonic on D, and satisfies

Qy(y) = 0, Qy(x) < 0 for all x ∈ ∂D\{y}.

Observe that, as a consequence of the maximum principle, Qy < 0 inside D.
Our main theorem is the following.

Theorem 38. Let D ⊂ Rn be a bounded domain. The classical boundary value problem

∆u = 0 on D, u|∂D = f

is solvable for all f ∈ C0(∂D) if and only if D has a barrier Qy for each of its boundary points
y ∈ ∂D. Moreover, in this case the solution is unique.

Before we prove this theorem, it might be useful to see which domains have barriers for each
of their boundary points.

Proposition 39. A domain D ⊂ Rn has a barrier at y ∈ ∂D if it satisfies an exterior sphere
condition at y: there is some ball B = BR(z) such that B̄ ∩ D̄ = {y}.

Proof. Let B = BR(y) be an exterior ball contacting ∂D at y as above. Then

Qy(x) =

{
log(|x− y|/R) n = 2

R2−n − |x− y|2−n n ≥ 3

is a barrier at y.

Exercise: Show that if ∂D is C2 then D has a barrier at each of its boundary points.
We finally prove Theorem 38.
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Proof. To start, we suppose that one can solve the boundary value problem for all f ∈ C0(∂D).
Choose y ∈ ∂D and let u be the solution to the boundary value problem

∆u = 0, u|∂D = −dist(x, y).

Then u is a barrier for D at y.
To prove the converse, we suppose that D admits a barrier at each of its boundary points,

and choose f ∈ C0(∂D). Define the family of functions

σf = {v ∈ C0(D̄) : ∆u ≥ 0, v|∂D ≤ f}.

Notice that f is a continuous function on the compact set ∂D, so there are the extrema

m = inf
x∈∂D

f(x), M = sup
x∈∂D

f(x)

are both finite and achieved. By the maximum principle, we have v ≤M for every v ∈ σf .
We will show that the function

u(x) = sup{v(x) : v ∈ σf} (11)

is the solution we’re looking for. The uniqueness of the solution follows from the maximum
principle. It is a little involved to prove that u solves the boundary value problem, so we break
the proof up into a series of steps. It will also be convenient to define the average value of a
function: if p ∈ D with Br(p) ⊂ D we let

avgv(p, r) =
1

ωnrn

∫
Br(p)

v(x)dV (x).

Step 1: If v, ṽ ∈ σf then so is w = max(v, ṽ). Indeed, w(x) = max(v(x), ṽ(x)) is a continuous
function and, since v|∂D ≤ f and ṽ|∂D ≤ f , we also have w|∂D ≤ f . If p ∈ D and r > 0 is small
enough so that Br(p) ⊂ D then

w(p) = max(v(p), ṽ(p)) ≤ max(avgv(p, r), avgṽ(p, r)) ≤ avgw(p, r),

which implies w is subharmonic.
Step 2: In this step we define what is called the harmonic lift of a subharmonic function.

Let v ∈ σf a choose Br(p) ⊂ D. Now let up,r solve the boundary value problem

∆up,r = 0 in Br(p), up,r|∂Br(p) = v

and define

vp,r(x) =

{
up,r(x) x ∈ Br(p)
v(x) x ∈ D\Br(p).

We want to show vp,r ∈ σf . Indeed, vp,r ∈ C0(D) because the function values of up,r and v
agree on ∂Br(p), and vp,r|∂D = v|∂D ≤ f . Also observe that vp,r ≥ v by the maximum principle.
(We’ll use this fact later). Finally, we show vp,r is subharmonic by showing for all q ∈ D there is
a ρ0 such that if ρ < ρ0 then vp,r(q) ≤ avgvp,r (q, ρ). If q ∈ Br(p) we can choose ρ0 = r−dist(q, p).
In this case, because vp,r is harmonic in Br(p), which contains Bρ0(q), we have

vp,r(q) = avgvp,r (q, ρ).

If q 6∈ Br(p) we choose
ρ0 = min(dist(q, ∂D),dist(q,Bp(r)));

in this ball we have vp,r = v, and the estimate follows because v is subharmonic.
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Step 3: Let B̄r(p) ⊂ D and choose a countable set X ⊂ Br(p). Then there is a harmonic
function h ∈ C2(Br(p)) such that u(x) = h(x) for all x ∈ X. We construct h by taking a diagonal
limit as follows. Enumerate X = {x1, x2, . . . , } and fix ρ so that r < ρ < dist(p, ∂D). Now, for
each i choose a sequence vji ∈ σf such that

lim
j→∞

vji (xi) = u(xi)

and define the function
vj(x) = max(m, vj1, v

j
2, . . . , v

j
j ).

Observe that (by Step 1) vj ∈ σf for each j, and (by the maximum principle) m ≤ vj ≤ M . By
Step 2, the harmonic function uj = (vj)p,r is in σf , and we still have the bounds m ≤ uj ≤ M
by the maximum principle. Thus we have a bounded sequence of harmonic functions, and we
can extract a subsequence (which we still denote as uj) which converges uniformly to some h.
However, h is the uniform limit of a sequence of harmonic functions, so it is harmonic. To evaluate
h(xi) we use (11) to see that, for j ≥ i,

vji (xi) ≤ v
j(xi) ≤ (vj)p,r(xi) ≤ u(xi).

We then conclude
h(xi) = lim

j→∞
(vj)p,r(xi) = lim

j→∞
vji (xi) = u(xi).

Step 4: The function u defined by (11) is continuous. Choose p ∈ D and r > 0 with
r < dist(p, ∂D). Then we let X = {p, x2, x3, . . . , } where xi → p. Apply Step 3 with this
choice of X to see (by the continuity of the harmonic function h)

u(p) = h(p) = lim
i→∞

h(xi) = lim
i→∞

u(xi).

Step 5: The function u is harmonic. This time we apply Step 3 with X being a countable
dense subset of Br(p), where B̄r(p) ⊂ D. After applying this step we get a harmonic function

ĥ on Br(p) such that ĥ = u on X. However, both u and ĥ are continuous, so u ≡ ĥ on Br(p).
Thus u is harmonic on Br(p). Since this holds for all balls Br(p) compactly contained in D our
function u must be harmonic.

Step 6: We next prove that if y ∈ ∂D then lim infx→y u(x) ≥ f(y). Choose positive numbers
ε and K, and let

v(x) = f(y)− ε+KQy(x).

This is a continuous, subharmonic function. Now choose δ = δ(ε) so that

f(x) > f(y)− ε on ∂D ∩Bδ(y),

which implies v(x) ≤ f(x) on ∂D ∩Bδ(y) (because Qy ≤ 0). Moreover, Qy is a negative function
on the compact set ∂D\Bδ(y), so we can find K = K(ε) large enough so that v(x) ≤ g(x) on
∂D\Bδ(y). Then we have v|∂D ≤ f , and so v ∈ σf . By definition, u ≥ v, so

g(y)− ε = lim
x→y

v(x) ≤ lim inf
x→y

u(x).

Step 7: We prove that for each y ∈ ∂D we have f(y) ≥ lim supx→y u(x). In fact, we can
recycle the proof of Step 6 with some minus signs. Define

ũ(x) = sup
−w∈σ−f

(−w(x));

this is another harmonic function in D, and by Step 6 we have

lim inf
x→y

ũ(x) ≥ −f(y).
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If v ∈ σf and −w ∈ σ−f then

(v − w)|∂D ≤ 0⇒ v − w ≤ 0 on D.

Take the supremum of v − w to see that u+ ũ ≤ 0, so

lim sup
x→y

u(x) ≤ lim sup
x→y

(−ũ(x)) = − lim inf
x→y

ũ(x) ≤ f(y).

These last two steps combine to show that u = f on ∂D, and so u is a continuous, weakly
harmonic function with the correct boundary values. Weyl’s lemma then tells us that u is in fact
C∞ and harmonic, completing the proof.

Remark 3. • This method of constructing solutions by taking harmonic lifts of subharmonic
functions is called the Perron method.

• Notice that we only used the barriers to force the solution u to have the prescribed boundary
values. Without barriers we can still attempt the Perron method, but we’d have no control
over the boundary values.

• This is really the starting point to look at viscosity solutions of elliptic PDE.

• Also notice that the key step in our proof was an application of the Cantor diagonalization
trick, very similar to our proof of the Arzela-Ascoli theorem.
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