
Partial Differential Equations Notes III

In these notes we prove some versions of the maximum principle for general elliptic operators.
After that, we discuss some applications of the maximum principle, particularly using the moving
planes argument of Alexandrov [A] (see also [GNN]).

Definitions: It will be useful to recall the following definition. A second order linear differ-
ential operator L has the form

L(u) = aij(x)uij + bk(x)uk + c(x)u, (1)

where subscripts denote partial derivatives and we sum over repeated indices. The operator L is
elliptic at a point x if the coefficient matrix [aij(x)] is positive definite, and L is uniformly elliptic
on a domain Ω ⊂ Rn if there is Λ > 1 such that

1

Λ
|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2 (2)

for all x ∈ Ω.
Let F = F (x, u,Du,D2u) be a (nonlinear) differential operator which is C1 in all its argu-

ments, and let w be a C2 function. The linearization of F about w is the linear differential
operator defined by

Lw(f) =
d

dε

∣∣∣∣
ε=0

F (w + εf) = aij(x)fij + bk(x)fk + c(x)f, (3)

and we say F is uniformly elliptic if there is a number Λ > 1 , which is independent of x and w,
such that (2) holds, where aij are the coefficients of the linearization Lw.

It is worthwhile to consider some examples. The mean curvature operator

H(u) = div

(
∇u√

1 + |∇u|2

)

is elliptic, but not uniformly elliptic. You lose control of Λ is |∇u| → ∞, which is precisely
what happens when u(x) =

√
R2 − |x|2 and |x| → R−. On the other hand, if |∇u| is uniformly

bounded then the nonlinear operator H(u) is uniformly elliptic about u. The Monge-Ampere
operator

M(u) = detD2u

is elliptic about w if and only if w is convex, that is, if and only if D2w is positive definite.
Basic Maximum Principles: We start with the weak maximum principle.

Theorem 1. Let L be a uniformly ellptic, linear operator of the form (1) with c ≤ 0, and let
u ∈ C2(Ω) ∩ C0(Ω̄) satisfy

L(u) ≥ 0, u|∂Ω ≤ 0.

Then, unless u ≡ 0, for all x ∈ Ω we have u(x) < 0.

Proof. We suppose the theorem is not true, which means u has a non-negative maximum at some
p ∈ Ω, and derive a contradiction. This is easy if L(u) > 0, because

u(p) ≥ 0, ∇u(p) = 0, D2u
∣∣
p

(e, e) ≤ 0, (4)

where e is any unit vector. Now let λ1, . . . , λn be the eigenvalues of aij(p), which are all positive,
and let ei be the eigenvector associated to λi. Then

L(u)(p) = aij(p)uij(p) + bk(p)uk(p) + c(p)u(p) =

n∑
i=1

λi D
2u
∣∣
p

(ei, ei) + c(p)u(p) ≤ 0, (5)
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which contradicts L(u) > 0.
For the general case, we build a barrier function as follows. Recall that [aij(p)] is positive

definite, so (after a rotation) we can assume a11(p) > 0. We define

w(x) = u(x) + εz(x) = u(x) + ε(eα(x1−p1) − 1),

where α and ε are constants we choose later. Observe that

L(z)(p) = eα(x1−p1)(α2a11(p) + αb1(p)) + c(p)(eα(x1−p1) − 1),

and we can choose α > 0 sufficiently large to that L(z)(p) > 0. By continuity we also have
L(z) > 0 is a small neighborhood of p. Because p is a local maximum for u, we can find a nearby
q ∈ Ω such that u(q) < u(p), and now choose a positive

0 < ε <
u(p)− u(q)

z(q)
.

Then
w(q) = u(q) + εz(q) < u(p), w(p) = u(p),

and so w has a positive interior maximum and satisfies L(w) > 0, which contradicts (5) as applied
to w.

Taking differences, we immediately obtain the following comparison theorem:

Corollary 2. Let L be a uniformly ellptic, linear operator of the form (1) with c ≤ 0, and let
u, v ∈ C2(Ω) ∩ C0(Ω̄) satisfy

L(u) ≥ L(v), u|∂Ω ≤ v|∂Ω .

Then, unless u ≡ v, for all interior points x ∈ Ω we have u(x) < v(x).

Proof. Apply Theorem 1 to w = u− v.

We have a condition on the normal derivative of u at ∂Ω as well.

Theorem 3. Let L be uniformly elliptic, and let u ∈ C2(Ω) ∩ C0(Ω̄) satisfy

L(u) ≥ 0, u ≤ 0, u|∂Ω = 0.

Then, unless u ≡ 0, for each p ∈ ∂Ω we have

∂u

∂N
> 0,

where N is the unit outward normal vector for ∂Ω.

Observe that we do not place a condition on the sign of c here.

Proof. We first prove this result for c ≡ 0. Fix p ∈ ∂Ω, and choose r1 > 0 small enough so
that the ball Br1(x̃) tangent to ∂Ω at p lies completely inside Ω. Let B1 be this ball and let
B2 = Br1/2(p). Now, for some constants α and ε we define

w = u+ εz = u+ ε(e−α|x−x̃|
2

− e−αr
2
1 ).

Observe that
z|B1

> 0, z|∂B1
= 0, z < 0 otherwise.
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By Theorem 1, we may assume u < 0 inside Ω, so in particular u < 0 on B̄1\{p}. Now pick ε > 0
small enough so that w = u+ εz ≤ 0 on (∂B2) ∩B1, and (as before) pick α > 0 large enough so
that L(w) > 0. Then, applying Theorem 1 to w on B1 ∩B2, we see w attains its maximum at p,
so

0 ≤ ∂w

∂N
(p) =

∂u

∂N
(p) + ε

∂z

∂N
(p).

A quick computation shows

∂z

∂N
(p) = −2αe−αr

2
1

n∑
i=1

Nixi < 0,

which implies ∂u
∂N (p) > 0.

Now we use the result above and a barrier to prove the theorem in the general case. Let
v = e−βx1u, where β > 0 is a constant we choose later, and as before we can take a11(p) > 0.
Then

0 ≤ L(u) = eβx1L′(v) + vL(eβx1),

where L′ is a uniformly elliptic, linear operator with no zero order term. Rearranging the above
inequality we get

0 ≤ L′(v) + v(a11β
2 + b1β + c) = L′(v) + c′v.

Choose β > 0 large enough so that L′(v) > 0, at least near p. By what we have just proved,

∂v

∂N
(p) > 0⇒ ∂u

∂N
(p) = eβp1

∂v

∂N
(p) > 0.

Finally, we prove the strong maximum principle.

Theorem 4. Let F = F (x, u,Du,D2u) be a uniformly elliptic nonlinear differential operator
which is C1 in all its arguments, and non-increasing in u:

u < v ⇒ F (x, u,Du,D2u) ≥ F (x, v,Dv,D2v).

Let u, v,∈ C2(Ω) ∩ C0(Ω̄) satisfy

u ≥ v, F (x,Du,D2u) = F (x,Dv,D2v).

If there is a point p ∈ Ω̄ such that

u(p) = v(p), Du(p) = Dv(p)

then u ≡ v.

Proof. As before, we assume u(p) = v(p), Du(p) = Dv(p), and that there are points where u > v,
and derive a contradiction. There are two possible cases: either u(q) > v(q) for all interior points
q ∈ Ω, or there are some interior points p with u(p) = v(p). In the first case, let BR be a ball
of radius R such that p ∈ ∂BR and B̄R\{p} ⊂ Ω, and then let A = BR\BR̃ where R̃ < R and
BR̃ has the same center as BR. Also let Γ0 = ∂BR̃ and Γ1 = ∂BR. In the second case we can
also choose an annulus A with the same form, provided we make a smart choice of p. We choose
p ∈ ∂{u(x) = v(x)} and observe that {u(x) 6= v(x)} is a nonempty open set in Ω, so there is
a q near p such that u(q) > v(q). Now let q be the center of our annulus, R = dist(p, q), such
that R < dist(q, ∂Ω), and construct A as above. In either case, we now have an annulus A where
u ≥ v on A, u(p) = v(p) and Du(p) = Dv(p) for some p ∈ Γ1 and u− v ≥ ε on Γ0 for some ε > 0.
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For 0 ≤ t ≤ 1 define

χ(t) = F (x, tDu+ (1− t)Dv, tD2u+ (1− t)D2v).

Then by the mean value theorem

0 = F (x,Du,D2u)− F (x,Dv,D2v) = χ(1)− χ(0) = χ′(t0) = L(w)

for some t0 ∈ (0, 1), where w = u−v and L is the linearization of F , linearized about t0u+(1−t0)v.
By the hypothesis on F , the linear operator L is a uniformly elliptic operator of the form (1)
with c ≤ 0. (This is where we use the fact that F is monotone in the u variable.) In addition to
L(w) = 0, we also have

w|A ≥ 0, w|Γ0
≥ ε, w(p) = 0.

We complete the proof by finding a barrier z with

L(z) > 0, z|Γ0
= ε, z|Γ1

= 0,
∂z

∂r
< 0. (6)

Indeed, once we construct z we use Corollary 2 on A to get w ≥ z and so

∂w

∂r
(p) ≤ ∂z

∂r
< 0,

which contradicts Du(p) = Dv(p). It is straightforward to check that, for M large enough, the
function

z(x) = f(|x|2/2), f(s) =
ε(e−Ms − e−MR2/2)

e−MR̃2/2 − e−MR2/2

satisfies all the conditions in (6).
The following corollary is a special case of the strong maximum principle.

Corollary 5. Let F = F (x,Du,D2u) be a uniformly elliptic, nonlinear differential operator
which is homogeneous, i.e. F (x, 0, . . . , 0) = 0 for all x. If u ∈ C2(Ω) ∩ C0(Ω̄) satisfies

u ≤ 0, F (x,Du,D2u) = 0

then either u ≡ 0 or u < 0 on the interior of Ω.

Moving planes and constant mean curvature surfaces: We include here Alexandrov’s
proof [A] that the only compact, embedded, constant mean curvature surface in R3 without
boundary is the round sphere (see also [Ho]). Let Σ ⊂ R3 be a compact, embedded, constant
mean curvature surface without boundary, and let Ω be the 3-dimensional region it bounds. The
strategy is to use moving planes to show that Σ has a plane of symmetry perpendicular to any
unit vector γ ∈ S2. Once we do this, we still need to show that all these symmetry planes pass
through a common point, which is easy. If x0 is the center of mass of Σ (i.e. the average of all
the position vectors of Σ), then each symmetry plane must contain x0. After translation, we can
assume x0 = 0, and so Σ is invariant under all reflections through planes passing through the
origin, which implies Σ is invariant under all rotations fixing 0. Thus Σ must be a round sphere.

Now fix some direction γ ∈ S2. For λ ∈ R we let

Tλ = {〈x, γ〉 = λ}, Σ(λ) = {x ∈ Σ : 〈x, γ〉 > λ},

and we let Σ′(λ) be the reflection of Σ(λ) through Tλ. Also define

λ0 = sup{λ : Σ(λ) 6= ∅}, λ1 = inf{λ : Σ′(λ̃) ⊂ Ω, λ < λ̃ < λ0}.
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Then Σ′(λ1) must contact Σ to first order at some point p ∈ Σ\Σ(λ1). Near this point p, we can
write Σ as the graph of u and Σ′(λ1) as the graph of v such that

u ≥ v, div

(
∇u√

1 + |∇u|2

)
= 1 = div

(
∇v√

1 + |∇v|2

)
.

Here u and v are functions defined on a small neighborhood of p in the the common tangent plane
to Σ and Σ′(λ1). Moreover, because Σ and Σ′(λ1) contact to first order we have

u(p) = v(p), ∇u(p) = ∇v(p).

The strong maximum principle tells us u ≡ v in a small neighborhood of p. However, soltutions
to the equation H(u) = 1 are analytic, and so Σ′(λ1) = Σ\Σ(λ1), which means Tλ1

is a plane of
symmetry for Σ. This completes the proof of Alexandrov’s theorem.

The proof above yields the following more general theorem.

Theorem 6. Let Σ ⊂ Rn be a compact, embedded hypersurface without boundary, and let κ1 ≤
κ2 ≤ · · · ≤ κn be its principle curvatures. If

F (κ1, . . . , κn) = a,

where a ∈ R and F is a homogeneous, C1 function, then Σ is a round sphere.

Moving planes and nonlinear equation on bounded domains: We present here some
classical results of Gidas, Ni, and Nirenberg about positive solutions to nonlinear partial differ-
ential equations. Our model equation is

∆u+ f(u) = 0, u > 0, (7)

where f is a C1 function. We consider this equation in either a bounded domain Ω with smooth
boundary, or in the whole space of Rn.

Theorem 7. Let Ω = BR = {|x| < R} and let u ∈ C2(Ω̄) be a positive solution to (7) on Ω with
the boundary condition u|∂Ω = 0. Then u(x) = u(r) and for 0 < r < R we have ∂u

∂r < 0.

Theorem 8. Let Ω = BR\BR̃ and let u ∈ C2(Ω̄) be a positive solution to (7) with the boundary
condition u||x|=R = 0. Then

R+ R̃

2
≤ |x| < R ⇒ ∂u

∂r
< 0.

Notice that in this last theorem we do not place a boundary condition on the inner sphere
|x| = R̃.

We use Alexandrov’s technique of moving planes. For a fixed direction γ ∈ Sn−1 and λ ∈ R
we take

Tλ = {〈x, γ〉 = λ}, Σ(λ) = {x ∈ Ω : 〈x, γ〉 > λ},
and we let Σ′(λ) be the reflection of Σ(λ) across Tλ. We also define

λ0 = sup{λ : Σ(λ) 6= ∅}, λ2 = inf{λ̃ : Σ′(λ) ⊂ Ω, λ̃ < λ < λ0},

and we let λ1 be the time of first contact of ∂(Σ′(λ)) with ∂Ω. This first contact occurs either
at a point p ∈ ∂Ω where ∂(Σ′(λ1)) is tangent to ∂Ω, or at a point p ∈ Tλ1

∩ ∂Ω where Tλ1
⊥ ∂Ω.

We call Σ(λ1) the maximal cap, and Σ(λ2) the optimal cap. Observe that λ2 ≤ λ1 < λ0, and it
is possible to have λ2 < λ1. For a point x ∈ Σ(λ), we denote the reflection of x across Tλ by xλ.

For the following technical results we take γ = e1, so that

Σ(λ) = {x ∈ Ω : x1 > λ}, (x1, x
′)λ = (2λ− x1, x

′), Σ′(λ) = {x : xλ ∈ Σ(λ)}.

We take u ∈ C2(Ω̄) with u > 0 in Ω and

∆u+ b1u1 + f(u) = 0, u|∂Ω∩{x1>λ} = 0. (8)
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Proposition 9. Let u satisfy (8)and assume b1 ≥ 0 on Σ(λ1)∪Σ′(λ1). Then for any λ ∈ (λ1, λ0)
we have, for x ∈ Σ(λ),

u1(x) < 0, u(x) < u(xλ), (9)

and therefore u1 < 0 in Σ(λ1). Moreover, if u1(p) = 0 for some p ∈ Ω ∩ Tλ1
then u(x) = u(xλ1),

and
Ω = Σ(λ1) ∪ Σ′(λ1) ∪ (Tλ1

∩ Ω),

and b1 ≡ 0.

We first use this technical proposition to prove Theorems 7 and 8. In the case of a ball, the
proposition tells us u1 < 0 in {x : |x| < R, x1 > 0}, and, by continuity, u1(x) ≤ 0 for x1 = 0.
However, we can also apply the same argument with γ = −e1, and so u1(x) = 0 for x1 = 0. The
equality case of Proposition 9 tells us u(x1, x

′) = u(−x1, x
′). Now rotate to obtain this symmetry

for any choice of unit vector e.
In the case of the annulus, Proposition 9 shows u1 < 0 in the maximal cap {x : |x| < R, x1 >

(R+ R̃)/2}. Moreover, if u1(x) = 0 for some x1 = (R+ R̃)/2 then Ω has to be symmetric about
the plane x1 = (R+ R̃)/2, which is it not. Thus u1 < 0 on {x : |x| < R, x1 ≥ (R+ R̃)/2}. Again,
we can apply this argument for any unit vector e to obtain Theorem 8.

To prove Proposition 9 we need the following lemmas.

Lemma 10. Let x0 ∈ ∂Ω with N1(x0) > 0, and let u ∈ C2(Ω ∩ {|x − x0| < ε}) for some ε > 0
with u > 0 in Ω and

∆u+ b1(x))u1 + f(u) = 0, u|∂Ω∩{|x−x0|<ε} = 0.

Then there exists δ > 0 such that u1 < 0 on Ω ∩ {|x− x0| < δ}.

Proof. We have ∂u
∂N ≤ 0, so (after possibly decreasing ε) we can assume u1 ≤ 0 on S = ∂Ω∩{|x−

x0| < ε}. If the lemma were not true, there would exist a sequence of points xj → x0 such that
u1(xj) ≥ 0. Let lj be the segment in the x1 direction joining xj to ∂Ω. Along this segment, u1

changes sign, going from positive to negative, so there is a point yj ∈ lj where u1(yj) = 0 and
u11(yj) ≤ 0. Taking the limit as j →∞ we have

u1(x0) = 0, u11(x0) ≤ 0. (10)

Suppose f(0) ≥ 0. Then

∆u+ b1u1 + f(u)− f(0) ≤ 0⇒ ∆u+ b1u1c1u = 0

for some function c1. Then by Theorem 3 we have ∂u
∂N (x0) < 0, which implies u1(x0) < 0,

which contradicts (10). On the other hand, if f(u) < 0 the ∆u(x0) = −f(0) > 0. Then
uij(x0) = −f(0)Ni(x0)Nj(x0), so in particular u11(x0) > 0, which again contradicts (10).

Lemma 11. Suppose that for some λ in [λ1, λ0) we have

u1 ≤ 0, u(x) ≤ u(xλ), u(x) 6≡ u(xλ)

in the cap Σ(λ). Then u(x) < u(xλ) and u1 < 0 on Tλ ∩ Ω.

Proof. In Σ′(λ), consider the function v(x) = u(xλ). In the reflected cap, we have

∆v − b1(xλ)v1 + f(v) = 0, v1 ≥ 0.

Taking differences, in Σ′(λ) we obtain

∆(v − u) + b1(x)(v1 − u1) + f(v)− f(u) = (b1(xλ) + b1(x))v1 ≥ 0,
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where we have used that b1 and v1 are both non-negative. If w = v − u in Σ′(λ), then we have

∆w + b1w + cw ≥ 0

for some function c. However, on Tλ we have xλ = x so w = 0, and then Theorem 1 implies
w = 0 on Σ′(λ). Thus u(x) > u(xλ) for x ∈ Σ′(λ), and so (reflecting across Tλ) for x ∈ Σ we
have u(x) < u(xλ). Also, Theorem 3 implies and w1 = −2u1 > 0 on Tλ.

Finally we prove Proposition 9.

Proof. Lemma 10 says we can assume (9) holds for λ0 − δ < λ < λ0 for some small, positive δ.
Let

µ = inf{λ̃ : (9) holds for λ̃ < λ < λ0} ≥ λ1.

We want to show that µ = λ1. By continuity, for x ∈ Σ(µ) we have

u(x) ≤ u(xµ), u1 < 0.

Now suppose µ > λ1 and take x0 ∈ ∂(Σ(µ))\Tµ. Then xµ0 ∈ Ω so 0 = u(x0) < u(xµ), so
u(x) 6≡ u(xµ) and Lemma 11 implies u(x) < u(xµ) in Σ(µ) and u1 < 0 on Tµ ∩Ω. By continuity,
there is some ε > 0 such that u1 < 0 in Ω ∩ {x1 > µ− ε}.

By our construction of µ, there is a sequence λj → µ− and xj ∈ Σ(λj) such that u(xj) ≥
u(xλ

j

j ). A subsequence of {xj} converges to x̄ ∈ Σ̄(µ) and xλ
j

j → x̄µ. Because (9) holds in Σ(µ),
we must have x̄ ∈ ∂Σ(µ). However, because µ > λ1, if x̄ ∈ ∂Σ(µ)\Tµ then u(x̄µ) > 0 = u(x̄),
which we just showed can’t happen. Thus x̄ ∈ Tµ ∩ Ω and so, for large j, the segement joining

xj to x
λj

j is contained in Ω. On this segment, u increases moving in the positive x1 direction, so
each segment contains a point yj such that u1(yj) ≥ 0. Taking a limit we see u1(x̄) ≥ 0 for some
x̄ ∈ Tµ, which contradicts u1 < 0 in Ω ∩ {x1 > µ− ε}. We conclude that µ = λ1.

In the case of equality, suppose we have u1(p) = 0 for some p ∈ Tλ1
∩ Ω. Then Lemma 11

tells us u(x) = u(xλ1) in Σ(λ1). Next, for any x ∈ ∂(Σ(λ1))\Tλ1
, we have u(x) = 0 = u(xλ1),

and so xλ1 ∈ ∂Ω, which implies Ω is symmetric. Finally, suppose b(x) > 0 for some x ∈ Ω. Then,
comparing u(x) to u(xλ1) and using (8) we have b1(x)u1(x) = b1(xλ1)u1(xλ1). However, one side
of this last equation is positive while the other side is negative, which is impossible.
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