
Partial Differential Equations Notes I
by

Jesse Ratzkin

In these notes we will survey some basic results in the theory of partial differential equations
(PDE), concentrating on elliptic equations, particularly the Laplace operator. We begin with a
brief introduction to the terminology.

Some basic definitions: Let’s fix a domain D ⊂ Rn in Euclidean space, and suppose that
the boundary of D, written ∂D, is at least of class C1. (Recall that, by definition, a domain is
an open, connected set in Rn.)

Definition 1. For k ≥ 1, let u ∈ Ck(D). An order k partial differential operator defined in D,
acting on the function u, has the form F (x, u,Du,D2u, . . . ,Dku), where Du is the gradient of u,
D2u is the Hessian matrix of u, and so on, and F is a function of all these variables.

We’ll concentrate on second order differential operators, which have the form F (x, u,Du,D2u).
It’s worthwhile to consider some examples.

• The most important differential operator is the Laplace operator,

∆u = div(gradu) =
∂2u

∂x2
1

+
∂2u

∂x2
2

+ · · ·+ ∂2u

∂x2
n

.

The Laplace operator is linear and elliptic, and in fact the model of all such operators.

• The mean curvature operator is

H(u) = div

(
∇u√

1 + |∇u|2

)
=

∆u(1 + |∇u|2)− |∇u|2

(1 + |∇u|2)3/2
.

This operator is nonlinear (so that H(u+ v) 6= H(u) +H(v)) but it is elliptic.

• The Monge-Ampere operator is

M(u) = det(D2u).

This is also nonlinear, and it is only elliptic when linearized about a convex function.

It’s useful to write a second-order differential operator as F = F (x, u, p, r) where x ∈ D,
u ∈ R, p ∈ Rn, and r is a symmetric n× n matrix. Here p is supposed to represent the gradient
∇u and r is supposed to represent the Hessian matrix D2u. We can usually write a differential
equation in the form

F (x, u, p, r) = φ(x)

for some continuous function φ.

Definition 2. A (classical) solution to the differential equation F (x, u, p, r) = φ is a function
u ∈ C2(D) such that for all x ∈ D we have F (x, u(x),∇u(x), D2u(x)) = φ(x).

Again, it’s worthwhile to have some examples. We leave it to the reader to check that

• For any vector v ∈ Rn and b ∈ R, the linear function l(x) = 〈v, x〉 + b is a solution to
∆(l) = 0. For x 6= 0 and n = 2, then ∆(ln(|x|)) = 0 on R2\{0}, and if n ≥ 3 then
∆(|x|2−n) = 0 on Rn\{0}.

• For any positive number R, the function u(x) =
√
R2 − |x|2 is a solution to

H(u) =
1

R
.
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• The function u(x) = 1
2 |x|

2 = 1
2 (x2

1 + x2
2 + · · ·+ x2

n) is a solution to

M(u) = 1.

In this course we will consider three fundamental questions for the differential equation
F (x, u, p, r) = φ(x):

1. Existence: Under what circumstances does a solution exist? This is not an idle question. For
instance, one can’t always solveM(u) = 1 with prescribed boundary data on a non-convex
domain.

2. Uniqueness: If a solution does exist, is it unique?

3. Estimates: How big can a solution be? How much can it oscillate? If F (x, u,Du,D2u) = φ,
can one estimate either the supremum of u or the oscillation of u in terms of φ?

Also, these questions are not of a purely theoretical nature. You may have seen some PDEs
in physics, mathematical models, and/or applications. In this situation, you may have taken
some of your data and plugged it into a numerical PDE solver or some other computational tool,
and taken the answer this tool spits out as gospel. However, if the PDE doesn’t have a unique
solution, how do you know that the computational tool found the solution you’re looking for? If
a small change in the right had side φ can produce a large change in a solution u to the PDE
F (x, u, p, r) = φ, how much faith can you put in the answer your computational tool gives you?

Linear and nonlinear operators: The simplest sort of second order differential operator
is a linear operator.

Definition 3. A second order, linear, differential operator has the form

L(x, u, p, r) =

n∑
i,j=1

aij(x)
∂2u

∂xi∂xj
+

n∑
k=1

bk(x)
∂u

∂xk
+ c(x)u(x).

The function aij , bk, c are called the coefficients of L and we adopt the convention that aij = aji.

Observe that L : C2(D)→ C0(D) is a linear operator: if u, v ∈ C2(D) and α, β ∈ R then

L(αu+ βv) = αL(u) + βL(v).

The nonlinearities in a nonlinear differential operator can occur in several different severities.
A semi-linear differential operator has the form

L(x, u, p, r) + f(u),

where L is linear. For instance, here are some semi-linear operators listed below:

∆u+ u2, ∆u+ u(1− u2), ∆u+ eu.

A quasilinear differential operator is at least linear in the second derivative terms, so it has the
form Q(x, u, p, r), where Q is linear in the r variables. For instance, the mean curvature operator

H(u) = div

(
∇u√

1 + |∇u|2

)
,

which we saw above, is quasilinear. A differential operator which is not even quasilinear is called
fully nonlinear. The Monge-Ampere operator M(u) = det(D2u) is fully nonlinear.

You can always linearize a nonlinear differential operator about a particular function.
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Definition 4. Let F (x, u, p, r) be a second order differential operator, and choose v ∈ C2(D).
The linearization of F about v is the second-order, linear, differential operator

Lv(u) =
d

dt

∣∣∣∣
t=0

F (x, v + tu,∇v + t∇u,D2v + tD2u).

This is a little bit like computing the derivative of a nonlinear function at a point. In the
same way that the derivative gives the slope of the line of best fit for this nonlinear function, the
linearization Lv of F at v gives the linear operator which, at least close to v, comes closest to the
nonlinear operator F .

Exercise: If L(u) =
∑
aij(x) ∂2u

∂xi∂xj
+
∑
k bk(x) ∂u∂xk

+ c(x)u(x) is a linear, homogeneous,

differential operator, prove that it is its own linearization.
Exercise: If F (x, u, p, r) is a second order differential operator, show that the linearization

of F about the function v has the form

Lv(u) =
∑
ij

aij(x)
∂2u

∂xi∂xj
+
∑
k

bk(x)
∂u

∂xk
+ c(x)u(x)

where

aij =
∂F

∂rij

∣∣∣∣
v

, bk =
∂F

∂pk

∣∣∣∣
v

, c =
∂F

∂u

∣∣∣∣
v

.

Exercise: Verify that the linearization of the mean curvature operator H about v is

Lv(u) =
d

dt

∣∣∣∣
t=0

H(v + tu) =
∆u(1 + |∇v|2)− (1 + ∆v)〈∇u,∇v〉

(1 + |∇v|2)3/2
.

Types of second order differential operators: Whether or not one can solve F (x, u, p, r) =
φ depends a lot on the type of differential operator F . This is easiest to see with linear operators.

The story begins with second order differential operators on functions of two variables. It’s
useful to recall that a conic section in the variables (x, y) is given by the equation

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0.

This zero-set is an ellipse, a parabola, or a hyperbola, depending on the sign of the discriminant
δ = B2− 4AC. We have a hyperbola if δ = B2− 4AC > 0, a parabola if δ = B2− 4AC = 0, and
an ellipse if δ = B2 − 4AC < 0.

Proposition 1. Let

L(u) = A
∂2u

∂x2
+B

∂2u

∂x∂y
+ C

∂2u

∂y2

be a second order, linear differential operator in two variables with constant coefficients and no
first- or zero-order terms, and let δ = B2 − 4AC.

• If δ > 0 then there is a linear change of variables (η, ξ) = T (x, y) such that in the new

variables L(u) = ∂2u
∂η∂ξ , and so the solutions to L(u) = 0 are u(η, ξ) = p(η) + q(ξ).

• If δ = 0 then there is a linear change of variables (η, ξ) = T (x, y) such that in the new

variables L(u) = ∂2u
∂η2 , and so the solutions to L(u) = 0 are u(η, ξ) = p(ξ) + ηq(ξ).

• If δ < 0 there is a linear change of variables (η, ξ) = T (x, y) such that in the new variables

±L(u) = ∂2u
∂η2 + ∂2u

∂ξ2 .

We can characterize these constant coefficient operators as hyperbolic (if δ > 0), parabolic (if
δ = 0) or elliptic (if δ < 0).
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Proof. Let

A =

[
A B

2
B
2 C

]
be the matrix formed by the coefficients of L. If L is hyperbolic, then the eigenvalues of A have
opposite signs, and so there exists an orthogonal change of variables[

η
ξ

]
= T

[
x
y

]
so that

Ā = TAT t =

[
0 B̄

2
B̄
2 0

]
.

In fact, the columns of T are nothing more than the eigenvectors of A. In these new variables L
has the form

L(u) = B̄
∂2u

∂ξ∂η
,

and we can rescale both η and ξ by 2
B̄

to give L the form we claim.

Next we write out the solutions to the equation ∂2u
∂ξ ∂η = 0. We first fix η0 and allow ξ to

vary. Then u(η0, ξ) satisfies ∂
∂ξ (u(η0, ξ)) = 0, and so u(η0, ξ) = p(η0). Now for each value of ξ we

can integrate to get u(η, ξ) = p(η) + q(ξ).
The proofs for the parabolic and elliptic cases are almost exactly the same, and are left to the

reader.

If D ⊂ R2 and we consider

L(u) = A(x, y)
∂2u

∂x2
+B(x, y)

∂2u

∂x∂y
+ C(x, y)

∂2u

∂y2
,

a general second-order, linear differential operator with no first- or zero-order term. At each
point (x0, y0) ∈ D, this operator will be either hyperbolic, parabolic, or elliptic, depending on
the sign of the discriminant δ(x, y) = B2(x, y) − 4A(x, y)C(x, y). If δ(x, y) maintains one sign
throughout the region D, then we say L is hyperbolic if δ > 0, parabolic if δ = 0, and elliptic if
δ < 0. In general, we do have lower order terms, but the second order part of L plays a stronger
part in determining the behavior of solutions to the equation L(u) = 0, so that we can again
characterize the differential operators as hyperbolic, parabolic, or elliptic, depending on the sign
of the discriminant δ.

The picture is a little more complicated in higher dimensions, and there are more types of
differential operators which can occur. However, the types which are the best understood are still
the hyperbolic, parabolic, and elliptic types. As before, we have a domain D ⊂ Rn, and we write
a general point in D as x = (x1, x2, . . . , xn) ∈ D. We write

L(u) = L2(u) + L1(u) + L0(u)

where

L2(u) =
∑
ij

aij(x)
∂2u

∂xi∂xj
, L1(u) =

∑
k

bk(x)
∂u

∂xk
, L0(u) = c(x)u.

To simplify the analysis a little, we start with the coefficients aij , bk and c all being constants. If
ξ = T (x) is a linear change of variables, then we have the change of variables

∂u

∂ξk
=
∑
l

Tkl
∂u

delxl
,

∂2u

∂ξi∂ξj
=
∑
m,p

TmiTpj
∂2u

∂xm∂xp
,
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where Tmp is the entry in the mth row, pth column of the n × n matrix representing T . With
respect to these new coordinates, we can write the operators L1, L2 as

L2(u) =
∑
ij

āij(ξ)
∂2u

∂ξi∂ξj
, L1(u) =

∑
k

b̄k(ξ)
∂u

∂ξk
,

where the new coeffients are [āij ] = T [aij ]T
t and b̄ = T (b).

The discussion above motivates the following definition.

Definition 5. The linear differential operator L(u) =
∑
ij aij(x) ∂2u

∂xi∂xj
+
∑
k bk(x) ∂u∂xk

+ c(x)u is

elliptic if for every x ∈ D the matrix [aij(x)] is positive definite. It is uniformly elliptic if there
is a Λ > 0 such that for all x ∈ D and for all ξ ∈ Rn\{0} we have

1

Λ
|ξ|2 ≤ aij(x)ξiξj ≤ |ξ|2Λ.

If F (x, u, p, r) is a second order differential operator and v ∈ C2(D) then it is elliptic at v if the
linearized operator Lv is elliptic. If Lv is elliptic for every v ∈ C2 we say F is elliptic, and if one
can find Λ > 0 such that the above estimate holds for all linearizations Lv we say F is uniformly
elliptic.

Proposition 2. Let L be a second order, linear differential operator of the form

L(u) =
∑
ij

aij(x)
∂2u

∂xi∂xj
,

where the coefficients aij ∈ C2(D). Moreover, suppose L is elliptic. Then, at every point x0 ∈ D,
there is a linear change of variables ξ = T (x) such that near x0 we have

L(u) =

n∑
i=1

āii
∂2u

∂ξ2
i

+ L1(u),

where L1 =
∑n
k=1 bk(ξ) ∂u∂ξk with bk(ξ0) = 0 if ξ0 = T (x0).

Effectively, this proposition says that an elliptic operator behaves locally like the Laplace
operator. Thus, if we understand solutions to the equation ∆u = 0 we can transfer most of that
understanding to solutions of the equation L(u) = 0, whenever L is uniformly elliptic. We’ll see
many nice properties of the Laplace operator in the next set of notes.

Proof. Let A be the n × n matrix with entries aij(x0). The fact that L is elliptic means A is
positive definite, and so there is a linear change of variables T (in fact, it’s an orthogonal change
of variables) so that

TAT t = Ā =


ā11 0 · · · · · ·
0 ā22 0 · · ·
...

...
...

...
· · · · · · 0 ānn

 .
Now perform this change of variables, using the formula for how L transforms above, and write
out a second-order Taylor expansion for the coefficients of L in the new variables.

Exercise: Prove that our model operator ∆u =
∑n
i=1

∂2u
∂x2

i
is uniformly elliptic on any domain.

Exercise: Consider the domain D = BR(0) = {x ∈ Rn : |x| < R}, and consider the mean
curvature operator

H(u) = div

(
∇u√

1 + |∇u|2

)
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on D. Show that H is elliptic about any function v, but it might not be uniformly elliptic. (Hint:
v =

√
R2 − |x|2.) Can you find conditions on v such that H is uniformly elliptic at v?

Exercise: Show that the Monge-Ampere operator M(u) = det(D2u) is elliptic about v if
and only if v is convex. (It might be helpful to do this computation first for n = 2 or n = 3.)
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