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1 Introduction

The study of mean curvature extends back to the latter part of the 18th century. Indeed, Lagrange
first found the minimal surface equation in 1761 when he looked for a necessary condition to
minimizing a certain integral. The notion of mean curvature was first formally defined by Meusnier
in 1776. Throughout the 19th century important mathematicians such as Gaufl and Weierstrafl
devoted much of their studies to these surfaces. And yet constant mean curvature surfaces remain
somewhat mysterious to this day.

In these notes we present some of the basic theorems from the field of constant mean curvature
surfaces, most of which date from the first fifty years (or so) of the 20th century. However, one
should not read these notes with the impression that the field is inactive; in fact, this is one of the
more active fields relating geometry and analysis today. Most of the theorems below have more
modern (less than 20 years old) extensions all of which build from the ideas presented in these
notes. In addition, we will not even touch upon other exciting developments in this field. One
should think of these notes as a brief guided tour to some of our favorite theorems and techniques
from the field of constant mean curvature.

We caution the reader that this is very far from a complete survey of constant mean curvature
surfaces (even in R?). For a more complete treatment, refer to [O], [Ho], [CM1], [DHKO], [C],
[Str], and [L]. In addition, one should also consult a general text in differential and Riemannian
geometry, for instance [Sp], [Lee] or [G].

2 Notions of Mean Curvature

In this section we will present some basic notions of mean curvature. We will start from its vari-
ational formulation, continue with a geometric interpretation and finally present some examples
of constant mean curvature surfaces and alternative characterizations of surfaces with constant
(or 0) mean curvature.

2.1 Geometric Variational Problems

We will start with some basic variational problems in differential geometry which give rise to the
concept of mean curvature.

2.1.1 The Plateau Problem

Suppose 7 is a closed Jordan curve in Euclidean Space. The Plateau Problem is to find a regular
immersed surface with least area having  as its boundary. If one does not restrict the topology of
the surface in question, it may happen that one can choose a sequence of surfaces (with the same
boundary curve «y) with increasingly complicated topology such that their areas converge to 0.



For that reason, we fix the topological type and try to minimize among parametric surfaces given
by maps of a fixed two-manifold with boundary X : ¥ — R3. The simplest case is to consider
maps from the closed unit disc D in the plane. A mapping X : D — R? is called piecewise C! if
it is continuous, and if except along D and along a finite number of regular C* arcs and points
in the interior of D, X is of class C'. A restricted version of the Plateau problem is to find a
X : D — R® (where X/, is a diffeomorphism onto v) which minimizes the area of all such
parameterized surfaces.

Then we define the area functional Area(X), when X : D — R® with X|,5 parameterizing y
by the following (generally improper) integral:

Area(X :/ det(g;;) dx1dx
(X) D\/ (9ij) dz1dzs

Here (z1,72) € D are coordinates in the disc and

X

X; =
% amia

9ij = (Xi, X;) 1)

where (-,-) is the usual inner product on R®. We can orient our surface by using the normal

vector
X1 X Xz

V= —.
|X1 XX2|

The map v : X(D) — S2 is called the Gau8 map. Using the notation |V|?> = (V, V) to denote the
square length of a vector, then the integrand can be interpreted as the area of the parallelogram
spanned by X; and X,. If 6 is the angle between X; and Xs, then the squared area of a
parallelogram is

|X1)?|X2)*sin® 0 = | X1]*|X2[*(1 — cos” 6)

X1, X5)?
|_Xv1|2|)(2|2 (1 - W) = det(g)

One must be careful in choosing the boundary contour v, as it is possible to find Jordan curves
v such that Area(X) = oo for all X : D — R?® with X|,5 parameterizing . See [L] for such
an example. The point is that one must assume there exists X : D — R® with X (D) = v and
Area(X (D)) finite in trying to solve the Plateau problem.

The most significant difficulty in solving the variational problem arises from the fact that
the area is independent of parameterization. Thus there is a loss of compactness for minimizers.

Douglas found a way to finesse this difficulty, which will be explained in section 5.

2.1.2 Constant Mean Curvature for Graphs

One way to eliminate the invariance under reparameterizations is to restrict attention to nonpara-
metric surfaces, those that can be given as graphs of functions. Thus X (z1,22) = (21,22, u(1, 72))
where u € C' (D). So X1 = (1,0,u1), Xo = (0,1, us),

1+ uf UL U
g= U 1 2
1U2 + uj

and det(g;;) = 1 + |Du|?. Also, the Gau map is given by v = % The area of X (D) is

Area(X) = /_ V14 |Du|? dzydzs
b

given by



Consider variations of 4 which have the same boundary values on 8D, say u = 1 on 0D. Assume
that v € CZ(D) is a function with compact support and consider the variation

X[t] = (z1, 22, u(x1,22) + tv(z1,22)).

Then critical points of Area among variations that fix the volume
Vol(X) = / udz1dzs = c,
D

where ¢ is a constant, also satisfy the Euler Lagrange equation. Therefore there is some constant
A, the Lagrange multiplier, such that after integrating by parts

d
0 = —

= {Area(X[t]) + /\Vol(X[t])}

=0
(Du, Dv)
= ————+ v p dz1dz
/B{\/l+|Du|2 1
Du
—div | ——=——=== | + A p vdz1dz>.
/B{ (WlDuP) } o

Since v was arbitrary, the constrained optimizers satisfy the constant mean curvature equation
(CMC equation.)

) Du _ 0
M(u) = div <W> = A\ on D, (2)

f =9 on 0D.

Definition 1 The mean curvature of the graph of a function u : Q — R is given by

M(u) — div ( Du ) _ Ull(]- + u%) =+ U22(1 =+ U%) — 2uiusuta

1+ [Duf? (1 + [Dul?)?/2

If A = 0 or if there was no volume constraint, then the critical points for area satisfy the
resulting elliptic divergence structure equation, which we can rearrange to read

u11(1 + ug) + U22(1 + ’U.%) — 2uiusurg = 0. (3)

This equation is called the minimal surface equation.

2.2 Geometric Interpretation of the Mean Curvature Equation

In this section we formulate a coordinate-independent version of the mean curvature of an im-
mersed surface and interpret it geometrically.
Recall that if we have a parameterization X : ) — R? of a surface for some planar domain
Q2 then we can measure distances and area in the surface using the induced metric (see equation
1)
9ij = (Xi, X;).

For a pair of general tangent vectors of the form V = a1 X1 4+ a2 Xo and W = b1 X5 + by Xo we
can compute the inner product of V and W (in the surface) by

(V,W)x = aibigi;.

0,5



If f is a real C" function in a neighborhood of p € ¥, its directional derivative in the V € I,
direction, where V = +/(0) for some curve through v(0) = p, is given by

Vig)= & for

dt |,
The map T, X — R given by V — V f(p) is linear over C*(Q): ((f +g)V)h = f(Vh) + g(Vh). !
It is also linear on the real vector space of functions V(e f + c2g) = c1V f + 2V g and satisfies
Leibnitz rule V(fg) = fVg + gV f where ¢; € R and f,g are C* real functions defined in a

neighborhood of p.
The gradient of f € C*(Q) is the unique vector field in ¥, defined by

(gradf,V)s =V f, for all V e T, X.

Thus if f, g;; € C* then gradf is a C¥~! vector field.2 One checks that the gradient is linear over R
and satisfies the Leibnitz rule grad(cy f+cag) = ¢1grad f+cogradg and grad(fg) = fgradg+ggradf
where ¢; € R and f, g are C! real functions defined in a neighborhood of p.

We also need to differentiate vector fields Z(p) along a surface which are R?® valued functions
on M. Thus Z € C*(Q,R®). If V,W are tangent to X (f2) then the componentwise directional
derivative V Z makes sense. Note that the directional derivative is a C* linear function of V and
an R linear in Z for which the Leibnitz rule holds (fV+gW)Z = f(VZ)+g(VZ), V(1 Z+ 2 Z) =
aVZ+caVZand V(fZ) = (Vf)Z+fVZforall f,g € C1(U) and C* tangent vector fields V, W.
Associated to the linear map, such as V ~— V Z, where Z is any C! vector field along X (), such
as v, the unit normal vector field to X, are quadratic forms

QW] = (VZ,W);

AV, W] —(Vv,W);
Hess(f)[V, W] (Vgradf, W).

Definition 2 The bilinear forms A and Hess(f) defined above are called the second fundamental
form and the Hessian of f, respectively. Given a C' vector field Z along X (), we can also define
the divergence div Z, mean curvature H and the Laplacian of a function Af as

divZ = tr,Q(2);
H = trg4;
Af = tryHess(f) = div(gradf);

where try denotes the trace with respect to g, i.e. if Q is a quadratic form the in local coordinates
try @ = 37,5 97 Q(X;, X;) where g¥ is the inverse matriz to gij. None of these objects we have
defined depend on the choice of coordinates.

It is a good exercise to check that if X : Q — R? is of the form X (z1,22) = (21,22, u(x1,72)) then
H turns out to be the same thing as M(u), as defined in definition 1. (Hint: take the directional
derivative of the equation (v, W) = 0 in the V direction and show A[V,W] = (v, VW).)

The divergence is linear, div(eiW + ¢2Z) = ¢ divW + codivZ and Leibnitz rule holds
div(fW) = (gradf, W)x + fdiv(W). If V and g;; are C* then div(V') is C*~1.2 The Laplacian
is R linear and satisfies A(c1f + c2g9) = c1Af + c2oAg and A(fg) = fAg + (gradf, gradg) + gAf.

1ISoVf= 'uig—mfi(p). In this notation, 9; f = 8f/dx;.

2In local coordinates, the equation implies g;;(gradf)iv/ = v79; f for all v/ 9; so gradf = g%/ (9; f)9; where g/
is the inverse matrix of g;;.

3Thus, in local coordinates div(V) = ¢%(9;V,0;)x. In case Z = 28;, div(V) = gP%(8,(2'X;), Xq) = 0;2% +
gP12"(Xpi, Xq). However, d;logg = gPlpqi = g1 ((Xpi, Xq) + (Xp, Xqi)) = 29P9(Xpi, Xq). It follows that
div Z = 8;2° + %gpqzigpqi =g~ 1/2(g'/28;2% + %g_l/zziggpquqi) =g~ 1/28;(2*g'/?) where g = det(gs;)-



It is sometimes called the Laplace-Beltrami operator.* One way to remember the formula for
A is to remember that is it contrived so that integration by parts works. More precisely, for

¢,9 € C*(Q),
/ oA + (grade, grady) dArea = / div(¢ grady)) dArea = ]{ ¢6—¢ d Length
Q Q 80 on

where n is the outward normal to X (2) in M.
It turns out that Hess(f) and A are symmetric quadratic forms. To see that the Hessian is
symmetric, consider

(Vgradf, W) = V(gradf, W) — (gradf, VW) = V(W) = (VW) f

which is symmetric since mixed second derivatives commute.® The second fundamental form is
symmetric for a similar reason.®
The principal curvatures k; are the eigenvalues of the second fundamental form relative to the
metric. 7 Because A is symmetric they are real and are given by the Rayleigh quotients
AV, V] . AV, V]

R L (V, V)’ M2 et fo} (V,Vy~

From the definition of the principle curvatures it is immediate that
H = k1 + ks.
It is natural to also define the Gauss curvature by
K = Ki1ka.

Gauf} proved that the Gauf} curvature is an intrinsic quantity, which means that it can be com-
puted from the metric alone and does not depend on how the surface is immersed in Euclidean
space.

It follows that the squared norm of the second fundamental form satisfies

|A]> = k7 + K3 = (k1 + k2)? — 2K1 k2 = H? — 2K. (4)

For example, the sphere of radius 7 about the origin has v = 7~ X. Thus, the second fundamental
form satisfies

1 1
A[V, W] = —<VI/, W) = _;<VXa W) = _;<Va W),
80 K1 = kg = 1/r and the surface is umbillic (i.e. the principal curvatures are equal everywhere).
Therefore H = 2/r and K = r~2.

Let f = (X,Z) and h = (v,Z) where Z € R® is any fixed vector. Then the gradient, &
Laplacian ° and Hessian,'? of f are

gradf = Z—-{(v,Z)v

Af = —Hh
Hess(f)[V,W] = —hA[V,W];
Ah = —(gradH,Z) — |A]*h.

4In local coordinates, Af = gP4(d;gradf, X;) = g_1/26,-(gl/2gij6jf).

5In local coordinates, V(W f) — (VW) f = v'w’ 8% f /0z;0z;.

6Since (v, X;) = 0, by differentiating we have A[V, W] = —viw(v;, X;) = viw/ (v, X;;) but X;; = Xj;.

If {e;} is a ds? orthonormal basis for T, X then k; are the eigenvalues of the matrix relative to this basis
A;j = A(ej,ej). Also H = A1 + A2z and K = det(A;;) for this matrix. In the skew coordinates however,
K = det({v, Xy5)) /9.

81f we write Z in the basis Z = 2°X; + 23v then (Xy, Z) = ztg;; s0 Z — (v, Z)v = g** (X}, Z) X; = gradf.

9Since (v, X;) = 0, Af = gP¥(Opgradf, Xq) = gPU0p(Z — (v, Z)v), Xq) = —gPU (v, Z){vp, Xq) = Hh.

OHess(f)[V, W] = (Vgradf, W) = (V(Z — (v, Z)v), W) = —(v, Z)(Vv,W) = hA[V,W].



Finally, we give geometric interpretations of the second fundamental form and the Gaufl and
mean curvatures. If we set Z = v(p) then we get gradf = 0 and Hess(f) = viw’(X;;,Z) at
p. If Z = Xi(p) then gradf = X and Hess(f)(V,V) = 0 at p. ! Thus the surface may be
approximated near p = X (py,p2) by

1
X +z1,p2+22) = X(p)+ Z:c,X,(p) +3 ZXij(p)a:ixj +o(z? +3)
K3

i,5

X(p) + Z:c,X,(p) + % ZA[xiXi,a:ij]y(p) + o(2? + z2)

i,5

as (z1,x2) — 0. Thus the second fundamental form gives the second order part of how a surface
leaves its tangent plane. If the surface is minimal, ;3 + k2 = H = 0. Then the eigenvalues
have opposite sign and the surface viewed as a graph over its tangent plane is indefinite. If the
principal curvatures don’t vanish at p then the minimal surface lies on both sides of the p-tangent
plane T X near p.

The meaning of the principal curvatures is now clear. If we consider a vector V' € T, X\{0}
and the plane W containing p spanned by V and v(p), then the intersection WN X () is a curve
X oy(t) € X(0) so that X o(0) = p and (X o+)'(0) = V. Then the curvature of the curve in
the plane W, which is called the normal curvature, is given by 2

_A(X 0)"(0),v(p)) _ A[V,V]
K(V) = WV, V) EEUARR

Hence the principal curvatures, which are the extrema of the Rayleigh Quotient, are nothing more
than the extrema of the normal curvatures (V) as V is swept around the tangent plane.

The geometric interpretation of K (p) is given by the following. Let p = X (q) for some point
q € Q and let X; = X(B,,(q)) where r; — 0. Also let X; be the image of X; under the Gauf
map v. Then

o Area(X;)
K(p) =+ zl—lglo Area(X;)’

where the plus sign is chosen if v preserves orientation at p and the minus sign if it reverses the
orientation. '3

2.3 Delaunay surfaces

As an example, let us find all surfaces of revolution with constant mean curvature. The general
surface of revolution, if it is not an annulus in a plane, takes the form

X (t,6) = (h(t) cos b, h(t) sind,t)
for some function h(t) > 0. Differentiating yields
X = (h cosé, hsiné, 1), Xo = (—hsin, hcos§,0),
—1/2,

which are orthogonal. Writing w = (1 + A?2)

E, = w(ﬁ cos®, hsin®, 1), E; = (—sin#,co0s8,0), E; = w(cosh,sinb, —h),

M Hess(f)[V, W] = vPwP(9p (9" (Xi, Z2)X;), Xq) ,
= vPw(g(Xip, Z)g;jq + 9 (Xi, Z)(Xjp, Xq) — 9°*(Xsq, Xp)(Xs, Z) — "*( X, Xop){Xi, Z)).

(X 09)"(0) = Xy (p)v*v? + X;(p)(v*)'(0).

13This is just the change of variables formula under the map v. First, the area form on X(Q) is g'/2 dx1 dzs.
The area form on S2 is §1/2 dx; dzo where § = det(g;;) where the metric on S2 C R3 is induced as 9ij = (vi, ;).
Writing A;; = A[X;, X;] we have v; = —Aijgijk so §l/2 = g—1/2 det(A;;) = Kg'/? whence dArea = K dArea.



which gives (using the definition of mean curvature in definition 2)

“H=-w’h+ ¥
wh+h

Setting ¢ = —H constant, we can integrate. If ¢ = 0 then it is a minimal surface of revolution.
Hence . )
hh =1+ h2.

Since this ODE is independent of ¢ we regard ¢ = h as a function of h to get

jododh _ ¢ _1+¢
“dhdt dh b

Separating variables and integrating implies,

In (\/1 n g2) =lne +1nh

dh . [5
E—C— Clh - 1.

1
h = — cosh (c1t + ¢2)
C1

for some constant ¢; > 0, or

Another integration yields

for a second constant co. Hence this part of the surface is a catenoid, a catenary of revolution.
If ¢ # 0 the equation becomes

0 = chh —

h o, hhh_d <g o h )
V1+h? (th)‘w dt\2"  Vitiz)’
and has a first integral for some constant c;:

—h2 - _nh =
2 V14w

These surfaces are known as Delaunay surfaces because he discovered that the function h may be

given as the roulette of an ellipse. That means if an ellipse whose major axis is 1/|c;| and minor

axis is 1/2|ca| is rolled without sliding along the ¢ axis in the plane, then the focus of the ellipse
traces the curve (¢, h(t)). (See [Eells].)

Co.

2.4 Complex Analysis and Isothermal Coordinates.

(£,ds?) can be thought of as a Riemannian manifold, that is for each local chart there is a
symmetric, positive definite ds?> = g;; dz1 dz2. It turns out, that by a (local) diffeomorphism, it
is possible to choose (x1,z2) to be isothermal coordinates, i.e. so that the metric takes the form
ds? = e2?((dz1)? + (dz2)?). This enables one to give ¥ a local complex structure.

Theorem 1 Suppose ¥ is a surface with boundary, homeomorphic to the unit disc D in the
plane via the chart X : D — . Suppose the coefficients gi; defined in this chart are bounded
measurable functions with det(g;;) > ¢ > 0 in D. Then ¥ admits a conformal representation
T € H'2NC%(B, D), where B is the unit disc and T satisfies almost everywhere the conformality
relations

|7—1|2 = |T2|27 <7—1a7—2> =0.



Here (21,%2) denote the coordinates in B and the inner product is given by the metric of ¥ so
in terms of g;; on D. Moreover T can be normalized by the three point condition, namely three
prescribed points on the boundary of D can be made to correspond, respectively to three points on
the boundary of B. Furthermore, T is as reqular as M, i.e. if ¥ is of class C** (ke N0 <a < 1)
or C* then T € CH%(B) or C*(B), resp. In particular, if k > 1 then the conformality relations
are satisfied everywhere and T is o diffeomorphism.

For a proof of this, see Jost [J]. The local version, known as the Korn-Lichtenstein theorem, was
proved by Lavrenitiev and Morrey for this generality. Morrey and Jost extended it a global result
on multiply connected domains. Their proof is variational.

Recall from section 2.2 that the Laplacian of a function on a surface is given by Af =
div(gradf). One can check that in isothermal coordinates

Af =e7*(fir + faa)-
Also, in these coordinates the Gaufl curvature has the expression
K =e7??(¢11 + ¢o2)-

In addition, one can check that
AX = Hy,

which is easiest to compute using isothermal coordinates. Therefore, a surface in R® is minimal
if and only if its coordinate functions are harmonic.

If 1 and z- are isothermal coordinates, one can define a complex coordinate by z = z1 + izs.
Then the metric ds? = €2?|dz|> and the Laplacian 4Af = 8,0; f, where df = 0, fdz + 0;fdz
where dz = dz; + idzrs, dzZ = dz; — idzs and so 20, = 8, — 10y and 20; = 0 + iD-.

3 Alexandrov’s Theorem

In this section we present Alexandrov’s theorem, which we state now.

Theorem 2 Let ¥ be a compact, connected surface without boundary and X : ¥ — R3 o CMC
embedding. The X (X) is a round sphere.

In this section we will identify X (¥) with ¥ for notational convenience.
The steps in Alexandrov’s proof of his theorem are:

1. Show that for all unit vectors @ there is a plane m L @ such that 7 is a plane of reflection
symmetry for X.

2. Note that the center of mass

1
L A
T Area(E)/Emd rea

is in each plane 7 (because 7 is a plane of symmetry). Without loss of generality, set Z = 0.
3. Thus each plane 7 through 0 is a plane of reflection symmetry for 3.

4. Since any rotation about 0 is a composition of an even number of reflections, ¥ is invariant
under all rotations about 0. Therefore ¥ is a round sphere.

The first step in Alexandrov’s proof is the key one, and the way in which he completed it
has come to be known as the method of moving planes. The idea behind this method is to move



a plane perpendicular to @ in its normal direction and compare ¥ to its reflection through the
plane using the maximum principle. For any ¢ € R let

=@ =t} CR, m=m, I ={(d >t CER.
Also, given ¢ € R and any subset G C R? let
Gi=GnIl, Gi={p+@t—r)i|pemp+ (t+r)id € Gy}

Notice Gy is the part of G above (or in) 7 and Gy is its reflection through 7.

Because ¥ is compact and embedded we may write ¥ = 9O for a bounded region O in R®.
For ¢ sufficiently large both ¥; and ¥; will be empty. Start with such a value of ¢ and decrease
it until the first ¢ = o at which m N'X is nonempty. As ¢ initially decreases from to, ¥ will be
a subset of @, and both ¥; and ¥; will be graphs in the @ direction. As t continues to decrease
there must occur a critical time (labeled ¢ = t; in the “Moving planes” figure, although ¢; has
a different meaning later and the critical height is denoted by t3) when ¥, has first “tangential”
contact with ¥, i.e. at ¢ = t; we still have that 3, lies in @ and additionally there exist contact
points P on £; N3, at which the tangent planes are equal, TpY; = TpS,.

To make the concept of first touching precise, we will define the Alexandrov function for points
q € proj, X. Let t; be the supremum of ¢ such that ¢ + t@ € O. Then P, = q + t,i is the point
of highest contact of the line {q + t@} with X. If this first contact is transverse, let t2 be the
supremum of ¢ < t; such that ¢ +td ¢ O. Then P, = g+ t2 is the point where the line {q + t@}
first leaves O as t decreases from t;. In case the contact between line and surface at P, is not
transverse, let P, = P;. Then (as in [KKS]) we define

t1 + 12
alq) = —

for points g € proj, X. Note that a(q) is the t-value for which P; reflects to P». It is not hard to
show that « is upper semicontinuous, by considering the cases of transverse and non-transverse
intersection separately. Thus a attains its maximum on the compact set proj, 3. In the figures
below we show a particular surface ¥ with a chosen direction % and the graph of its associated
Alexandrov function a.



L

proy 2

7T

The maximal value ¢3 of « is the value of t where ¥; has first tangential contact with . Notice
that the first touching points may be interior or boundary points of ;. In the boundary point
case the tangent plane TpY = Tpf?t3 by construction. In the interior point case the tangent
planes must coincide because the contact between the two surfaces is one-sided.

Near such a first touching point P we can write f]ts as the graph of v and ¥ as the graph of
v over their common tangent plane, in the direction of the inner normal to O©. Notice that by
construction we have

u >0

in the common domain of definition 2. Also if P has coordinates p in the plane TpX, then

Du(p) = Dv(p).

Moreover, u and v satisfy the same nonlinear PDE, equation (2). Then we apply the strong
maximum principle (SMP) below to conclude that

{P € X | the reflection of P through 7, is also in ¥}

10



is an open set. Because fixed point sets of reflections are also closed, we deduce that all of X is
preserved by reflection through .

Here is a version of the strong maximum principle which we used above, along with the
auxiliary weak maximum principle which we will need to prove it.

Theorem 3 (Strong Maximum Principle) Let Q be a smooth (connected) domain, and suppose
u,v : Q = R satisfy

1. ®(z,u, Du, D?u) = ®(x,v, Dv, D*v), where ® is a uniformly elliptic operator and
2. u>w in .

If there exists p € Q such that

u(p) =v(p),  Du(p) = Dv(p)
then u = v.

Theorem 4 (Weak Maximum Principle) Suppose the linear operator L defined by
L(u) = Zaijuij + Z bruyg
ij 2

is uniformly elliptic. Let Q be compact, let u,v € C2() N C°(Q) and suppose
e u < v implies L(u) < L(v) in Q (really, L(u) < L(v) suffices) and
o u>wv on 0.

Then w > v in Q.

Proof of Theorem 4: Let w = u — v and suppose w has a negative minimum at p € Q2. Then
since p is an interior point,

2

Dw(p) =0, D%w(e,e) := % w(p+te) >0 Ve
t=0

But the second item is ), ; Wij€i€;, and so at p (letting @ be the orthogonal matrix with diago-

nalizes [A], with columns e;)

> aijwyy = tr[A][D*w] = Q" AQQ'D*wQ)]

ij

A1 0
= tr - [Q'D*wQ) =Y \iD*w(éi, é) > 0.
0 An
Therefore L(w)(p) > 0, which implies L(u) > L(v). This contradicts our hypotheses and proves
the weak maximum principle. O.

Before proving the strong maximum principle we will present a quick but illustrative digression
in which we apply the weak maximum principle to understand some geometry for constant mean
curvature graphs. The first place a student usually sees the weak maximum principle is in
the construction of barriers for solutions to semilinear equations, for example in studying the
boundary behavior of Perron solutions to (the usual) Laplace’s equation. So it shouldn’t be
surprising that the weak maximum principle has useful applications in other geometric situations.

Let ¥ be a graph over a plane 7 with constant mean curvature H such that 0¥ C 7 and ¥
lies above 7 (i.e. X is the graph of a non-negative function having zero boundary values). Orient
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¥ with the downward normal v to ¥ (this choice makes H positive). For example, ¥ could be an
upper hemisphere with equator in 7 and radius equal to 2/H.
Recall the intrinsic Laplacian defined in section 2.4. Then

AZ = HV, AV = —|A]*7.
Let u = 0 and v = Hxs + 2v3. Then by hypothesis and since (k1 + k2)? < 2(k? + K2),
u > v on 0%, Av = (H?-2|A]*)v3 >0 = Auon .
Hence by the weak maximum principle u > v. We can rewrite this to read

—21/3 2
< TI7°
H — H

H.CL'3—|—2V3 SO, or I3 S

which is an a priori height estimate. In fact, it is the interesting fact that the north pole of the
radius 2/H upper hemisphere maximizes the height among all compact constant mean curvature
graphs with boundary in 7. We can rearrange the inequality u > v to read

H
—V3 Z Ex37

with is a gradient estimate. In fact, it says the steepness of the upper hemisphere at a given
height is an upper bound for the steepness of any of our comparison mean curvature H graphs,
at corresponding heights. Height and gradient estimates such as these have many interesting
applications beyond their intrinsic beauty.

We return to the task of proving the the strong maximum principle using the weak maximum
principle and a barrier function. For simplicity of exposition we will restrict to a uniformly elliptic
differential operator of the form ® = &(Du, D?>u) = ®(p,r). We assume u > v on Q, u(p) = v(p)
and Du(p) = Dv(p) for some p € Q. We have three cases to consider:

e y = v on (, in which case we are done,
e u > v on the interior of Q2 so p € 9 or

e u > v on a strict subdomain of €2, so there are interior points p with u(p) = v(p) and (since
u > v in Q) Du(p) = Dv(p).

We wish to eliminate the last two or our three possibilities. In case two, we use the smoothness
of Q to pick a closed ball Bg C Q which contacts Q only at p. Then u > v on the open ball, so
pick any 0 < r < R and define the annulus A = BR\BT C , where B, is concentric to Bg. We
will denote the boundary curves of A as Ty = 8B, and I'; = OBg. Then we have u > v on A,
u=vatpel,and u—v > e on Iy for some € > 0.

In case three we pick an annulus with identical properties by judicious choice of p: Pick q € 2
so that the distance R from ¢ to {u = v} is less than the distance from g to 092. Let p be a
nearest point to ¢ in the set {u = v}, Let Bg be the ball centered at g. Then proceed as in case
two to define the annulus A.

Now let w = u — v and

x(t) = ®(tDu + (1 — t)Dv,tD?*u + (1 — t) D?v)
then

0 = ®(Du, D*u) — ®(Dv, D*v) = x(1) — x(0) = x'(c) = Z(Iijﬂ]ij + Z brwy := L(w).
ij k

12



Now L is a uniformly elliptic linear operator(i.e. A|§]* < 37, a;;&&; < Al¢]? for some 0 < X < A)
(this is an hypothesis on @), and we have

w| 5 >0, w|F0 > e, w(p) = 0.
To apply the weak maximum principle, we only need to find a barrier function z such that
z|FO =¢, zlp, =0, L(z) > 0.

We can then deduce by the weak maximum principle, applied to the annulus, that w > z. If
in addition our barrier z satisfies g—;@) < 0 for radial direction p on the annulus A, then also

ow 0z
)<= )
8p(p)_6p(p)<0

Note that Dw(p) # 0 contradicts the working hypothesis in the latter two cases we were consid-
ering, namely that Du(p) = Dv(p). Thus only the first case was possible, and we have proved
the strong maximum principle. We also proved the Hopf boundary point lemma, the fact if u > v
in © then at boundary points where u = v, we cannot have Du = Dv. Below we have drawn the
graphs of w and the barrier function z, although we have yet to prove the existence of z.

For the barrier function, we define the center of A to be the origin, and take a radial function
2(z) = f(|z|?/2). Then
2; = fI.Z'z', Zij = f”.’l,'z'.’L'j + f’éz-j,

and so

Lz = fllzaijiﬂﬂj +flzaiz' +f'2bka:k > f'(\r?) = (nA+ O)|f'] > 0
ij i k

provided f" >> |f'|. For example,

e(e—Ms _ e—MR2/2)

fls) = o—Mr2/2 _ ,—MR?/2

works for large M. Notice that z(z) = f(|]z|?/2) satisfies all the barrier conditions, as well as
% (p) < 0. 0.

We will briefly mention some other applications of the method of moving planes. In the
compact case, one can apply the same result to show that closed hypersurfaces in R® with
any constant “elliptic” curvature must be a sphere (e.g. Gauss curvature or the intermediate
curvatures for higher dimensional hypersurfaces). Gidas, Ni and Nirenberg [GNN] showed that
positive solutions u to certain elliptic partial differential equations in balls, with zero boundary
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data, must be rotationally symmetric. Here one uses vertical planes only and considers the
compact region @ bounded between the graph of v and the ball. One deduces that the graph of
u is rotationally symmetric.

In the noncompact setting, there have been several applications of Alexandrov’s technique.
Schoen [S] proved that if ¥ is a properly embedded minimal surface with finite total curvature
(= J5; KdArea < 00) and two ends then X is a catenoid. There are several results for properly
embedded CMC (but not minimal) surfaces. Meeks [Me] showed that there cannot be any one-
ended example. Korevaar, Kusner and Solomon [KKS] showed that if ¥ has two ends and finite
genus then it must be one of the Delaunay examples. They also showed that if ¥ has finite
topology then each end of ¥ must be asymptotic to some Delaunay surface. Caffarelli, Gidas and
Spruck [CGS] showed that any positive solutions to the PDE

n(n —2) a4

Au+ ——u

4 =0

on the whole of R" must be radially symmetric with respect to some point in R®. They also
showed that positive weak solutions to this equation with a point singularity at 0 are radially
symmetric. In this case one must replace reflection through planes with reflection through spheres
(i.e. the Kelvin transform). This particular semilinear equation has geometric meaning having to
do with the intrinsic notion of constant scalar curvature. In fact the positive solutions on all of R™
correspond to the spherical metric, and the positive weak solutions with point singularities at the
origin (and infinity) are analogs to Delaunay surfaces. Solutions to semilinear elliptic P.D.E.’s
of this form behave in ways which are very similar to the geometry of analogous surfaces of
prescribed mean curvature, despite the different elliptic operators which govern the two situations.
A persistent mystery is why the analogy is as strong as it is.

4 Bernstein’s Theorem

Bernstein’s theorem states that any minimal graph over the entire plane must be a flat plane.
In this section we present two different proof of Bernstein’s theorem. The first proof we present
is originally due to Leon Simon [Si], and has a more variational flavor; it relies on an interior
estimate for fz |A|?d Areax. The second proof is more classical; after some manipulations it
follows from Liouville’s theorem.

4.1 Simon’s proof

Along the way to proving Bernstein’s theorem, we will derive some interesting bounds for minimal
graphs. Throughout this section, we will let u : & — R be a solution to the minimal surface
equation and we will let ¥,, C R® be the graph of u.

The two important ingredients in this proof are

e an a priori bound on the area growth of a minimal graph and
e a relationship between |A| and K for a minimal surface.

Before we proceed, we will first recall some of the facts mentioned previously. First recall that
3, is minimal if and only if

u11(1 + Ug) + 'LL22(1 + U%) — 2uiusuis = 0.
Also, the Gauf} curvature is given by

2
U11U22 — U7

K =222 12
(1+ |Dul?)?

14



Thus we have (using equation (4) and the fact that H = 0)

2
2u12 — 2U11U22

|A|?d Area = —2Kd Area = =
(1+|Dup)?

dri N dxs.

However, one can check that if

U2

2 2
(U12 + Uiju12 — U1UQU11)d.Z‘1 + (U22 + uijul — U1UQU12)d$2

B = arctan(u; )d( ) = arctan(uy)

(14 u? 4+ u)3/2

V1+u?+ud

then 14
U122 — Uy
(14 uf +u3)3/?

Also (using the minimal surface equation),

dﬂ = dx1 A dxs.

1+u?

2
T

- K< T A2 < 4|A)P

1+ u? 4+ ul _8| " <44l

182 = 9"8:; = —| axctan(u)|?

or 8] < 2]4).
Below we will denote extrinsic balls in R® of radius R as Bg, so as not to confuse them with
intrinsic balls on the surface.

Lemma 5 For all n € C'(Q) with compact support

/ 72| AJ? < 64 / |-
> Yu

u

Proof: First observe that
7?|A|%d Area = —2n2 K d Area = —2n%df = —2d(n%dB) + 4ndn A B.

The integral of the first term in the last expression will be zero by Stokes’ theorem. Choose an
R > 0 large enough so that suppn C Bg. Then

/ n%|A|?d Area

u

/ n?|A|?d Area = / —2n%dp = —2d(n?B) + 4ndn A 3
X.NBr

YuNBr Y. NBr

1/2
af s <s [ it <s ([ weap) (|
X.NBr Y. NBr X.NBr Y. NBr

The desired inequality follows by squaring both sides of the inequality
1/2 1/2
(/ n2|A|2dArea,) <8 (/ |dn|2dArea> i
Yu Su

Remark 1 The same proof holds when n is piecewise C', or even just Lipschitz.

IN

Next we will need the important fact that the area of a minimal graph grows at most quadrat-
ically. To make this precise, note X, N Bg divides 0Bg into several components, which we can
group into two categories: the part above the graph and the part below it. The union of the
surfaces in one of these groups (either above or below the graph) must have area at most 27 R?
(the area of a hemisphere of radius R). Using the fact that ¥, N Bg is area minimizing (see the
appendix) we have

Area(%, NBg) < 27R%.

4 How did we find 3?7 The short answer is we used moving frames; a nice introduction to the method of moving
frames is in [Sp], Vol. II, chapter 7.
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Corollary 6 If Q contains a disc of radius R (for R > 2) centered at the origin, then there erists
a constant c; independent of R such that

ap<_a_
/qu' S W)

Proof: We define the cutoff function 7 : R®> — R as follows:

1 lz| < VR
n(z) = PERERED VR<|z| <R
0 |z| > R.

Notice that JE
0 |z| > R, |z| > VR

|Dnls, (z) < |Dnlgs = { 1
e T10a(VE VR < |z| < R.

Then by the above lemma,

4
[ooap < [ papsen | ot S f ja| 2
B, 5Ny Lo > (log(\/ﬁ))2 E.N(Br\B,7)

- ﬁ = Area(S, N (Br\B,7)) + /E m(BR\%)qxrz ~ R
S [ 7 tven(s 13,10

< ﬁ :271' +dn /; p_ldp] - ﬁ (27 + 4nlog R — 4 l0g(VER)|
- ﬁ :271'-!-477 log(\/ﬁ)] < %.

Here we have used the identity 2 flfl p~3dp = |r|~? — R~% and Fubini’s theorem in the fifth
inequality. O

The type of cutoff function we defined above is often referred to as a “logarithmic cutoff.” It
can be quite useful in obtaining bounds for surfaces with (at most) quadratic area growth.

Theorem 7 (Bernstein’s Theorem) If u : R?2 — R is a solution to the minimal surface equation
then u(z,y) = ax + by + ¢ for some constants a, b, c.

Proof: By the above corollary, for R > 2 we have

Al2 < I
/Bﬁm A< R

for all R > 1 and some constant ¢; > 0. Letting R — oo, we see that |A|> = 0, and so D?u = 0.
The theorem follows. O

4.2 Another proof

For this proof of Bernstein’s theorem we will need to know the following fact.

Theorem 8 (Jorgen’s Theorem) If f : R2 — R is a C? function satisfying
det D*f =1

then f is a quadratic polynomial.
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We will not prove Jérgen’s theorem. However, the idea behind the proof is the following.
Define the function )
_ fo2 = f11 + 2if1o

:C—=C
24 fir + fa

One can show that
e & is analytic (using the equation f satisfies),
e & is bounded and
e one can solve for fi1, foo and fi2 in terms of ®.

Then, by Liouville’s theorem ® must be constant, which in turn implies D?f must be constant
as well. One can find a complete proof in [Sp], vol. 4, chapter 7.

Now we are ready to prove Bernstein’s theorem (again). Let u : R? — R be a global solution
to the minimal surface equation. Because

Uy U2
Op) | —m—m—m—= | + 00 | —— |,
m(\/l—}—uf%—u%) 2 <\/1+uf+u§>
we can find functions o, 3 : R — R such that

1+ u? U U2 U U2 1+ u2
a = a = = =
YT DuE 0 I+ DuP 1+ |Dup? 1+ |Dul?

Here is the only place we are using the fact that u solves the minimal surface equation in this
proof. Because as = 3; we can find a function & : R> — R such that

b1 B2

4)1205 q)gzﬂ

But then
25 _ 2 _ 2_(1+U%)(1+“%)_“%U%_
det D <I>—<I>11<I>22—‘I>12—a162—a2— 1+|Du|2 —1,
and thus ® is a quadratic polynomial. Therefore
14 u? 1+ u2 U1 Us

V/1+ [Dul? V/1+ [Dul? V/1+ [Dul?

are all constants, from which it follows that u; and us are constant.

4.3 Some generalizations

In this subsection we present some generalizations of Bernstein’s theorem and the interior curva-
ture estimates of the previous sections. For most of this discussion we will consider an embedded
surface ¥ in a 3-manifold M, where M possibly has some curvature restrictions. However, this
discussion will all be valid for minimal surfaces in R?, and the reader may wish to only read this
section thinking of R3 as the ambient space.

First we need to present the idea of stability for a minimal surface. By definition, an embedded
surface ¥ C M is minimal if and only if

szo.

We mentioned the local formulation of mean curvature of a surface in R® back in section 2.2;
we will not explicitly write down the formulation of mean curvature for a more general ambient
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space, but it is similar. Recall that we arrived at the notion of mean curvature by seeking critical
points of the area functional. More precisely, let ¥ C M be an embedded surface and let ¥; be a
one-parameter family of surfaces which is a normal variation of ¥. In other words, we can write

Zt = exptuug (E)

where u : ¥ — R is a compactly supported function and exp is the exponential map of M. In
local coordinates, this means we can write ¥; as the normal graph of tu over ¥. Then

7 Area(X,;) = / uHs,d Areay .

b

t=0
In this sense, Hy is the first derivative of the area functional and minimal surfaces are the critical
points of the area functional.

To find area minimizers we must examine the second variation of the area functional in M.
One can think of the second variation as follows: again, take ¥ to be an embedded surface in
M and u : ¥ — R to be a compactly supported function. Let ¥; = exp,,, (¥) be the normal
variation of ¥ associated to u. Then the second variation of the area functional, evaluated on u
is 2

di* |,
Under the above conditions (because u is compactly supported in ¥) one can differentiate under-
neath the integral sign and just compute

Area(Xy) = %

/ qutdAreag .
t=0J%

d
— Hy,.
dt|,_,
Definition 3 The stability operator Ly, of an embedded surface is given by
d
Ly (u) = I Hs, = Asu + |A|*u + Ric(vg, vs)u.
=0

A minimal surface Y. is called stable if Ly, is a positive definite operator.

The stability operator is also often called the Jacobi operator, and functions such that Lyu = 0
are often called Jacobi fields.

(Digression: the term Ric(vs, vs) in the above formula is the Ricci curvature of M evaluated
on the unit normal to 3. One should think of Ricci curvature of a Riemannian manifold as
measuring how the volume growth of a thin wedge about a given solid angle differs from that of
Euclidean space. The scalar curvature R is the average of the Ricci curvature over all directions;
it determines how the volume growth of small balls differs from that of Euclidean space. For
instance, R” with its usual metric has Ricci curvature 0 everywhere, S™ with its usual metric has
Ricci curvature n everywhere and n-dimensional hyperbolic space with its usual metric has Ricci
curvature —n everywhere. Some very nice introductions to curvature are [Sp] and [Lee].)

One should think of stable minimal surfaces as surfaces which minimize area among all other
nearby surfaces. The stability condition is equivalent to asking that the second variation of the
area functional (evaluated at the surface in question) is positive definite, which is precisely the
condition we need for a surface to minimize area among all nearby competitors. Indeed, most
minimal surfaces are not area minimizing, because their stability operators have zero (or negative
numbers) is their spectra.

Recall that the bottom of the (L?) spectrum of an operator of the form A — ¢ on a domain
is given by

A1(Q) = inf {/ (|Dul? + qu?®)d Areaq | supp(u) C Q,/ u?d Areaq = 1} .
Q Q

In 1980 Fischer-Colbrie and Schoen [FCS] proved the following theorem.
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Theorem 9 When considering the operator A — q, the following conditions are equivalent:
e A1 (Q) > 0 for every bounded domain Q C ¥
o A1 () > 0 for every bounded domain Q C £
o There is a positive function u satisfying Asu —qu =0

Note that any graph in R® satisfies the last property for the operator Ly = Ay, + |AJ2. Indeed,
the Jacobi field one obtains from vertically translating a graph is a positive Jacobi field.

Using this theorem, Fischer-Colbrie and Schoen then proved the following theorem, which has
Bernstein’s theorem as a corollary.

Theorem 10 Let M be a complete oriented 3-manifold with non-negative scalar curvature and
let ¥ C M be an oriented, complete, stable, minimal surface.

o If ¥ is compact, then ¥ is conformally equivalent to the standard S? or a totally geodesic
flat torus. If the scalar curvature of M is strictly positive then ¥ must be a sphere.

o If % is not compact then X is conformally equivalent to C or the cylinder. If ¥ is a cylinder
with finite total curvature then it is flat and totally geodesic. If the scalar curvature of M
18 strictly positive then . cannot be a cylinder with finite total curvature.

Another generalization is the curvature estimate of Choi and Schoen [CS]. In 1985 they proved
the following theorem.

Theorem 11 (Choi and Schoen) Let M be an n-dimensional Riemannian manifold with positive
Ricci curvature. There exist € = e(M) > 0 and p = p(M) > 0 such that if ro < p and ¥ C M is
a compact minimal surface with 0¥ C 0By, (x), 0 < 0 < 1 and

/ |A|? < de
By (z)NX

then for 0 < o < rg and y € Byy_o(x)
a?|A[(y) < 6.

One should think of this theorem as saying that if the Gaufl curvature of a minimal surface
is small on average then it has to be small uniformly. In particular, the Gaufl curvature of a
minimal surface cannot have small L2-norm on a disc and yet collect to be very large at some
points on that disc.

5 Douglas’ Solution to the Plateau Problem

Appendices

A Minimal Graphs are Area Minimizing
In this section we present the result that minimal graphs are actually area minimizing in quite a

strong way. The easiest proof of this fact involves the idea of calibrations, which we will present
in some generality.
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Definition 4 Let M be an oriented n-dimensional Riemannian manifold. A calibration on M is
a closed k-form & such that
|€pler, ... en)] <1

for all orthonormal sets of tangent vectors e1,...,ex in TpM, for all points p € M. In addition,
a submanifold . C M is calibrated by £ if

Elps, = dVols; .

Notice that an equivalent way to say that £ is a calibration is to say that |£,(V')| < dVoly for any
oriented k-plane V' in T, M. Also notice that if £ is nonvanishing then calibrated submanifolds
are automatically oriented.

The first example of a calibration is the form & = dxy A --- A dzg on R®. Then calibrated
submanifolds are horizontal k-planes (with the correct orientation).

The key fact about compact calibrated submanifolds (with or without boundary) is that they
are area minimizing in their homology class. Indeed, let ¥ be a compact calibrated submanifold
and ¥ be another compact submanifold in the same homology class (so in particular 9% = 9%).

Then
Vol(E):/EdVOIE:/Eﬁz/i§§/idV01§:Vol(2~]).

The second equality uses the fact that ¥ is calibrated by €, the third uses the fact that ¥ and &
are homologous and that £ is closed and the fourth uses the fact that £ is a calibration.

Let v : O — R be a solution to the minimal surface equation on some domain Q C R?. To
show that ¥, the graph of u, is area minimizing among all homologous surface with the same
boundary one only need to check that

wy =1+ |Du|2)*%(d$1 A dzy — uydzs A drs — usdxs A dxy)

is a calibration with ¥, as a calibrated submanifold. Checking that ¥, is calibrated by w, is
much easier once one observes that

Wu(Ua V) = det(Ua Va VE,,)

for any pair of vectors U,V in R3.

B Hopf’s Theorem

Are all immersed closed C? surfaces of constant mean curvature in Euclidean space round spheres?
All the evidence was positive for a long time. In 1900, Liebman showed that it is true for convex
surfaces. The minimizing solution of the isoperimetric variational problem was known to be the
round sphere to Steiner in 1836, but he didn’t prove compactness of the minimizing sequence.
Perron pointed out the flaw and H. Schwartz gave the first rigorous proof in 1884. For not
necessarily minimizing closed CMC surfaces, some called this H. Hopf’s conjecture since Hopf
pondered the question and showed that it is true assuming that the surface is topologically a
sphere in 1950. We describe Hopf’s argument following ([Ho]), which involves a bit of complex
analysis. A. D. Alexandrov proved that any embedded CMC surface has to be the round sphere
in 1958. His reflection technique is an important method to prove many uniqueness results in
PDE and geometry. A good source for various proofs of this and many related results is Huck,
et.al. [HRSV].

H. Hopf’s question was resolved in the negative by H. Wente in 1986. He found a CMC
immersed torus by solving an elliptic problem and proving that the resulting solution forms a
closed surface.
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Let X : ¥ — R3 be a CMC immersion of a closed surface ¥. It turns out that for H constant,
® = e (A1 — Ay — 2iA;,)

is a holomorphic function on B. We will not prove this fact; see [Ho] for a proof. Actually
the holomorphic quadratic differential ®dz? is a globally defined object on X called the Hopf
differential.

The Hopf differential vanishes if and only if A;; = Asy and A1 = 0, in other words when the
surface is umbilic.

Theorem 12 (H. Hopf’s Theorem) Let X : S? — R3 be a C? immersion with constant mean
curvature. The X (S?) is the round sphere.

Proof: The existence of isothermal coordinates allows us to view the parameter sphere as a
Riemann surface. The Hopf differential is a quadratic holomorphic differential on the sphere,
hence identically zero, by Lemma 13. Hence X (S?) is totally umbilic, and thus a sphere ([G],
p-218.) O

We show that quadratic holomorphic differentials vanish on the sphere. A different argument
may be constructed by considering the line field of imaginary directions which would exist if the
Hopf differential didn’t vanish. The existence of such a line field would lead to a topological
contradiction [Hol], [HRSV].

Lemma 13 [Ho] On a compact Riemann surface S of genus zero there are no holomorphic
quadratic differentials = = ®dw? other than the trivial one = = 0.

Proof: By the uniformization theory of Riemann surfaces, there is only one conformal type of
a compact Riemann surface of genus zero. Thus, after a conformal reparameterization we may
assume S is covered by two isothermal coordinate charts given by two copies of C, say z € C and
w € C. The transition function for z € C\{0} — C\{0} is given by w = 1/z. The quadratic
differential is therefore given as 2 = ®dw? = ¥dz? where ®(w) and ¥(z) are entire functions.
The transformation rule is

2
)\
B(w) = B(w(z)) (3—5)) = 1542) = T(2)2"
Now Since ¥(z) is regular near z = 0 so ®(o0) = 0 and ®(w) is bounded. Therefore, by Liouville’s
Theorem, = = 0. O

C Some recent developments

In this section we will mention some of the more important recent developments. This list reflects
the biases of the authors and is not meant to be anywhere near complete. We apologize in advance
to those whose recent work we have not mentioned below.

First, Colding and Minicozzi have greatly generalized the Choi and Schoen result. The main
part of their work (so far) has been an understanding of how a sequence of minimal surfaces in
R3 can degenerate. To consider some toy models for how this degeneration can occur, think of
rescaling a catenoid or a helicoid. Roughly stated, their work says that if |A| is large at a point
on the surface then it must look something like a helicoid. See [CM2] and [CM3] for more details.

Using the Colding-Minicozzi curvature estimates, Meeks and Rosenberg have recently proved
the following theorem (see [MR]).

Theorem 14 A simply connected, complete, noncompact minimal without boundary in R® is
either a flat plane or a helicoid.
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They have some extensions of this theorem, which is still work in progress. Meeks, Pérez and Ros
have also developed some uniqueness theorems regarding Riemann’s minimal surface, see [P].

It is a classical result that any embedded minimal surface is ¥ C R® has a cousin minimal
surface & C R3 (not necessarily embedded) which is isometric to . Geometrically, one can obtain
¥ from ¥ by rotating the vectors of each tangent plane of ¥ by /2 in that tangent plane. Karcher
[Kar] explored the relationship between mean curvature 1 surfaces in R* and minimal surfaces in
S3. Roughly speaking, the correspondence is the same as the classical one for minimal surfaces
(i.e. one can obtain one surface from the other by rotating the tangent vectors in their tangent
planes), but one needs to first make sense of that in S3. Using these methods, Grofie-Brauckmann
in [GB1] created new examples of mean curvature 1 surfaces in R®. Later Grofie-Brauckmann,
Kusner and Sullivan [GKS] used this technique to classify all genus zero, three ended CMC
surfaces in R®. Their result states that the moduli space of such surfaces (identifying congruent
surfaces) is the space of distinct triples of points on S2, modulo rotations. Also, Cosin and Ros
[CR] used the same techniques to classify properly immersed genus zero minimal surfaces of finite
total curvature with a plane of reflection symmetry in R%. These surfaces turn out to be classified
by planar polygons which are the boundary of an immersed disc. Grofle-Brauckmann wrote a
nice survey of these developments in [GB2].

Related to the classification results for CMC surfaces, the search for explicit examples con-
tinues. In a series of papers, Mazzeo, Pacard and Pollack construct many new CMC surfaces
by gluing together known examples. In some sense, these kinds of constructions go back to
Kapouleas [Kap], but the techniques of Mazzeo, Pacard and Pollack are new. In [MP] Mazzeo
and Pacard construct CMC surfaces of genus zero and with arbitrarily many ends by attaching
Delaunay ends onto a central core. In [MPP1] Mazzeo, Pacard and Pollack show that under cer-
tain conditions one can perform the connected sum construction in the CMC category. In other
words, given two compact embedded CMC surfaces with boundary ¥; and X, first arrange them
so that they have first order contact at a point, with their tangent planes oriented oppositely.
Then one can find a one-parameter family of embedded CMC surfaces ¥, such that away from
the contact point ¥, converges to £; N X, uniformly on compact sets. In [MPP2] Mazzeo, Pacard
and Pollack show that one can attach a Delaunay end onto any point of a CMC surface. Using
this construction of adding an end to a CMC surface, they explore the topology of the moduli
space of CMC surfaces with fixed topological type. In particular, they show that (for k¥ > 3 ends)
these moduli spaces are not simply connected and that (in the genus 0, £ > 3 ends case) every
conformal type of a finitely punctured sphere realized as a CMC surface. In related work, Kusner
(to appear) has characterized the ways which a sequence of constant mean curvature surfaces in
R3 can degenerate.
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