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In this note we prove the following classical eigenvalue inequality, due separately to Faber [F]
and Krahn [K].

Theorem 1. Let D ⊂ Rn be a bounded domain and let B be the ball centered at the origin with
Vol(D) = Vol(B). Then λ1(D) ≥ λ1(B), with equality if and only if D = B almost everywhere.

Here λ1(D) is the first eigenvalue of the Laplacian, with Dirichlet boundary conditions. The
proof below borrows much from the proof in Chavel’s book [Ch], but is a little less general and
simplifies some of the notation.

Proof. Recall variational characterization of the first eigenvalue:

λ1(D) = inf
{∫

D
|∇u|2dV∫
D
u2dV

∣∣ u ∈ C2
0 (D)

}
. (1)

By the Courant nodal domain theorem, we can take a test function for the Rayleigh quotient be
non-negative. Let u be a test function, and for 0 ≤ t ≤ û = max(u) let Dt = {u > t}.

Now we define a comparison function u∗ : B → [0,∞) as follows. First let Bt be the ball
centered at the origin with Vol(Bt) = Vol(Dt). Then let u∗ be the radially symmetric function
such that Bt = {u∗ > t}. By the co-area formula,∫ û

t

∫
∂Dτ

dA

|∇u|
dτ = Vol(Dt) = Vol(Bt) =

∫ û
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∫
∂Bτ

dA

|∇u∗|
dτ.

Differentiating with respect to t gives us∫
∂Dt

dA

|∇u|
=
∫

∂Bt

dA

|∇u∗|
(2)

for all t. Then ∫
D

u2dV =
∫ û

0

∫
∂Dt

u2dA

|∇u|
dt =
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t2
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=
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u2
∗dV.

Now, for 0 ≤ t ≤ û let

ψ(t) =
∫

Dt

|∇u|2dV, ψ∗(t) =
∫

Bt

|∇u∗|2dV.

By the co-area formula

ψ′ = −
∫

∂Dt

|∇u|dA, ψ′∗ = −
∫

∂Bt

|∇u∗|dA.
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We use the Cauchy-Schwarz inequality, the isoperimetric inequality, and the fact that the normal
derivative of u∗ is constant on ∂Bt to see(∫

∂Dt

|∇u|dA
)(∫

∂Dt

dA

|∇u|

)
≥

(∫
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dA

)2

= (Area(∂Dt))
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|∇u∗|dA
)(∫
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)
.

We use equation (2) to cancel the common factor of∫
∂Dt

dA

|∇u|
=
∫

∂Bt

dA

|∇u∗|
,

and so
−ψ′ =

∫
∂Dt

|∇u|dA ≥
∫

∂Bt

|∇u∗|dA = −ψ′∗.

Integrating this last differential inequality and using ψ(û) = 0 = ψ∗(û) we see∫
D

|∇u|2dV = ψ(0) ≥ ψ∗(0) =
∫

B

|∇u∗|2dV.

Combine this inequality with (3) and (1) to give the desired inequality on the eigenvalues:

λ1(D) ≥ λ1(B).

Moreover, equality of the eigenvalues forces the level sets ∂Dt to all be spheres centered at the
origin. Also, the equality case of the Cauchy-Schwarz inequality forces |∇u| to be constant on
the level set ∂Dt. Thus u must be radially symmetric, and so in this case u = u∗.

Observe that the proof really only requires that the isoperimetric domains in the ambient
space are geodesic balls, and so the same proof applies to domains in hemispheres and hyperbolic
space. In fact, the proper way to state the Faber-Krahn inequality is to say that a geometric
isoperimetric inequality:

Vol(D) = Vol(B)⇒ Area(∂D) ≥ Area(∂B),

where B is a ball, implies a physical isoperimetric inequality:

Vol(D) = Vol(B)⇒ λ1(D) ≥ λ1(B).

This is actually the statement Chavel gives in his book [Ch].
Also, a byproduct of the proof is the fact that the first Dirichlet eigenfunction of the ball

is radially symmetric. This allows one to explicitly compute the first eigenfunction (and its
eigenvalue) in terms of Bessel functions.

References

[Ch] I. Chavel. Eigenvalues in Riemannian Geometry. Series in Pure and Applied Mathematics.
115. Academic Press, Inc., Orlando, 1984.

[F] C. Faber. Beweiss, dass unter allen homogenen Membrane von gleicher Fläche und gleicher
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