
The Maximum Principle and Applications

In these notes we prove some versions of the maximum principle and some applications,
particularly using the moving planes argument of Alexandrov [A] (see also [GNN]). The standard
references for the maximum principle are [GT] and [PW].

Definitions: A second order linear differential operator L has the form

L(u) = aij(x)uij + bk(x)uk + c(x)u, (1)

where subscripts denote partial derivatives and we sum over repeated indices. The operator L is
elliptic at a point x if the coefficient matrix [aij(x)] is positive definite, and L is uniformly elliptic
on a domain Ω ⊂ Rn if there is Λ > 0 such that

1

Λ
|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2 (2)

for all x ∈ Ω.
Let F = F (x, u,Du,D2u) be a (nonlinear) differential operator which is C1 in all its argu-

ments, and let w be a C2 function. The linearization of F about w is the linear differential
operator defined by

Lw(f) =
d

dε

∣∣∣∣
ε=0

F (w + εf) = aij(x)fij + bk(x)fk + c(x)f, (3)

and we say F is uniformly elliptic if there is a number Λ > 0 , which is independent of x and w,
such that (2) holds, where aij are the coefficients of the linearization Lw.

It is worthwhile to consider some examples. The mean curvature operator

H(u) = div

(
∇u√

1 + |∇u|2

)

is elliptic, but not uniformly elliptic. You lose control of Λ is |∇u| → ∞, which is precisely
what happens when u(x) =

√
R2 − |x|2 and |x| → R−. On the other hand, if |∇u| is uniformly

bounded then the nonlinear operator H(u) is uniformly elliptic about u. The Monge-Ampere
operator

M(u) = detD2u

is elliptic about w if and only if w is convex, that is, if and only if D2w is positive definite.
Basic Maximum Principles: We start with the weak maximum principle.

Theorem 1. Let L be a uniformly ellptic, linear operator of the form (1) with c ≤ 0, and let
u ∈ C2(Ω) ∩ C0(Ω̄) satisfy

L(u) ≥ 0, u|∂Ω ≤ 0.

Then, unless u ≡ 0, for all x ∈ Ω we have u(x) < 0.

Proof. We suppose the theorem is not true, which means u has a non-negative maximum at some
p ∈ Ω, and derive a contradiction. This is easy if L(u) > 0, because

u(p) ≥ 0, ∇u(p) = 0, D2u
∣∣
p

(e, e) ≤ 0, (4)

where e is any unit vector. Now let λ1, . . . , λn be the eigenvalues of aij(p), which are all positive,
and let ei be the eigenvector associated to λi. Then

L(u)(p) = aij(p)uij(p) + bk(p)uk(p) + c(p)u(p) =

n∑
i=1

λi D
2u
∣∣
p

(ei, ei) + c(p)u(p) ≤ 0, (5)
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which contradicts L(u) > 0.
For the general case, we build a barrier function as follows. Recall that [aij(p)] is positive

definite, so (after a rotation) we can assume a11(p) > 0. We define

w(x) = u(x) + εz(x) = u(x) + ε(eα(x1−p1) − 1),

where α and ε are constants we choose later. Observe that

L(z)(p) = eα(x1−p1)(α2a11(p) + αb1(p)) + c(p)(eα(x1−p1) − 1),

and we can choose α > 0 sufficiently large to that L(z)(p) > 0. By continuity we also have
L(z) > 0 is a small neighborhood of p. Because p is a local maximum for u, we can find a nearby
q ∈ Ω such that u(q) < u(p), and now choose a positive

0 < ε <
u(p)− u(q)

z(q)
.

Then
w(q) = u(q) + εz(q) < u(p), w(p) = u(p),

and so w has a positive interior maximum and satisfies L(w) > 0, which contradicts (5) as applied
to w.

Taking differences, we immediately obtain the following comparison theorem:

Corollary 2. Let L be a uniformly ellptic, linear operator of the form (1) with c ≤ 0, and let
u, v ∈ C2(Ω) ∩ C0(Ω̄) satisfy

L(u) ≥ L(v), u|∂Ω ≤ v|∂Ω .

Then, unless u ≡ v, for all interior points x ∈ Ω we have u(x) < v(x).

Proof. Apply Theorem 1 to w = u− v.

We have a condition on the normal derivative of u at ∂Ω as well.

Theorem 3. Let L be uniformly elliptic, and let u ∈ C2(Ω) ∩ C0(Ω̄) satisfy

L(u) ≥ 0, u ≤ 0, u|∂Ω = 0.

Then, unless u ≡ 0, for each p ∈ ∂Ω we have

∂u

∂N
> 0,

where N is the unit outward normal vector for ∂Ω.

Observe that we do not place a condition on the sign of c here.

Proof. We first prove this result for c ≡ 0. Fix p ∈ ∂Ω, and choose r1 > 0 small enough so
that the ball Br1(x̃) tangent to ∂Ω at p lies completely inside Ω. Let B1 be this ball and let
B2 = Br1/2(p). Now, for some constants α and ε we define

w = u+ εz = u+ ε(e−α|x−x̃|
2

− e−αr
2
1 ).

Observe that
z|B1

> 0, z|∂B1
= 0, z < 0 otherwise.
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By Theorem 1, we may assume u < 0 inside Ω, so in particular u < 0 on B̄1\{p}. Now pick ε > 0
small enough so that w = u+ εz ≤ 0 on (∂B2) ∩B1, and (as before) pick α > 0 large enough so
that L(w) > 0. Then, applying Theorem 1 to w on B1 ∩B2, we see w attains its maximum at p,
so

0 ≤ ∂w

∂N
(p) =

∂u

∂N
(p) + ε

∂z

∂N
(p).

A quick computation shows

∂z

∂N
(p) = −2αe−αr

2
1

n∑
i=1

Nixi < 0,

which implies ∂u
∂N (p) > 0.

Now we use the result above and a barrier to prove the theorem in the general case. Let
v = e−βx1u, where β > 0 is a constant we choose later, and as before we can take a11(p) > 0.
Then

0 ≤ L(u) = eβx1L′(v) + vL(eβx1),

where L′ is a uniformly elliptic, linear operator with no zero order term. Rearranging the above
inequality we get

0 ≤ L′(v) + v(a11β
2 + b1β + c) = L′(v) + c′v.

Choose β > 0 large enough so that L′(v) > 0, at least near p. By what we have just proved,

∂v

∂N
(p) > 0⇒ ∂u

∂N
(p) = eβp1

∂v

∂N
(p) > 0.

Finally, we prove a somewhat simplified version of the strong maximum principle, which will
suffice for our purposes.

Theorem 4. Let F = F (x,Du,D2u) be a uniformly elliptic nonlinear differential operator which
is C1 in all its arguments, and let u, v,∈ C2(Ω) ∩ C0(Ω̄) satisfy

u ≥ v, F (x,Du,D2u) = F (x,Dv,D2v).

If there is a point p ∈ Ω̄ such that

u(p) = v(p), Du(p) = Dv(p)

then u ≡ v.

It is possible to prove the strong maximum principle for operators which also depend on u,
provided F is monotone in the function values of u, see Section 17.1 of [GT]. The proof is more
complicated, and we omit it here.

Proof. As before, we assume u(p) = v(p), Du(p) = Dv(p), and that there are points where u > v,
and derive a contradiction. There are two possible cases: either u(q) > v(q) for all interior points
q ∈ Ω, or there are some interior points p with u(p) = v(p). In the first case, let BR be a ball
of radius R such that p ∈ ∂BR and B̄R\{p} ⊂ Ω, and then let A = BR\BR̃ where R̃ < R and
BR̃ has the same center as BR. Also let Γ0 = ∂BR̃ and Γ1 = ∂BR. In the second case we can
also choose an annulus A with the same form, provided we make a smart choice of p. We choose
p ∈ ∂{u(x) = v(x)} and observe that {u(x) 6= v(x)} is a nonempty open set in Ω, so there is
a q near p such that u(q) > v(q). Now let q be the center of our annulus, R = dist(p, q), such
that R < dist(q, ∂Ω), and construct A as above. In either case, we now have an annulus A where
u ≥ v on A, u(p) = v(p) and Du(p) = Dv(p) for some p ∈ Γ1 and u− v ≥ ε on Γ0 for some ε > 0.
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For 0 ≤ t ≤ 1 define

χ(t) = F (x, tDu+ (1− t)Dv, tD2u+ (1− t)D2v).

Then by the mean value theorem

0 = F (x,Du,D2u)− F (x,Dv,D2v) = χ(1)− χ(0) = χ′(t0) = L(w)

for some t0 ∈ (0, 1), where w = u−v and L is the linearization of F , linearized about t0u+(1−t0)v.
By the hypothesis on F , the linear operator L is a uniformly elliptic operator of the form (1) with
c = 0. In addition to L(w) = 0, we also have

w|A ≥ 0, w|Γ0
≥ ε, w(p) = 0.

We complete the proof by finding a barrier z with

L(z) > 0, z|Γ0
= ε, z|Γ1

= 0,
∂z

∂r
< 0. (6)

Indeed, once we construct z we use Corollary 2 on A to get w ≥ z and so

∂w

∂r
(p) ≤ ∂z

∂r
< 0,

which contradicts Du(p) = Dv(p). It is straightforward to check that, for M large enough, the
function

z(x) = f(|x|2/2), f(s) =
ε(e−Ms − e−MR2/2)

e−MR̃2/2 − e−MR2/2

satisfies all the conditions in (6).
The following corollary is a special case of the strong maximum principle.

Corollary 5. Let F = F (x,Du,D2u) be a uniformly elliptic, nonlinear differential operator
which is homogeneous, i.e. F (x, 0, . . . , 0) = 0 for all x. If u ∈ C2(Ω) ∩ C0(Ω̄) satisfies

u ≤ 0, F (x,Du,D2u) = 0

then either u ≡ 0 or u < 0 on the interior of Ω.

Moving planes and constant mean curvature surfaces: We include here Alexandrov’s
proof [A] that the only compact, embedded, constant mean curvature surface in R3 without
boundary is the round sphere (see also [Ho]). Let Σ ⊂ R3 be a compact, embedded, constant
mean curvature surface without boundary, and let Ω be the 3-dimensional region it bounds. The
strategy is to use moving planes to show that Σ has a plane of symmetry perpendicular to any
unit vector γ ∈ S2. Once we do this, we still need to show that all these symmetry planes pass
through a common point, which is easy. If x0 is the center of mass of Σ (i.e. the average of all
the position vectors of Σ), then each symmetry plane must contain x0. After translation, we can
assume x0 = 0, and so Σ is invariant under all reflections through planes passing through the
origin, which implies Σ is invariant under all rotations fixing 0. Thus Σ must be a round sphere.

Now fix some direction γ ∈ S2. For λ ∈ R we let

Tλ = {〈x, γ〉 = λ}, Σ(λ) = {x ∈ Σ : 〈x, γ〉 > λ},

and we let Σ′(λ) be the reflection of Σ(λ) through Tλ. Also define

λ0 = sup{λ : Σ(λ) 6= ∅}, λ1 = inf{λ : Σ′(λ̃) ⊂ Ω, λ < λ̃ < λ0}.
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Then Σ′(λ1) must contact Σ to first order at some point p ∈ Σ\Σ(λ1). Near this point p, we can
write Σ as the graph of u and Σ′(λ1) as the graph of v such that

u ≥ v, div

(
∇u√

1 + |∇u|2

)
= 1 = div

(
∇v√

1 + |∇v|2

)
.

Here u and v are functions defined on a small neighborhood of p in the the common tangent plane
to Σ and Σ′(λ1). Moreover, because Σ and Σ′(λ1) contact to first order we have

u(p) = v(p), ∇u(p) = ∇v(p).

The strong maximum principle tells us u ≡ v in a small neighborhood of p. However, soltutions
to the equation H(u) = 1 are analytic, and so Σ′(λ1) = Σ\Σ(λ1), which means Tλ1

is a plane of
symmetry for Σ. This completes the proof of Alexandrov’s theorem.

The proof above yields the following more general theorem.

Theorem 6. Let Σ ⊂ Rn be a compact, embedded hypersurface without boundary, and let κ1 ≤
κ2 ≤ · · · ≤ κn be its principle curvatures. If

F (κ1, . . . , κn) = a,

where a ∈ R and F is a homogeneous, C1 function, then Σ is a round sphere.

Moving planes and nonlinear equation on bounded domains: We present here some
classical results of Gidas, Ni, and Nirenberg about positive solutions to nonlinear partial differ-
ential equations. Our model equation is

∆u+ f(u) = 0, u > 0, (7)

where f is a C1 function. We consider this equation in either a bounded domain Ω with smooth
boundary, or in the whole space of Rn.

Theorem 7. Let Ω = BR = {|x| < R} and let u ∈ C2(Ω̄) be a positive solution to (7) on Ω with
the boundary condition u|∂Ω = 0. Then u(x) = u(r) and for 0 < r < R we have ∂u

∂r < 0.

Theorem 8. Let Ω = BR\BR̃ and let u ∈ C2(Ω̄) be a positive solution to (7) with the boundary
condition u||x|=R = 0. Then

R+ R̃

2
≤ |x| < R ⇒ ∂u

∂r
< 0.

Notice that in this last theorem we do not place a boundary condition on the inner sphere
|x| = R̃.

We use Alexandrov’s technique of moving planes. For a fixed direction γ ∈ Sn−1 and λ ∈ R
we take

Tλ = {〈x, γ〉 = λ}, Σ(λ) = {x ∈ Ω : 〈x, γ〉 > λ},
and we let Σ′(λ) be the reflection of Σ(λ) across Tλ. We also define

λ0 = sup{λ : Σ(λ) 6= ∅}, λ2 = inf{λ̃ : Σ′(λ) ⊂ Ω, λ̃ < λ < λ0},

and we let λ1 be the time of first contact of ∂(Σ′(λ)) with ∂Ω. This first contact occurs either
at a point p ∈ ∂Ω where ∂(Σ′(λ1)) is tangent to ∂Ω, or at a point p ∈ Tλ1

∩ ∂Ω where Tλ1
⊥ ∂Ω.

We call Σ(λ1) the maximal cap, and Σ(λ2) the optimal cap. Observe that λ2 ≤ λ1 < λ0, and it
is possible to have λ2 < λ1. For a point x ∈ Σ(λ), we denote the reflection of x across Tλ by xλ.

For the following technical results we take γ = e1, so that

Σ(λ) = {x ∈ Ω : x1 > λ}, (x1, x
′)λ = (2λ− x1, x

′), Σ′(λ) = {x : xλ ∈ Σ(λ)}.

We take u ∈ C2(Ω̄) with u > 0 in Ω and

∆u+ b1u1 + f(u) = 0, u|∂Ω∩{x1>λ} = 0. (8)
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Proposition 9. Let u satisfy (8)and assume b1 ≥ 0 on Σ(λ1)∪Σ′(λ1). Then for any λ ∈ (λ1, λ0)
we have, for x ∈ Σ(λ),

u1(x) < 0, u(x) < u(xλ), (9)

and therefore u1 < 0 in Σ(λ1). Moreover, if u1(p) = 0 for some p ∈ Ω ∩ Tλ1
then u(x) = u(xλ1),

and
Ω = Σ(λ1) ∪ Σ′(λ1) ∪ (Tλ1

∩ Ω),

and b1 ≡ 0.

We first use this technical proposition to prove Theorems 7 and 8. In the case of a ball, the
proposition tells us u1 < 0 in {x : |x| < R, x1 > 0}, and, by continuity, u1(x) ≤ 0 for x1 = 0.
However, we can also apply the same argument with γ = −e1, and so u1(x) = 0 for x1 = 0. The
equality case of Proposition 9 tells us u(x1, x

′) = u(−x1, x
′). Now rotate to obtain this symmetry

for any choice of unit vector e.
In the case of the annulus, Proposition 9 shows u1 < 0 in the maximal cap {x : |x| < R, x1 >

(R+ R̃)/2}. Moreover, if u1(x) = 0 for some x1 = (R+ R̃)/2 then Ω has to be symmetric about
the plane x1 = (R+ R̃)/2, which is it not. Thus u1 < 0 on {x : |x| < R, x1 ≥ (R+ R̃)/2}. Again,
we can apply this argument for any unit vector e to obtain Theorem 8.

To prove Proposition 9 we need the following lemmas.

Lemma 10. Let x0 ∈ ∂Ω with N1(x0) > 0, and let u ∈ C2(Ω ∩ {|x − x0| < ε}) for some ε > 0
with u > 0 in Ω and

∆u+ b1(x))u1 + f(u) = 0, u|∂Ω∩{|x−x0|<ε} = 0.

Then there exists δ > 0 such that u1 < 0 on Ω ∩ {|x− x0| < δ}.

Proof. We have ∂u
∂N ≤ 0, so (after possibly decreasing ε) we can assume u1 ≤ 0 on S = ∂Ω∩{|x−

x0| < ε}. If the lemma were not true, there would exist a sequence of points xj → x0 such that
u1(xj) ≥ 0. Let lj be the segment in the x1 direction joining xj to ∂Ω. Along this segment, u1

changes sign, going from positive to negative, so there is a point yj ∈ lj where u1(yj) = 0 and
u11(yj) ≤ 0. Taking the limit as j →∞ we have

u1(x0) = 0, u11(x0) ≤ 0. (10)

Suppose f(0) ≥ 0. Then

∆u+ b1u1 + f(u)− f(0) ≤ 0⇒ ∆u+ b1u1c1u = 0

for some function c1. Then by Theorem 3 we have ∂u
∂N (x0) < 0, which implies u1(x0) < 0,

which contradicts (10). On the other hand, if f(u) < 0 the ∆u(x0) = −f(0) > 0. Then
uij(x0) = −f(0)Ni(x0)Nj(x0), so in particular u11(x0) > 0, which again contradicts (10).

Lemma 11. Suppose that for some λ in [λ1, λ0) we have

u1 ≤ 0, u(x) ≤ u(xλ), u(x) 6≡ u(xλ)

in the cap Σ(λ). Then u(x) < u(xλ) and u1 < 0 on Tλ ∩ Ω.

Proof. In Σ′(λ), consider the function v(x) = u(xλ). In the reflected cap, we have

∆v − b1(xλ)v1 + f(v) = 0, v1 ≥ 0.

Taking differences, in Σ′(λ) we obtain

∆(v − u) + b1(x)(v1 − u1) + f(v)− f(u) = (b1(xλ) + b1(x))v1 ≥ 0,
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where we have used that b1 and v1 are both non-negative. If w = v − u in Σ′(λ), then we have

∆w + b1w + cw ≥ 0

for some function c. However, on Tλ we have xλ = x so w = 0, and then Theorem 1 implies
w = 0 on Σ′(λ). Thus u(x) > u(xλ) for x ∈ Σ′(λ), and so (reflecting across Tλ) for x ∈ Σ we
have u(x) < u(xλ). Also, Theorem 3 implies and w1 = −2u1 > 0 on Tλ.

Finally we prove Proposition 9.

Proof. Lemma 10 says we can assume (9) holds for λ0 − δ < λ < λ0 for some small, positive δ.
Let

µ = inf{λ̃ : (9) holds for λ̃ < λ < λ0} ≥ λ1.

We want to show that µ = λ1. By continuity, for x ∈ Σ(µ) we have

u(x) ≤ u(xµ), u1 < 0.

Now suppose µ > λ1 and take x0 ∈ ∂(Σ(µ))\Tµ. Then xµ0 ∈ Ω so 0 = u(x0) < u(xµ), so
u(x) 6≡ u(xµ) and Lemma 11 implies u(x) < u(xµ) in Σ(µ) and u1 < 0 on Tµ ∩Ω. By continuity,
there is some ε > 0 such that u1 < 0 in Ω ∩ {x1 > µ− ε}.

By our construction of µ, there is a sequence λj → µ− and xj ∈ Σ(λj) such that u(xj) ≥
u(xλ

j

j ). A subsequence of {xj} converges to x̄ ∈ Σ̄(µ) and xλ
j

j → x̄µ. Because (9) holds in Σ(µ),
we must have x̄ ∈ ∂Σ(µ). However, because µ > λ1, if x̄ ∈ ∂Σ(µ)\Tµ then u(x̄µ) > 0 = u(x̄),
which we just showed can’t happen. Thus x̄ ∈ Tµ ∩ Ω and so, for large j, the segement joining

xj to x
λj

j is contained in Ω. On this segment, u increases moving in the positive x1 direction, so
each segment contains a point yj such that u1(yj) ≥ 0. Taking a limit we see u1(x̄) ≥ 0 for some
x̄ ∈ Tµ, which contradicts u1 < 0 in Ω ∩ {x1 > µ− ε}. We conclude that µ = λ1.

In the case of equality, suppose we have u1(p) = 0 for some p ∈ Tλ1
∩ Ω. Then Lemma 11

tells us u(x) = u(xλ1) in Σ(λ1). Next, for any x ∈ ∂(Σ(λ1))\Tλ1
, we have u(x) = 0 = u(xλ1),

and so xλ1 ∈ ∂Ω, which implies Ω is symmetric. Finally, suppose b(x) > 0 for some x ∈ Ω. Then,
comparing u(x) to u(xλ1) and using (8) we have b1(x)u1(x) = b1(xλ1)u1(xλ1). However, one side
of this last equation is positive while the other side is negative, which is impossible.
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