The Maximum Principle and Applications

In these notes we prove some versions of the maximum principle and some applications, particularly using the moving planes argument of Alexandrov [A] (see also [GNN]). The standard references for the maximum principle are [GT] and [PW].

Definitions: A second order linear differential operator L has the form

$$L(u) = a_{ij}(x)u_{ij} + b_k(x)u_k + c(x)u,$$
(1)

where subscripts denote partial derivatives and we sum over repeated indices. The operator L is elliptic at a point x if the coefficient matrix $[a_{ij}(x)]$ is positive definite, and L is uniformly elliptic on a domain $\Omega \subset \mathbb{R}^n$ if there is $\Lambda > 0$ such that

$$\frac{1}{\Lambda} |\xi|^2 \le a_{ij}(x)\xi_i\xi_j \le \Lambda |\xi|^2 \tag{2}$$

for all $x \in \Omega$.

Let $F = F(x, u, Du, D^2u)$ be a (nonlinear) differential operator which is C^1 in all its arguments, and let w be a C^2 function. The linearization of F about w is the linear differential operator defined by

$$L_w(f) = \left. \frac{d}{d\epsilon} \right|_{\epsilon=0} F(w+\epsilon f) = a_{ij}(x)f_{ij} + b_k(x)f_k + c(x)f,\tag{3}$$

and we say F is uniformly elliptic if there is a number $\Lambda > 0$, which is independent of x and w, such that (2) holds, where a_{ij} are the coefficients of the linearization L_w .

It is worthwhile to consider some examples. The mean curvature operator

$$H(u) = \operatorname{div}\left(\frac{\nabla u}{\sqrt{1 + |\nabla u|^2}}\right)$$

is elliptic, but not uniformly elliptic. You lose control of Λ is $|\nabla u| \to \infty$, which is precisely what happens when $u(x) = \sqrt{R^2 - |x|^2}$ and $|x| \to R^-$. On the other hand, if $|\nabla u|$ is uniformly bounded then the nonlinear operator H(u) is uniformly elliptic about u. The Monge-Ampere operator

$$M(u) = \det D^2 u$$

is elliptic about w if and only if w is convex, that is, if and only if D^2w is positive definite.

Basic Maximum Principles: We start with the weak maximum principle.

Theorem 1. Let L be a uniformly ellptic, linear operator of the form (1) with $c \leq 0$, and let $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ satisfy

$$L(u) \ge 0, \qquad u|_{\partial\Omega} \le 0.$$

Then, unless $u \equiv 0$, for all $x \in \Omega$ we have u(x) < 0.

Proof. We suppose the theorem is not true, which means u has a non-negative maximum at some $p \in \Omega$, and derive a contradiction. This is easy if L(u) > 0, because

$$u(p) \ge 0, \qquad \nabla u(p) = 0, \qquad D^2 u \Big|_{p} (e, e) \le 0,$$
(4)

where e is any unit vector. Now let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of $a_{ij}(p)$, which are all positive, and let e_i be the eigenvector associated to λ_i . Then

$$L(u)(p) = a_{ij}(p)u_{ij}(p) + b_k(p)u_k(p) + c(p)u(p) = \sum_{i=1}^n \lambda_i \left. D^2 u \right|_p (e_i, e_i) + c(p)u(p) \le 0, \quad (5)$$

which contradicts L(u) > 0.

For the general case, we build a barrier function as follows. Recall that $[a_{ij}(p)]$ is positive definite, so (after a rotation) we can assume $a_{11}(p) > 0$. We define

$$w(x) = u(x) + \epsilon z(x) = u(x) + \epsilon (e^{\alpha(x_1 - p_1)} - 1),$$

where α and ϵ are constants we choose later. Observe that

$$L(z)(p) = e^{\alpha(x_1 - p_1)} (\alpha^2 a_{11}(p) + \alpha b_1(p)) + c(p)(e^{\alpha(x_1 - p_1)} - 1),$$

and we can choose $\alpha > 0$ sufficiently large to that L(z)(p) > 0. By continuity we also have L(z) > 0 is a small neighborhood of p. Because p is a local maximum for u, we can find a nearby $q \in \Omega$ such that u(q) < u(p), and now choose a positive

$$0 < \epsilon < \frac{u(p) - u(q)}{z(q)}.$$

Then

$$w(q) = u(q) + \epsilon z(q) < u(p), \qquad w(p) = u(p),$$

and so w has a positive interior maximum and satisfies L(w) > 0, which contradicts (5) as applied to w.

Taking differences, we immediately obtain the following comparison theorem:

Corollary 2. Let L be a uniformly ellptic, linear operator of the form (1) with $c \leq 0$, and let $u, v \in C^2(\Omega) \cap C^0(\overline{\Omega})$ satisfy

$$L(u) \ge L(v), \qquad u|_{\partial\Omega} \le v|_{\partial\Omega}$$

Then, unless $u \equiv v$, for all interior points $x \in \Omega$ we have u(x) < v(x).

Proof. Apply Theorem 1 to w = u - v.

We have a condition on the normal derivative of u at $\partial \Omega$ as well.

Theorem 3. Let L be uniformly elliptic, and let $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ satisfy

$$L(u) \ge 0, \qquad u \le 0, \qquad u|_{\partial\Omega} = 0.$$

Then, unless $u \equiv 0$, for each $p \in \partial \Omega$ we have

$$\frac{\partial u}{\partial N} > 0,$$

where N is the unit outward normal vector for $\partial \Omega$.

Observe that we do not place a condition on the sign of c here.

Proof. We first prove this result for $c \equiv 0$. Fix $p \in \partial \Omega$, and choose $r_1 > 0$ small enough so that the ball $B_{r_1}(\tilde{x})$ tangent to $\partial \Omega$ at p lies completely inside Ω . Let B_1 be this ball and let $B_2 = B_{r_1/2}(p)$. Now, for some constants α and ϵ we define

$$w = u + \epsilon z = u + \epsilon (e^{-\alpha |x - \tilde{x}|^2} - e^{-\alpha r_1^2}).$$

Observe that

$$z|_{B_1}>0, \qquad z|_{\partial B_1}=0, \qquad z<0 \quad \text{otherwise}.$$

By Theorem 1, we may assume u < 0 inside Ω , so in particular u < 0 on $\overline{B}_1 \setminus \{p\}$. Now pick $\epsilon > 0$ small enough so that $w = u + \epsilon z \leq 0$ on $(\partial B_2) \cap B_1$, and (as before) pick $\alpha > 0$ large enough so that L(w) > 0. Then, applying Theorem 1 to w on $B_1 \cap B_2$, we see w attains its maximum at p, so

$$0 \leq \frac{\partial w}{\partial N}(p) = \frac{\partial u}{\partial N}(p) + \epsilon \frac{\partial z}{\partial N}(p)$$

A quick computation shows

$$\frac{\partial z}{\partial N}(p) = -2\alpha e^{-\alpha r_1^2} \sum_{i=1}^n N_i x_i < 0,$$

which implies $\frac{\partial u}{\partial N}(p) > 0$.

Now we use the result above and a barrier to prove the theorem in the general case. Let $v = e^{-\beta x_1} u$, where $\beta > 0$ is a constant we choose later, and as before we can take $a_{11}(p) > 0$. Then

$$0 \le L(u) = e^{\beta x_1} L'(v) + v L(e^{\beta x_1}),$$

where L' is a uniformly elliptic, linear operator with no zero order term. Rearranging the above inequality we get

$$0 \le L'(v) + v(a_{11}\beta^2 + b_1\beta + c) = L'(v) + c'v.$$

Choose $\beta > 0$ large enough so that L'(v) > 0, at least near p. By what we have just proved,

$$\frac{\partial v}{\partial N}(p) > 0 \Rightarrow \frac{\partial u}{\partial N}(p) = e^{\beta p_1} \frac{\partial v}{\partial N}(p) > 0.$$

Finally, we prove a somewhat simplified version of the strong maximum principle, which will suffice for our purposes.

Theorem 4. Let $F = F(x, Du, D^2u)$ be a uniformly elliptic nonlinear differential operator which is C^1 in all its arguments, and let $u, v \in C^2(\Omega) \cap C^0(\overline{\Omega})$ satisfy

$$u \ge v,$$
 $F(x, Du, D^2u) = F(x, Dv, D^2v).$

If there is a point $p \in \overline{\Omega}$ such that

$$u(p) = v(p),$$
 $Du(p) = Dv(p)$

then $u \equiv v$.

It is possible to prove the strong maximum principle for operators which also depend on u, provided F is monotone in the function values of u, see Section 17.1 of [GT]. The proof is more complicated, and we omit it here.

Proof. As before, we assume u(p) = v(p), Du(p) = Dv(p), and that there are points where u > v, and derive a contradiction. There are two possible cases: either u(q) > v(q) for all interior points $q \in \Omega$, or there are some interior points p with u(p) = v(p). In the first case, let B_R be a ball of radius R such that $p \in \partial B_R$ and $\overline{B}_R \setminus \{p\} \subset \Omega$, and then let $A = B_R \setminus B_{\tilde{R}}$ where $\tilde{R} < R$ and $B_{\tilde{R}}$ has the same center as B_R . Also let $\Gamma_0 = \partial B_{\tilde{R}}$ and $\Gamma_1 = \partial B_R$. In the second case we can also choose an annulus A with the same form, provided we make a smart choice of p. We choose $p \in \partial \{u(x) = v(x)\}$ and observe that $\{u(x) \neq v(x)\}$ is a nonempty open set in Ω , so there is a q near p such that u(q) > v(q). Now let q be the center of our annulus, $R = \operatorname{dist}(p,q)$, such that $R < \operatorname{dist}(q, \partial \Omega)$, and construct A as above. In either case, we now have an annulus A where $u \geq v$ on A, u(p) = v(p) and Du(p) = Dv(p) for some $p \in \Gamma_1$ and $u - v \geq \epsilon$ on Γ_0 for some $\epsilon > 0$. For $0 \le t \le 1$ define

$$\chi(t) = F(x, tDu + (1-t)Dv, tD^2u + (1-t)D^2v).$$

Then by the mean value theorem

$$0 = F(x, Du, D^{2}u) - F(x, Dv, D^{2}v) = \chi(1) - \chi(0) = \chi'(t_{0}) = L(w)$$

for some $t_0 \in (0, 1)$, where w = u - v and L is the linearization of F, linearized about $t_0 u + (1 - t_0)v$. By the hypothesis on F, the linear operator L is a uniformly elliptic operator of the form (1) with c = 0. In addition to L(w) = 0, we also have

$$w|_A \ge 0, \qquad w|_{\Gamma_0} \ge \epsilon, \qquad w(p) = 0.$$

We complete the proof by finding a barrier z with

$$L(z) > 0, \qquad z|_{\Gamma_0} = \epsilon, \qquad z|_{\Gamma_1} = 0, \qquad \frac{\partial z}{\partial r} < 0.$$
 (6)

Indeed, once we construct z we use Corollary 2 on A to get $w \ge z$ and so

$$\frac{\partial w}{\partial r}(p) \le \frac{\partial z}{\partial r} < 0,$$

which contradicts Du(p) = Dv(p). It is straightforward to check that, for M large enough, the function

$$z(x) = f(|x|^2/2),$$
 $f(s) = \frac{\epsilon(e^{-Ms} - e^{-MR^2/2})}{e^{-M\tilde{R}^2/2} - e^{-MR^2/2}}$

satisfies all the conditions in (6).

The following corollary is a special case of the strong maximum principle.

Corollary 5. Let $F = F(x, Du, D^2u)$ be a uniformly elliptic, nonlinear differential operator which is homogeneous, i.e. F(x, 0, ..., 0) = 0 for all x. If $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ satisfies

$$u \le 0, \qquad F(x, Du, D^2u) = 0$$

then either $u \equiv 0$ or u < 0 on the interior of Ω .

Moving planes and constant mean curvature surfaces: We include here Alexandrov's proof [A] that the only compact, embedded, constant mean curvature surface in \mathbb{R}^3 without boundary is the round sphere (see also [Ho]). Let $\Sigma \subset \mathbb{R}^3$ be a compact, embedded, constant mean curvature surface without boundary, and let Ω be the 3-dimensional region it bounds. The strategy is to use moving planes to show that Σ has a plane of symmetry perpendicular to any unit vector $\gamma \in S^2$. Once we do this, we still need to show that all these symmetry planes pass through a common point, which is easy. If x_0 is the center of mass of Σ (*i.e.* the average of all the position vectors of Σ), then each symmetry plane must contain x_0 . After translation, we can assume $x_0 = 0$, and so Σ is invariant under all reflections through planes passing through the origin, which implies Σ is invariant under all rotations fixing 0. Thus Σ must be a round sphere.

Now fix some direction $\gamma \in S^2$. For $\lambda \in \mathbb{R}$ we let

$$T_{\lambda} = \{ \langle x, \gamma \rangle = \lambda \}, \qquad \Sigma(\lambda) = \{ x \in \Sigma : \langle x, \gamma \rangle > \lambda \},$$

and we let $\Sigma'(\lambda)$ be the reflection of $\Sigma(\lambda)$ through T_{λ} . Also define

$$\lambda_0 = \sup\{\lambda : \Sigma(\lambda) \neq \emptyset\}, \qquad \lambda_1 = \inf\{\lambda : \Sigma'(\lambda) \subset \Omega, \lambda < \lambda < \lambda_0\}.$$

Then $\Sigma'(\lambda_1)$ must contact Σ to first order at some point $p \in \Sigma \setminus \Sigma(\lambda_1)$. Near this point p, we can write Σ as the graph of u and $\Sigma'(\lambda_1)$ as the graph of v such that

$$u \ge v, \qquad \operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right) = 1 = \operatorname{div}\left(\frac{\nabla v}{\sqrt{1+|\nabla v|^2}}\right)$$

Here u and v are functions defined on a small neighborhood of p in the the common tangent plane to Σ and $\Sigma'(\lambda_1)$. Moreover, because Σ and $\Sigma'(\lambda_1)$ contact to first order we have

$$u(p) = v(p), \qquad \nabla u(p) = \nabla v(p).$$

The strong maximum principle tells us $u \equiv v$ in a small neighborhood of p. However, solutions to the equation H(u) = 1 are analytic, and so $\Sigma'(\lambda_1) = \Sigma \setminus \Sigma(\lambda_1)$, which means T_{λ_1} is a plane of symmetry for Σ . This completes the proof of Alexandrov's theorem.

The proof above yields the following more general theorem.

Theorem 6. Let $\Sigma \subset \mathbb{R}^n$ be a compact, embedded hypersurface without boundary, and let $\kappa_1 \leq \kappa_2 \leq \cdots \leq \kappa_n$ be its principle curvatures. If

$$F(\kappa_1,\ldots,\kappa_n)=a,$$

where $a \in \mathbb{R}$ and F is a homogeneous, C^1 function, then Σ is a round sphere.

Moving planes and nonlinear equation on bounded domains: We present here some classical results of Gidas, Ni, and Nirenberg about positive solutions to nonlinear partial differential equations. Our model equation is

$$\Delta u + f(u) = 0, \qquad u > 0,\tag{7}$$

where f is a C^1 function. We consider this equation in either a bounded domain Ω with smooth boundary, or in the whole space of \mathbb{R}^n .

Theorem 7. Let $\Omega = B_R = \{|x| < R\}$ and let $u \in C^2(\overline{\Omega})$ be a positive solution to (7) on Ω with the boundary condition $u|_{\partial\Omega} = 0$. Then u(x) = u(r) and for 0 < r < R we have $\frac{\partial u}{\partial r} < 0$.

Theorem 8. Let $\Omega = B_R \setminus B_{\tilde{R}}$ and let $u \in C^2(\bar{\Omega})$ be a positive solution to (7) with the boundary condition $u|_{|x|=R} = 0$. Then

$$\frac{R+\dot{R}}{2} \le |x| < R \quad \Rightarrow \quad \frac{\partial u}{\partial r} < 0.$$

Notice that in this last theorem we do not place a boundary condition on the inner sphere $|x| = \tilde{R}$.

We use Alexandrov's technique of moving planes. For a fixed direction $\gamma \in S^{n-1}$ and $\lambda \in \mathbb{R}$ we take

$$T_{\lambda} = \{ \langle x, \gamma \rangle = \lambda \}, \qquad \Sigma(\lambda) = \{ x \in \Omega : \langle x, \gamma \rangle > \lambda \},$$

and we let $\Sigma'(\lambda)$ be the reflection of $\Sigma(\lambda)$ across T_{λ} . We also define

$$\lambda_0 = \sup\{\lambda : \Sigma(\lambda) \neq \emptyset\}, \qquad \lambda_2 = \inf\{\tilde{\lambda} : \Sigma'(\lambda) \subset \Omega, \tilde{\lambda} < \lambda < \lambda_0\},$$

and we let λ_1 be the time of first contact of $\partial(\Sigma'(\lambda))$ with $\partial\Omega$. This first contact occurs either at a point $p \in \partial\Omega$ where $\partial(\Sigma'(\lambda_1))$ is tangent to $\partial\Omega$, or at a point $p \in T_{\lambda_1} \cap \partial\Omega$ where $T_{\lambda_1} \perp \partial\Omega$. We call $\Sigma(\lambda_1)$ the maximal cap, and $\Sigma(\lambda_2)$ the optimal cap. Observe that $\lambda_2 \leq \lambda_1 < \lambda_0$, and it is possible to have $\lambda_2 < \lambda_1$. For a point $x \in \Sigma(\lambda)$, we denote the reflection of x across T_{λ} by x^{λ} .

For the following technical results we take $\gamma = e_1$, so that

$$\Sigma(\lambda) = \{x \in \Omega : x_1 > \lambda\}, \qquad (x_1, x')^{\lambda} = (2\lambda - x_1, x'), \qquad \Sigma'(\lambda) = \{x : x^{\lambda} \in \Sigma(\lambda)\}.$$

We take $u \in C^2(\overline{\Omega})$ with u > 0 in Ω and

$$\Delta u + b_1 u_1 + f(u) = 0, \qquad u|_{\partial\Omega \cap \{x_1 > \lambda\}} = 0.$$
(8)

Proposition 9. Let u satisfy (8) and assume $b_1 \ge 0$ on $\Sigma(\lambda_1) \cup \Sigma'(\lambda_1)$. Then for any $\lambda \in (\lambda_1, \lambda_0)$ we have, for $x \in \Sigma(\lambda)$,

$$u_1(x) < 0, \qquad u(x) < u(x^{\lambda}),$$
(9)

and therefore $u_1 < 0$ in $\Sigma(\lambda_1)$. Moreover, if $u_1(p) = 0$ for some $p \in \Omega \cap T_{\lambda_1}$ then $u(x) = u(x^{\lambda_1})$, and

$$\Omega = \Sigma(\lambda_1) \cup \Sigma'(\lambda_1) \cup (T_{\lambda_1} \cap \Omega),$$

and $b_1 \equiv 0$.

We first use this technical proposition to prove Theorems 7 and 8. In the case of a ball, the proposition tells us $u_1 < 0$ in $\{x : |x| < R, x_1 > 0\}$, and, by continuity, $u_1(x) \le 0$ for $x_1 = 0$. However, we can also apply the same argument with $\gamma = -e_1$, and so $u_1(x) = 0$ for $x_1 = 0$. The equality case of Proposition 9 tells us $u(x_1, x') = u(-x_1, x')$. Now rotate to obtain this symmetry for any choice of unit vector e.

In the case of the annulus, Proposition 9 shows $u_1 < 0$ in the maximal cap $\{x : |x| < R, x_1 > (R + \tilde{R})/2\}$. Moreover, if $u_1(x) = 0$ for some $x_1 = (R + \tilde{R})/2$ then Ω has to be symmetric about the plane $x_1 = (R + \tilde{R})/2$, which is it not. Thus $u_1 < 0$ on $\{x : |x| < R, x_1 \ge (R + \tilde{R})/2\}$. Again, we can apply this argument for any unit vector e to obtain Theorem 8.

To prove Proposition 9 we need the following lemmas.

Lemma 10. Let $x_0 \in \partial \Omega$ with $N_1(x_0) > 0$, and let $u \in C^2(\Omega \cap \{|x - x_0| < \epsilon\})$ for some $\epsilon > 0$ with u > 0 in Ω and

$$\Delta u + b_1(x) u_1 + f(u) = 0, \qquad u|_{\partial \Omega \cap \{|x - x_0| < \epsilon\}} = 0.$$

Then there exists $\delta > 0$ such that $u_1 < 0$ on $\Omega \cap \{|x - x_0| < \delta\}$.

Proof. We have $\frac{\partial u}{\partial N} \leq 0$, so (after possibly decreasing ϵ) we can assume $u_1 \leq 0$ on $S = \partial \Omega \cap \{|x - x_0| < \epsilon\}$. If the lemma were not true, there would exist a sequence of points $x^j \to x_0$ such that $u_1(x^j) \geq 0$. Let l_j be the segment in the x_1 direction joining x^j to $\partial \Omega$. Along this segment, u_1 changes sign, going from positive to negative, so there is a point $y^j \in l_j$ where $u_1(y^j) = 0$ and $u_{11}(y^j) \leq 0$. Taking the limit as $j \to \infty$ we have

$$u_1(x_0) = 0, \qquad u_{11}(x_0) \le 0.$$
 (10)

Suppose $f(0) \ge 0$. Then

$$\Delta u + b_1 u_1 + f(u) - f(0) \le 0 \Rightarrow \Delta u + b_1 u_1 c_1 u = 0$$

for some function c_1 . Then by Theorem 3 we have $\frac{\partial u}{\partial N}(x_0) < 0$, which implies $u_1(x_0) < 0$, which contradicts (10). On the other hand, if f(u) < 0 the $\Delta u(x_0) = -f(0) > 0$. Then $u_{ij}(x_0) = -f(0)N_i(x_0)N_j(x_0)$, so in particular $u_{11}(x_0) > 0$, which again contradicts (10).

Lemma 11. Suppose that for some λ in $[\lambda_1, \lambda_0)$ we have

$$u_1 \le 0, \qquad u(x) \le u(x^{\lambda}), \qquad u(x) \not\equiv u(x^{\lambda})$$

in the cap $\Sigma(\lambda)$. Then $u(x) < u(x^{\lambda})$ and $u_1 < 0$ on $T_{\lambda} \cap \Omega$.

Proof. In $\Sigma'(\lambda)$, consider the function $v(x) = u(x^{\lambda})$. In the reflected cap, we have

$$\Delta v - b_1(x^{\lambda})v_1 + f(v) = 0, \qquad v_1 \ge 0.$$

Taking differences, in $\Sigma'(\lambda)$ we obtain

$$\Delta(v-u) + b_1(x)(v_1 - u_1) + f(v) - f(u) = (b_1(x^{\lambda}) + b_1(x))v_1 \ge 0,$$

where we have used that b_1 and v_1 are both non-negative. If w = v - u in $\Sigma'(\lambda)$, then we have

$$\Delta w + b_1 w + cw \ge 0$$

for some function c. However, on T_{λ} we have $x^{\lambda} = x$ so w = 0, and then Theorem 1 implies w = 0 on $\Sigma'(\lambda)$. Thus $u(x) > u(x^{\lambda})$ for $x \in \Sigma'(\lambda)$, and so (reflecting across T_{λ}) for $x \in \Sigma$ we have $u(x) < u(x^{\lambda})$. Also, Theorem 3 implies and $w_1 = -2u_1 > 0$ on T_{λ} .

Finally we prove Proposition 9.

Proof. Lemma 10 says we can assume (9) holds for $\lambda_0 - \delta < \lambda < \lambda_0$ for some small, positive δ . Let

$$\mu = \inf\{\hat{\lambda} : (9) \text{ holds for } \hat{\lambda} < \lambda < \lambda_0\} \ge \lambda_1.$$

We want to show that $\mu = \lambda_1$. By continuity, for $x \in \Sigma(\mu)$ we have

$$u(x) \le u(x^{\mu}), \qquad u_1 < 0.$$

Now suppose $\mu > \lambda_1$ and take $x_0 \in \partial(\Sigma(\mu)) \setminus T_{\mu}$. Then $x_0^{\mu} \in \Omega$ so $0 = u(x_0) < u(x^{\mu})$, so $u(x) \neq u(x^{\mu})$ and Lemma 11 implies $u(x) < u(x^{\mu})$ in $\Sigma(\mu)$ and $u_1 < 0$ on $T_{\mu} \cap \Omega$. By continuity, there is some $\epsilon > 0$ such that $u_1 < 0$ in $\Omega \cap \{x_1 > \mu - \epsilon\}$.

By our construction of μ , there is a sequence $\lambda^j \to \mu^-$ and $x_j \in \Sigma(\lambda^j)$ such that $u(x_j) \ge u(x_j^{\lambda^j})$. A subsequence of $\{x_j\}$ converges to $\bar{x} \in \bar{\Sigma}(\mu)$ and $x_j^{\lambda^j} \to \bar{x}^{\mu}$. Because (9) holds in $\Sigma(\mu)$, we must have $\bar{x} \in \partial \Sigma(\mu)$. However, because $\mu > \lambda_1$, if $\bar{x} \in \partial \Sigma(\mu) \setminus T_{\mu}$ then $u(\bar{x}^{\mu}) > 0 = u(\bar{x})$, which we just showed can't happen. Thus $\bar{x} \in T_{\mu} \cap \Omega$ and so, for large j, the segment joining x_j to $x_j^{\lambda_j}$ is contained in Ω . On this segment, u increases moving in the positive x_1 direction, so each segment contains a point y_j such that $u_1(y_j) \ge 0$. Taking a limit we see $u_1(\bar{x}) \ge 0$ for some $\bar{x} \in T_{\mu}$, which contradicts $u_1 < 0$ in $\Omega \cap \{x_1 > \mu - \epsilon\}$. We conclude that $\mu = \lambda_1$.

In the case of equality, suppose we have $u_1(p) = 0$ for some $p \in T_{\lambda_1} \cap \Omega$. Then Lemma 11 tells us $u(x) = u(x^{\lambda_1})$ in $\Sigma(\lambda_1)$. Next, for any $x \in \partial(\Sigma(\lambda_1)) \setminus T_{\lambda_1}$, we have $u(x) = 0 = u(x^{\lambda_1})$, and so $x^{\lambda_1} \in \partial\Omega$, which implies Ω is symmetric. Finally, suppose b(x) > 0 for some $x \in \Omega$. Then, comparing u(x) to $u(x^{\lambda_1})$ and using (8) we have $b_1(x)u_1(x) = b_1(x^{\lambda_1})u_1(x^{\lambda_1})$. However, one side of this last equation is positive while the other side is negative, which is impossible.

References

- [A] A. D. Alexandrov. A characteristic property of spheres. Ann. Mat. Pura Appl. 58 (1962), 303–315.
- [GNN] B. Gidas, W.-N. Ni, and L. Nirenberg. Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68 (1979), 209–243.
- [GT] D. Gilbarg and N. Trudinger. Elliptic Partial Differential Equations of Second Order. Springer-Verlag, 1983.
- [Ho] H. Hopf. Differential Geometry in the Large. Springer-Verlag, 1983.
- [PW] M. Protter and H. Weinberger. Maximum Principles in Differential Equations. Prentice-Hall, 1967.