The Maximum Principle and Applications

In these notes we prove some versions of the maximum principle and some applications,
particularly using the moving planes argument of Alexandrov [A] (see also [GNN]). The standard
references for the maximum principle are [GT] and [PW].

Definitions: A second order linear differential operator L has the form

L(u) = a;;(z)usj + bg(x)ur, + c(x)u, (1)

where subscripts denote partial derivatives and we sum over repeated indices. The operator L is
elliptic at a point z if the coefficient matrix [a;;(x)] is positive definite, and L is uniformly elliptic
on a domain Q C R™ if there is A > 0 such that

TIE? < aiy()6it; < AleP 2

for all x € Q.

Let F = F(x,u, Du, D*u) be a (nonlinear) differential operator which is C! in all its argu-
ments, and let w be a C? function. The linearization of F about w is the linear differential
operator defined by

Ly(f) = F(w+ ef) = aij(v) fij + b (x) fr + c(x) f, (3)
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de
and we say F' is uniformly elliptic if there is a number A > 0 , which is independent of x and w,

such that (2) holds, where a;; are the coefficients of the linearization L,,.
It is worthwhile to consider some examples. The mean curvature operator

. Vu
H(u) = div (W)

is elliptic, but not uniformly elliptic. You lose control of A is |[Vu| — oo, which is precisely
what happens when u(z) = \/R? — |z|2 and |z] = R~. On the other hand, if |Vu| is uniformly
bounded then the nonlinear operator H(u) is uniformly elliptic about w. The Monge-Ampere
operator
M (u) = det D*u
is elliptic about w if and only if w is convex, that is, if and only if D?w is positive definite.
Basic Maximum Principles: We start with the weak maximum principle.

Theorem 1. Let L be a uniformly ellptic, linear operator of the form (1) with ¢ < 0, and let
u € C3Q)NCOQ) satisfy
L(u) >0, U5 < 0.

Then, unless u = 0, for all x € Q we have u(x) < 0.

Proof. We suppose the theorem is not true, which means u has a non-negative maximum at some
p € Q, and derive a contradiction. This is easy if L(u) > 0, because

u(p) > 0, Vu(p) =0, Dzu’p (e,e) <0, (4)

where e is any unit vector. Now let A1,..., A, be the eigenvalues of a,;(p), which are all positive,
and let e; be the eigenvector associated to ;. Then

L(u)(p) = as;(p)ui; (p) + bi(p)ur(p) + c(p)u(p) = Y _ Xi D*ul  (ei,e;) + c(p)u(p) <0,  (5)
=1



which contradicts L(u) > 0.
For the general case, we build a barrier function as follows. Recall that [a;;(p)] is positive
definite, so (after a rotation) we can assume a11(p) > 0. We define

w(z) = u(z) + ez(z) = u(x) + e(e*®7P1) — 1),
where o and € are constants we choose later. Observe that
L(2)(p) = e*17P) (a%ay, (p) + aby (p)) + c(p) (e*#1 7P — 1),

and we can choose o > 0 sufficiently large to that L(z)(p) > 0. By continuity we also have
L(z) > 0 is a small neighborhood of p. Because p is a local maximum for u, we can find a nearby
q € Q such that u(q) < u(p), and now choose a positive

(p) —ula)

u
O<e<
z(q)

Then
w(q) = u(q) +ez(q) <u(p),  w(p)=ulp),

and so w has a positive interior maximum and satisfies L(w) > 0, which contradicts (5) as applied
to w. O

Taking differences, we immediately obtain the following comparison theorem:

Corollary 2. Let L be a uniformly ellptic, linear operator of the form (1) with ¢ <0, and let
u,v € C?(Q) N C%Q) satisfy

L(u) > L(v), Ulgn < V]ygq -
Then, unless u = v, for all interior points x € Q we have u(z) < v(x).
Proof. Apply Theorem 1 to w = u — v. O

We have a condition on the normal derivative of u at 9Q as well.

Theorem 3. Let L be uniformly elliptic, and let u € C%(Q) N CY(Q) satisfy
L(u) >0, u <0, ulyo = 0.

Then, unless u = 0, for each p € 02 we have

ou
— >0,
ON
where N is the unit outward normal vector for 0S).
Observe that we do not place a condition on the sign of ¢ here.

Proof. We first prove this result for ¢ = 0. Fix p € 01, and choose r; > 0 small enough so
that the ball B, (Z) tangent to 002 at p lies completely inside 2. Let B; be this ball and let
By = B, /2(p). Now, for some constants o and € we define

_ _~2 _ 2
w=u+ez=u+ele I _gmarn)

Observe that
zlg, >0, 2lop, =0, 2z <0 otherwise.



By Theorem 1, we may assume u < 0 inside ©, so in particular v < 0 on B;\{p}. Now pick ¢ > 0
small enough so that w = u+ €z < 0 on (0B2) N By, and (as before) pick o > 0 large enough so
that L(w) > 0. Then, applying Theorem 1 to w on By N By, we see w attains its maximum at p,
SO
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A quick computation shows
9z Car? N
a—N(p) = —2ae E N;z; <0,

i=1

which implies 2% (p) > 0.
Now we use the result above and a barrier to prove the theorem in the general case. Let
v = e P71y, where B > 0 is a constant we choose later, and as before we can take a;(p) > 0.
Then
0 < L(u) = e’ L' (v) + vL(e’™),

where L’ is a uniformly elliptic, linear operator with no zero order term. Rearranging the above
inequality we get
0 < L'(v) +v(anf®+bB+c)=Lv)+cv.

Choose 8 > 0 large enough so that L'(v) > 0, at least near p. By what we have just proved,

»
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Finally, we prove a somewhat simplified version of the strong maximum principle, which will
suffice for our purposes.

Theorem 4. Let F = F(z, Du, D*u) be a uniformly elliptic nonlinear differential operator which
is C* in all its arguments, and let u,v,€ C?(Q) N C°(Q) satisfy

u> v, F(z, Du, D*u) = F(z, Dv, D*v).
If there is a point p € Q0 such that

u(p) =v(p),  Du(p) = Dv(p)
then uw = v.

It is possible to prove the strong maximum principle for operators which also depend on wu,
provided F' is monotone in the function values of u, see Section 17.1 of [GT]. The proof is more
complicated, and we omit it here.

Proof. As before, we assume u(p) = v(p), Du(p) = Dv(p), and that there are points where u > v,
and derive a contradiction. There are two possible cases: either u(q) > v(q) for all interior points
g € Q, or there are some interior points p with u(p) = v(p). In the first case, let Br be a ball
of radius R such that p € 9B and Bg\{p} C Q, and then let A = Bg\Bj where R < R and
By, has the same center as Bg. Also let I'g = 0Bp and I'y = 0BRg. In the second case we can
also choose an annulus A with the same form, provided we make a smart choice of p. We choose
p € Hu(z) = v(x)} and observe that {u(x) # v(z)} is a nonempty open set in €, so there is
a ¢ near p such that u(q) > v(g). Now let ¢ be the center of our annulus, R = dist(p, q), such
that R < dist(g, 992), and construct A as above. In either case, we now have an annulus A where
u>wvon A, u(p) = v(p) and Du(p) = Dv(p) for some p € I'; and u—v > € on I'y for some € > 0.



For 0 <t <1 define
X(t) = F(z,tDu+ (1 — t)Dv,tD*u + (1 — t)D?v).
Then by the mean value theorem
0 = F(z, Du, D*u) — F(z, Dv, D*v) = x(1) — x(0) = x(to) = L(w)

for some tg € (0,1), where w = u—v and L is the linearization of F, linearized about tou+(1—tg)v.
By the hypothesis on F, the linear operator L is a uniformly elliptic operator of the form (1) with
¢ = 0. In addition to L(w) = 0, we also have

w|, >0, wlp, > €, w(p) = 0.

We complete the proof by finding a barrier z with

0z
L(z) >0, zlp, = € zlp, =0, o < 0. (6)

Indeed, once we construct z we use Corollary 2 on A to get w > z and so

ow < 0z

E(p)_a<oa

which contradicts Du(p) = Dv(p). It is straightforward to check that, for M large enough, the

function 2
6(e—Ms _ e~ MR /2)
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@) = /D 1) = S )
satisfies all the conditions in (6).

The following corollary is a special case of the strong maximum principle.

Corollary 5. Let F = F(x, Du, D*u) be a uniformly elliptic, nonlinear differential operator
which is homogeneous, i.e. F(x,0,...,0) =0 for all x. If u € C*(Q) N C°(Q) satisfies

u <0, F(z,Du,D*u) =0

then either u =0 or u < 0 on the interior of 2.

O

Moving planes and constant mean curvature surfaces: We include here Alexandrov’s
proof [A] that the only compact, embedded, constant mean curvature surface in R® without
boundary is the round sphere (see also [Ho]). Let ¥ C R® be a compact, embedded, constant
mean curvature surface without boundary, and let Q2 be the 3-dimensional region it bounds. The
strategy is to use moving planes to show that ¥ has a plane of symmetry perpendicular to any
unit vector v € S2. Once we do this, we still need to show that all these symmetry planes pass
through a common point, which is easy. If xq is the center of mass of ¥ (i.e. the average of all
the position vectors of ), then each symmetry plane must contain xg. After translation, we can
assume zg = 0, and so ¥ is invariant under all reflections through planes passing through the
origin, which implies ¥ is invariant under all rotations fixing 0. Thus ¥ must be a round sphere.

Now fix some direction v € S2. For A € R we let

Ty ={({z,7) = A}, EA) ={zeX:(z,7) > A}
and we let 3'(X) be the reflection of 3(\) through Ty. Also define

Ao =sup{A: S\ £ 2}, A =inf{A: TN CQN< A< A}



Then ¥’(A1) must contact ¥ to first order at some point p € 3¥\X(A1). Near this point p, we can
write 3 as the graph of u and ¥'(\;) as the graph of v such that

S di Vu 1 di Vv

u > v, Vl—m—=]=1=div| —— | .

B V14 |Vul|? V14 |Vol?

Here v and v are functions defined on a small neighborhood of p in the the common tangent plane
to X and 3'(A1). Moreover, because ¥ and /(A1) contact to first order we have

u(p) =v(p),  Vu(p) = Vu(p).

The strong maximum principle tells us © = v in a small neighborhood of p. However, soltutions
to the equation H(u) = 1 are analytic, and so X'(A;) = ¥\X (A1), which means T), is a plane of
symmetry for ¥. This completes the proof of Alexandrov’s theorem.

The proof above yields the following more general theorem.

Theorem 6. Let ¥ C R™ be a compact, embedded hypersurface without boundary, and let k1 <
Ko < -+ < Ky be its principle curvatures. If

F(ki,...,kn) = a,
where a € R and F is a homogeneous, C' function, then ¥ is a round sphere.

Moving planes and nonlinear equation on bounded domains: We present here some
classical results of Gidas, Ni, and Nirenberg about positive solutions to nonlinear partial differ-
ential equations. Our model equation is

Au—+ f(u) =0, u > 0, (7)
where f is a C'! function. We consider this equation in either a bounded domain € with smooth
boundary, or in the whole space of R”.

Theorem 7. Let Q = Br = {|z| < R} and let u € C*(Q) be a positive solution to (7) on Q) with
the boundary condition u|yq = 0. Then u(z) = u(r) and for 0 < r < R we have 3* < 0.

Theorem 8. Let Q = Br\Bj, and let u € C?(Q) be a positive solution to (7) with the boundary
condition ul, _r = 0. Then

R+R ou
< — .

5 <lzg|]<R = 8r<0

Notice that in this last theorem we do not place a boundary condition on the inner sphere
|z| = R.

We use Alexandrov’s technique of moving planes. For a fixed direction v € S*~! and A € R
we take

TA:{<‘T7’Y>:>\}v E(A):{$EQ<$,’Y>>A},
and we let X'(\) be the reflection of X(\) across Ty. We also define
X =sup{A: SN # 2}, A =inf{A: X'\ C QA< A< A},

and we let A\; be the time of first contact of 9(X'())) with 9Q. This first contact occurs either
at a point p € 9 where 9(X'(A\1)) is tangent to I, or at a point p € T, NI where Ty, L IN.
We call (A1) the maximal cap, and ¥(\y) the optimal cap. Observe that Aa < A; < Ao, and it
is possible to have Ao < A;. For a point # € X()), we denote the reflection of = across Ty by .
For the following technical results we take v = e, so that
YN ={zeQ:z1 > A}, (z1,2) = (2\ — 1, 2), Y\ ={z:2* e BN}
We take u € C2(Q) with u > 0 in © and

Au+ bjug + f(u) =0, Ulpon gz >ap = 0- (8)



Proposition 9. Let u satisfy (8)and assume by > 0 on S(A1)UX'(A1). Then for any X € (A1, Xo)
we have, for x € X(A),
ui(x) <0, u(z) < u(z?), 9)
and therefore u; < 0 in X(\1). Moreover, if u1(p) = 0 for some p € QN Ty, then u(z) = u(z),
and
Q=T\)UX (A1) U(Ty, NQ),
and by = 0.

We first use this technical proposition to prove Theorems 7 and 8. In the case of a ball, the
proposition tells us u; < 0 in {z : |z| < R,z; > 0}, and, by continuity, u;(z) < 0 for 3 = 0.
However, we can also apply the same argument with v = —e;, and so u;(x) = 0 for 7 = 0. The
equality case of Proposition 9 tells us u(z1,2") = u(—2z1,2’). Now rotate to obtain this symmetry
for any choice of unit vector e.

In the case of the annulus, Proposition 9 shows u; < 0 in the maximal cap {z : |z| < R,z1 >
(R + R)/2}. Moreover, if u;(z) = 0 for some z; = (R + R)/2 then Q has to be symmetric about
the plane z; = (R4 R)/2, which is it not. Thus u; < 0 on {z : || < R,z; > (R+ R)/2}. Again,
we can apply this argument for any unit vector e to obtain Theorem 8.

To prove Proposition 9 we need the following lemmas.

Lemma 10. Let xo € 9Q with N1(zo) > 0, and let u € C*(Q N {|z — 20| < €}) for some € > 0
with w > 0 in Q and

Au+bi(z))ur + f(u) =0, U|a§m{|x—zo\<e} =0.

Then there exists 6 > 0 such that u1 <0 on QN {|Jz — zo| < d}.

Proof. We have % < 0, so (after possibly decreasing €) we can assume u; < 0 on S = 9QN{|z—
xo| < €}. If the lemma were not true, there would exist a sequence of points zJ — xo such that
uy(z7) > 0. Let I; be the segment in the z; direction joining z7 to 9. Along this segment, u;
changes sign, going from positive to negative, so there is a point y/ € I; where u;(y?) = 0 and
u11(y?) < 0. Taking the limit as 5 — co we have

up(xg) =0, upr(x0) <0 (10)

Suppose f(0) > 0. Then

Au+biug + f(u) — f(0) <0 = Au+biujcau =0

for some function ¢;. Then by Theorem 3 we have g—]{,(xo) < 0, which implies wu;(zg) < 0,

which contradicts (10). On the other hand, if f(u) < 0 the Au(zg) = —f(0) > 0. Then
wij(xo) = — f(0)Ni(x0)Nj(x0), so in particular ui1(x¢) > 0, which again contradicts (10). O

Lemma 11. Suppose that for some X in [\, Ag) we have
u; <0, u(z) < u(z?), u(z) # u(z)
in the cap S(N\). Then u(z) < u(z*) and u; <0 on T\ N Q.
Proof. In (), consider the function v(z) = u(z*). In the reflected cap, we have
Av — bl(:c)‘)vl + f(v) =0, vy > 0.
Taking differences, in ¥'(\) we obtain

Av = u) +by(@)(v1 — wr) + f(v) = f(u) = (b (2) + ba(x))v1 >0,



where we have used that b; and v are both non-negative. If w = v — u in ¥'()\), then we have

Aw +bjw +cw >0

for some function ¢. However, on Ty we have 2* = z so w = 0, and then Theorem 1 implies

w = 0on X'(\). Thus u(x) > u(z}) for x € ¥'()\), and so (reflecting across Ty) for z € ¥ we
have u(x) < u(x*). Also, Theorem 3 implies and w; = —2u; > 0 on T). O

Finally we prove Proposition 9.

Proof. Lemma 10 says we can assume (9) holds for \g — § < A < A for some small, positive 4.
Let
p=inf{X: (9) holds for A < A < A} > Ay.

We want to show that u = A;. By continuity, for € X(u) we have
u(z) < u(a?), up < 0.

Now suppose p > A and take zop € 9(X(n))\T,. Then zff € Q so 0 = u(zg) < u(zh), so
uw(x) # u(z*) and Lemma 11 implies u(x) < u(x#) in 3(p) and u; < 0 on T, N 2. By continuity,
there is some € > 0 such that u3 < 0in QN {z; > p —€}.

By our construction of y, there is a sequence A — u~ and z; € X(\) such that u(z;) >
u(xj)‘]) A subsequence of {z;} converges to z € %(u) and x?‘y — . Because (9) holds in X(u),
we must have z € 0X(u). However, because p > Ay, if € 0X(p)\T), then u(z") > 0 = u(T),
which we just showed can’t happen. Thus & € T), N € and so, for large j, the segement joining

x; to x;’ is contained in 2. On this segment, u increases moving in the positive x; direction, so
each segment contains a point y; such that u,(y;) > 0. Taking a limit we see u;(Z) > 0 for some
z € T}, which contradicts u; < 0in QN {z; > p —€}. We conclude that p = A;.

In the case of equality, suppose we have u;(p) = 0 for some p € Ty, N Q. Then Lemma 11
tells us u(z) = u(z*) in £(\). Next, for any x € (X(\1))\Ty,, we have u(z) = 0 = u(z™),
and so 2 € 99, which implies €2 is symmetric. Finally, suppose b(z) > 0 for some = € Q. Then,
comparing u(z) to u(z*!) and using (8) we have by (x)ui(z) = by (z*1)u; (z™). However, one side
of this last equation is positive while the other side is negative, which is impossible. O
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