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In this note we prove the monotonicity formula for minimal submanifolds of Rn, and discuss
some of its consequences.

Let Σk ⊂ Rn be a k-dimensional submanifold of Euclidean space, and let H be its mean
curvature vector. Recall that Σ is minimal if H ≡ 0. Because H is the first variation of the
k-dimensional volume of Σ, the requirement H ≡ 0 is equivalent to Σ being a critical point of the
volume functional under compactly supported variations. In other words, Σ is minimal means
precisely ∫

Σ

divΣ(X) = 0 (1)

for any vector field X (with values in Rn) with compact support.

Theorem 1. Let Σk ⊂ Rn be minimal. Fix x0 ∈ Rn and R > r > 0, and denote the (ambient)
ball centered at x0 with radius ρ by Bρ. Then

R−k Vol(BR ∩ Σ)− r−k Vol(Br ∩ Σ) =
∫

(BR\Br)∩Σ

|(x− x0)⊥|2

|x− x0|k+2
. (2)

Before we begin the proof, observe that mean curvature scales: for any λ > 0

H(λΣ) =
1
λ
H(Σ).

In particular, any rescaling of a minimal submanifold is still minimal. Indeed, this is the key
observation for understanding the monotonicity formula. One can understand monotonicity giving
a variational characterization of the fact that minimality is preserved by rescaling. Knowing this,
one should first try to prove monotonicity by applying the divergence theorem as in equation (1)
to a radial vector field. In fact, this is the approach we will take. Intuitively, the vector field
you want to consider is r∂r restricted to a ball. This in not quite smooth enough to apply the
variational formula, so we will need to regularize it.

The proof below is essentially the proof in Simon’s book [Si], and easily adapts to the case
where Σ is a minimal varifold or a minimal current. One can find another proof in Colding and
Minicozzi’s book [CM].

Proof. To start, we will show

R−k Vol(BR ∩ Σ)− r−k Vol(Br ∩ Σ) ≥ 0,

and then recover the right hand side of the inequality above by examining our calculation more
carefully.

Let ρ = |x − x0|, and for a given compactly supported function η consider the vector field
Xη = η(ρ)(x− x0). For p ∈ Σ, choose an adapted orthonormal frame

{E1, . . . , En}, {E1, . . . , Ek} ∈ TpΣ, {Ek+1, . . . , En} ∈ (TpΣ)⊥.
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Then

divΣ(X) =
k∑
j=1

〈∇Ejη(x− x0), Ej〉 =
k∑
j=1

η(ρ)〈Ej , Ej〉+
k∑
j=1

〈(E(η))(x− x0), Ej〉

= kη(ρ) +
k∑
j=1

η′(ρ)
ρ
〈(x− x0)j(x− x0), Ej〉 = kη(ρ) +

η′(ρ)
ρ
|(x− x0)T |2

= kη(ρ) + ρη′(ρ)
(
|(x− x0)T |2

|x− x0|2

)
= kη(ρ) + ρη′(ρ)

(
|x− x0|2 − |(x− x0)⊥|2

|x− x0|2

)
= kη(ρ) + ρη′(ρ)

(
1− |(x− x0)⊥|2

ρ2

)
.

For 0 < ε < 1 choose φ(t) such that

φ′(t) ≤ 0, φ(t) =


1 t ≤ 1− ε

0 t ≥ 1.

Let η(ρ) = φ(ρ/r) and define

I(r) =
∫

Σ

η(ρ) =
∫

Σ

φ
(ρ
r

)
. (3)

By the dominated convergence theorem,

lim
ε→0+

I(r) = Vol(Br ∩ Σ).

Also,

ρη′(ρ) = ρ
∂

∂ρ
(φ(ρ/r)) =

ρ

r
φ′(ρ/r)

r
∂

∂r
(φ(ρ/r)) = r

(
− ρ

r2
φ′(ρ/r)

)
= −ρφ

′(ρ/r)
r

= −ρη′(ρ).

Now evaluate equation (1) with X = η(ρ)(x− x0). We have

0 =
∫

Σ

kη(ρ) + ρη′(ρ)
(

1− |(x− x0)⊥|2

|x− x0|2

)
=

∫
Σ

kφ(ρ/r)− r ∂
∂r

(φ(ρ/r)) + r
∂

∂r
(φ(ρ/r))

|(x− x0)⊥|2

ρ2

≥
∫

Σ

kφ(ρ/r)− r ∂
∂r

(φ(ρ/r)) = k

∫
Σ

φ(ρ/r)− r ∂
∂r

∫
Σ

φ(ρ/r)

= kI(r)− rI ′(r).

Now differentiate

d

dr
(r−kI(r)) = −kr−k−1I(r) + r−kI ′(r) = −r−k−1(kI − rI ′) ≥ 0.

We conclude that r−kI(r) is a monotone nondecreasing function of r. Let ε → 0+, we then see
r−k Vol(Br ∩ Σ) is monotone nondecreasing. In other words,

R−k Vol(BR ∩ Σ)− r−k Vol(Br ∩ Σ) ≥ 0
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for 0 < r < R.
To obtain equation (2) we analyze the term we discarded:∫

Σ

r
∂

∂r
(φ(ρ/r))

|(x− x0) ⊥ |2

|x− x0|2
.

Notice that
∂

∂r
(φ(ρ/r)) 6= 0⇔ (1− ε)r ≤ ρ ≤ r,

or, equivalently,
∂

∂r
(φ(ρ/r)) 6= 0⇔ (1− ε)kρ−k ≤ r−k ≤ ρ−k.

Therefore

(1−ε)k
∫

Σ

∂

∂r
(φ(ρ/r))

|(x− x0)⊥|2

|x− x0|k+2
≤ r−k

∫
Σ

∂

∂r
(φ(ρ/r))

|(x− x0)⊥|2

|x− x0|2
≤
∫

Σ

∂

∂r
(φ(ρ/r))

|(x− x0)⊥|2

|x− x0|k+2
.

Letting ε→ 0+ and using the dominated convergence theorem, we obtain

∂

∂r

∫
Br∩Σ

|(x− x0)⊥|2

|(x− x0|k+2
= lim

ε→0+

∫
Σ

r−k
∂

∂r
(φ(ρ/r))

|(x− x0)⊥|2

|x− x0|2

= lim
ε→0+

r−k
∫

Σ

r
∂

∂r
(φ(ρ/r))− kφ(ρ/r) = lim

ε→0+

d

dr
(r−kI(r))

=
d

dr
(r−k Vol(Br ∩ Σ)).

Integrating this last equation between r and R, we get∫
(BR\Br)∩Σ

|(x− x0)⊥|2

|x− x0|k+2
= R−k Vol(BR ∩ Σ)− r−k Vol(Br ∩ Σ),

as claimed.

Along, the same lines, one can prove a mean value theorem for for functions f ∈ C2(Σ).
Again, if 0 < r < R then

R−k
∫
BR∩Σ

f − r−k
∫
Br∩Σ

f =
∫

(BR\Br)∩Σ

f
|(x− x0)⊥|2

|x− x0|k+2
(4)

+
1
2

∫ R

r

ρ−k−1

(∫
Bρ∩Σ

(ρ2 − |x− x0|2)∆Σf

)
dρ.

The proof of (4) is the same as the proof of (2), except that one must weight the volume form of
Σ by the function f .

In fact, even the weak form

R−k Vol(BR ∩ Σ)− r−k Vol(Br ∩ Σ) ≥ 0 (5)

of monotonicity is useful. First we notice that (5) is an equality if and only if (x− x0)⊥ = 0 on
(BR\Br)∩Σ. This can only occur if the part of Σ in the annulus BR\Br is contained in the cone
over x0. If equality in (5) holds for all r > 0 then BR ∩ Σ is a k-dimensional cone over x0. If,
additionally, Σ is smooth at x0, then Σ can only be a k-dimensional plane in Rn.
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Next, we define the function

Θx0(r) =
Vol(Br ∩ Σ)

rk Vol(B1 ⊂ Rk)
, (6)

where x0 ∈ Σ and r > 0. By equation (5), for 0 < r < R we have

Θx0(R)−Θx0(r) =
1

Vol(B1 ⊂ Rk)
(
R−k Vol(BR ∩ Σ)− r−k Vol(Br ∩ Σ)

)
≥ 0,

and so Θx0(r) is a nondecreasing function of r for each x0 ∈ Σ. The limit as r → 0+ exists, and
we use it to define the density of Σ at x0 as

Θx0 = lim
r→0+

Θx0(r). (7)

Observe that, if Σ is a smooth, embedded submanifold in a neighborhood of x, then Θx = 1.
Geometrically, Θx measures the number of smooth sheets of Σ in a small ball centered at x.
In general, Θx ≥ 1, and strict inequality can occur, as the following example shows. Let Σ
be the union of two k-dimensional planes in Rn which intersect transversally. For all x in this
intersection, Θx = 2. Indeed, this example shows that in general Θ is not continuous. Denote the
two k-planes as Σ1 and Σ2, and take a sequence of points xj ∈ Σ1\Σ2, with xj → x ∈ Σ1 ∩ Σ2.
Then Θxj = 1 while Θx = 2, so we see the density function can suddenly jump up. The regularity
statement below is thus the best one can hope to achieve.

Proposition 2. The density function Θx0 is an upper semi-continuous function on Σ.

Proof. We want to show
Θx ≥ lim sup

j→∞
Θxj

if xj → x. Let δ > 0 and choose r > 0 such that Θx(r) ≤ Θx + δ. If 0 < ε < 1 and xj satisfies
|x− xj | < εr then B(1−ε)r(xj) ⊂ Br(x). In this case

Θxj ≤ Θxj ((1− ε)r) =
Vol(B(1−ε)r(xj) ∩ Σ)

(1− ε)krk Vol(B1 ⊂ Rk)
(8)

≤ Vol(Br(x) ∩ Σ)
(1− ε)krk Vol(B1 ⊂ Rk)

= (1− ε)−kΘx(r)

≤ (1− ε)−k(Θx + δ).

Now choose ε small enough so that

(1− ε)−kΘx ≤ Θx + δ, (1− ε)−k ≤ 2.

Putting these two inequalities together with (8) implies Θxj ≤ Θx+3δ. However, δ was arbitrary,
so

Θx ≥ lim sup
j→∞

Θxj ,

completing the proof.

This phenomenon persists for limit of minimal submanifolds. If Σj is a sequence of minimal
submanifolds converging (in some sense) to Σ, then the corresponding density functions cannot
suddenly jump down. Intuitively, this says you can’t suddenly lose volume when taking a limit
of minimal submanifolds. On the other hand, you can suddenly gain volume (consider the limit
of rescaled catenoids, or rescaled helicoids, where the scaling parameter goes to zero).
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