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In this note we prove the monotonicity formula for minimal submanifolds of R", and discuss
some of its consequences.

Let ¥ C R™ be a k-dimensional submanifold of Euclidean space, and let H be its mean
curvature vector. Recall that ¥ is minimal if H = 0. Because H is the first variation of the
k-dimensional volume of X, the requirement H = 0 is equivalent to X being a critical point of the
volume functional under compactly supported variations. In other words, ¥ is minimal means
precisely

/divE(X) =0 (1)
b
for any vector field X (with values in R™) with compact support.

Theorem 1. Let X% C R" be minimal. Fiz v € R" and R > r > 0, and denote the (ambient)
ball centered at xo with radius p by B,. Then
VL2
R Vol(BrN'Y) —r~ ¥ Vol(B, %) = / % (2)
(Br\B)ns |7 — o

Before we begin the proof, observe that mean curvature scales: for any A > 0

HOS) = %H(E).

In particular, any rescaling of a minimal submanifold is still minimal. Indeed, this is the key
observation for understanding the monotonicity formula. One can understand monotonicity giving
a variational characterization of the fact that minimality is preserved by rescaling. Knowing this,
one should first try to prove monotonicity by applying the divergence theorem as in equation (1)
to a radial vector field. In fact, this is the approach we will take. Intuitively, the vector field
you want to consider is r0, restricted to a ball. This in not quite smooth enough to apply the
variational formula, so we will need to regularize it.

The proof below is essentially the proof in Simon’s book [Si], and easily adapts to the case
where 3 is a minimal varifold or a minimal current. One can find another proof in Colding and
Minicozzi’s book [CM].

Proof. To start, we will show
R *Vol(BrN'¥) —r *Vol(B, NX) >0,

and then recover the right hand side of the inequality above by examining our calculation more
carefully.

Let p = |x — x¢|, and for a given compactly supported function 7 consider the vector field
X, =n(p)(z — xo). For p € ¥, choose an adapted orthonormal frame

{Ei,...,E,}, {E1,...,Ex} € T,%, {Exi1,..., B} € (T,2)*



Then

k k k
dive(X) = Z Vi,n(x Ej>:Zn(pﬂEg,EJ)+Z<(E(n))(x*xo)7Ej>
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= kn(p) +p1'(p) (1—|(p2°)|>~

For 0 < € < 1 choose ¢(t) such that
¢'(t) <0,  o(t) =

Let n(p) = ¢(p/r) and define
p
I(r)= = =]. 3
0= [ a0 = [ o) )
By the dominated convergence theorem,

lim I(r) = Vol(B, NX).

e—0t

Also,

prl(e) = og0l/r) = 2o/

2o/ = r(~Ldlom) = 2L ).

Now evaluate equation (1) with X = n(p)(z — o). We have

0 = /kn _|_p77 ( |(|l'x—x£2|2|2)
T — zo)L |2
- /’W(P/T)—Tag( (p/r))+r§( (o)L p2) |
0
> /de) p/T) —7’5( (p/r)):ké¢(p/r)—raé¢(p/r)
= kI(r)—rl'(r).

Now differentiate

dii(?"_kf(r)) = —kr * ) 47 (r) = =Y (kD — T > 0.

We conclude that »~*I(r) is a monotone nondecreasing function of 7. Let ¢ — 07, we then see
=¥ Vol(B, N ¥) is monotone nondecreasing. In other words,

R ¥Vol(BrRN¥) —r *Vol(B,NX) >0

2



for 0 <r < R.
To obtain equation (2) we analyze the term we discarded:

(x—xO)J—|
/8r (p/r)) e —m2

S (@lp/r) £0e (1 —or <psr,

Notice that

or, equivalently,

9 (bofr)) 206 (1—fp* <k < pk)

or
Therefore
9 |(z —2o0)* > _ _ / 9 |(z — o) *|? / 9 |(z — 20)*[?
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Letting ¢ — 0 and using the dominated convergence theorem, we obtain
L L e
or B,.NY ‘(33 — .T/0| e—0t | $Q|
d
= lim / Hlp/r)) ~ k(p/r) = lim (1)
d
= g(r_k Vol(B, N Y)).
Integrating this last equation between r and R, we get
L2
/ @=a0) I pekvol(Br 05—+ Vol(B, n'5),
(Br\B,)NZ |z — 2o
as claimed.
O

Along, the same lines, one can prove a mean value theorem for for functions f € C?(X%).
Again, if 0 < r < R then

J_|2

Rfk f _ rfk/ f _ / f|(x - {E()) 4
BrNT B,NY (Br\B,)N% |z — o[k +2 @)

1R
s [ 1(/ <p2—|x—m02>Azf>d
r B,NY

The proof of (4) is the same as the proof of (2), except that one must weight the volume form of
3 by the function f.
In fact, even the weak form

R*Vol(BRNY) —r*Vol(B,NX) >0 (5)

of monotonicity is useful. First we notice that (5) is an equality if and only if (x — 2¢)* = 0 on
(Br\B;)NZX. This can only occur if the part of ¥ in the annulus Br\ B, is contained in the cone
over zg. If equality in (5) holds for all » > 0 then Br N X is a k-dimensional cone over zg. If,
additionally, X is smooth at xg, then ¥ can only be a k-dimensional plane in R"™.



Next, we define the function

Vol(B, N'Y)

O, (r) = mv (6)

where zo € ¥ and r > 0. By equation (5), for 0 < r < R we have

Oz (R) — O (1) ! ) (R *Vol(BRNE) —r *Vol(B, N %)) >0,

~ Vol(B; C RF

and so O,,(r) is a nondecreasing function of r for each xy € X. The limit as r — 0T exists, and
we use it to define the density of ¥ at zg as

Oz, = rl_i%ﬂ Oy (7)- (7)

Observe that, if ¥ is a smooth, embedded submanifold in a neighborhood of z, then 6, = 1.
Geometrically, ©, measures the number of smooth sheets of ¥ in a small ball centered at x.
In general, ®, > 1, and strict inequality can occur, as the following example shows. Let X
be the union of two k-dimensional planes in R™ which intersect transversally. For all x in this
intersection, ©, = 2. Indeed, this example shows that in general © is not continuous. Denote the
two k-planes as ¥; and X9, and take a sequence of points x; € ¥1\Xo, with z; — z € £, N Xs.
Then ©,, = 1 while ©, = 2, so we see the density function can suddenly jump up. The regularity
statement below is thus the best one can hope to achieve.

Proposition 2. The density function ©,, is an upper semi-continuous function on X.

Proof. We want to show
O, > limsup O,

j—o0

if ; — x. Let 6 > 0 and choose r > 0 such that ©,(r) < O, + 0. If 0 < e < 1 and x; satisfies
|z — x| < er then B_¢)r(z;) C Br(x). In this case

Vol(B(—¢)r(z;) N X)

@mj < @mj((l —€r) = (1— e)krk Vol(B; C Rk) (8)
Vol(B,(z) N %) B _
= (1 —€)krk Vol(B; C RF) (1-970a(r)
< (1-97HOs +5).

Now choose € small enough so that
1-e7%0,<0,+5, (1—e)F<2

Putting these two inequalities together with (8) implies ©,, < ©,+3J. However, ¢ was arbitrary,
SO
O, > limsup O,
Jj—o0

completing the proof. O

This phenomenon persists for limit of minimal submanifolds. If ¥/ is a sequence of minimal
submanifolds converging (in some sense) to ¥, then the corresponding density functions cannot
suddenly jump down. Intuitively, this says you can’t suddenly lose volume when taking a limit
of minimal submanifolds. On the other hand, you can suddenly gain volume (consider the limit
of rescaled catenoids, or rescaled helicoids, where the scaling parameter goes to zero).
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