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In this note we collect various Pohozaev-type identities, starting with the classical inequality
of [Poh].

Theorem 1. Let n ≥ 3 and let Ω ⊂ Rn be an open, star-shaped (with respect to the origin)
domain. Then the boundary value problem

∆u+ up = 0, u|∂Ω = 0 (1)

has a positive solution only if

p <
n+ 2
n− 2

.

Proof. First observe that

div(u∇u) = |∇u|2 + u∆u = |∇u|2 − up+1.

Now let

X = r∂r =
n∑
j=1

xj∂j ⇒ div(X) = n, X(u) = 〈X,∇u〉 =
n∑
j=1

xj
∂u

∂xj
.

Then

div
[
X(u)∇u−

(
1
2
|∇u|2 − up+1

p+ 1

)
X

]
= X(u)∆u+ 〈∇

∑
j

xj∂ju,∇u〉

−
(
n

2
|∇u|2 − nup+1

p+ 1

)
− 〈X,∇

(
1
2
|∇u|2 − up+1

p+ 1

)
〉

= X(u)∆u+ 〈
∑
j,k

xj∂j∂ku∂k +
∑
j

∂ju∂j ,
∑
j

∂ju∂j〉(
n

2
|∇u|2 − nup+1

p+ 1

)
− 〈
∑
j

xj∂j ,
∑
j,k

∂ju∂j∂ku∂j − up
∑
j

∂ju∂j〉

= X(u)(∆u+ up) + |∇u|2 − n

2
|∇u|2 +

nup+1

p+ 1

+
∑
j,k

xj∂k∂j∂ku−
∑
j,k

xk∂ju∂j∂ku

=
(

2− n
2

)
|∇u|2 − nup+1

p+ 1
.

However, (
2− n

2

)
|∇u|2 − nup+1

p+ 1
=
[

2− n
2
− n

p+ 1

]
up+1 +

2− n
2

div(u∇u).
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Now integrate over Ω to get∫
Ω

(
2− n

2
− n

p+ 1

)
up+1dV =

∫
Ω

div
[
X(u)∇u−

(
1
2
|∇u|2 − up+1

p+ 1

)
X

]
dV

=
∫
∂Ω

X(u)〈∇u,N〉 − 1
2
|∇u|2〈X,N〉dA

=
1
2

∫
∂Ω

|∇u|2〈X,N〉dA.

Here N is the unit normal to ∂Ω, and we have integrated by parts, using the boundary condition
u|∂Ω = 0. Finally, the fact that Ω is star-shaped is exactly 〈X,N〉 > 0, and so

2− n
2
− n

p+ 1
> 0⇔ p <

n+ 2
n− 2

.

Equation (1) is the most elementary example of the critical exponent phenomena for semi-
linear, elliptic PDE. In this case, a variational argument shows that the PDE has solutions for
p < n+2

n−2 , but we’ve just seen it has no solutions for p ≥ n+2
n−2 . This particular critical exponent of

p = n+2
n−2 is strongly related to the critical exponent of the Sobolev embedding theorem. Indeed,

the Sobolev embedding theorem states

W 1,2(Ω) ↪→ Lp(Ω) (2)

for p ≤ 2n
n−2 = n+2

n−2 + 1, and if the inequality is strict then the embedding is compact. In the
case of equation (1), the nonexistence of solutions is related to the loss of compactness of the
embedding (2).

One can understand theorem 1 more geometrically by observing that the vector field X =∑n
j=1 xj∂j is a conformal Killing field. That is, the flow of X is a one-parameter family of

conformal transformations of the ambient space Rn. In the case of X =
∑n
j=1 xj∂j , the conformal

transformations are dilations. In general, if we write a conformal Killing field as X =
∑n
j=1Xj∂j ,

then
∂jXk + ∂kXj =

2
n

div(X)δj,k, (3)

where δj,k is the Kronecker delta function. Using the same computation as in the proof of Theorem
1, we have (see section 9.1 of [PR]), provided ∆u+ up = 0,

div
(
X(u)∇u−

(
1
2
|∇u|2 − up+1

p+ 1

)
X +

n− 2
4n

div(X)∇u2 − u2∇ 2
n

div(X)
)

(4)

=
1
n

div(X)
(

n

p+ 1
− n− 2

2

)
up+1.

We can control the sign of the quantity on the right hand side of this equation, while the left
hand side is the divergence of a vector field. This time, integrating by parts (and using u|∂Ω = 0)
yields ∫

Ω

1
n

div(X)
(

n

p+ 1
− n− 2

2

)
up+1dV =

∫
∂Ω

X(u)〈∇u,N〉 − |∇u|
2

2
〈X,N〉dA. (5)

One can make sense of these sort of conservation laws for scalar curvature on an arbitrary
Riemannian manifold with boundary. Let (Ω, g) be an n-dimensional, compact, Riemannian
manifold with boundary, and let N be the unit outward normal vector along ∂Ω. Denote its Ricci
curvature by Ric and its scalar curvature by R. Also write the Lie derivative of any tensor A
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with respect to the vector field X as Lx(A). As in the Euclidean case, a conformal Killing field is
a vector field whose flow is a one-parameter family of conformal transformations. In other words,
if we write X =

∑n
j=1Xjej , where {e1, . . . , en} is a local orthonormal frame,

∇ekXj +∇ejXk =
2
n

div(X)δj,k, (6)

where ∇ej is covariant differentiation in the ej direction.
Schoen [Sc] proved the following general Pohozaev-type relation for scalar curvature.

Theorem 2. Let (Ω, g) be a compact Riemannian manifold with boundary, and let X be a con-
formal Killing field on Ω. Then∫

Ω

LX(R)dV =
2n
n− 2

∫
∂Ω

(
Ric(X,N)− R

n
g(X,N)

)
dA.

Proof. In our local frame,

LX(R) = ∇R ·X =
n∑
j=1

Xj∇ejR.

Now integrate by parts:∫
Ω

LX(R)dV = −
∫

Ω

div(X)RdV +
∫
∂Ω

R〈X,N〉dA. (7)

On the other hand,∫
Ω

LX(R)dV = 2
∫

Ω

∑
i,j

Xi∇ej Ricij dV =
∫

Ω

∑
i,j

[Xi∇ej Ricij +Xj∇ei Ricij ]dV

= −
∫

Ω

∑
i,j

[(∇ejXi) Ricij +(∇eiXj) Ricij ]dV + 2
∫
∂Ω

Ric(X,N)dA

= − 2
n

∫
Ω

div(X)R+ 2
∫
∂Ω

Ric(X,N)dA.

We have used the second Bianchi identity and integrated by parts. Adding this last equation to
to equation (7), we have(

1− 2
n

)∫
Ω

LX(R)dV = − 2
n

∫
Ω

div(X)RdV + 2
∫
∂Ω

Ric(X,N)dA

+
2
n

∫
Ω

div(X)RdV − 2
n

∫
∂Ω

R〈X,N〉dA

= 2
∫
∂Ω

(
Ric(X,N)− R

n
〈X,N〉

)
dA.

The theorem follows.

The tensor Ric−Rn g is the trace-free part of the Ricci tensor.
In the special case that g = u

4
n−2

∑
j dx

2
j is conformally flat the integral identity in Theorem

2 reduces to equation (5) for the conformal factor u. Previously, Kazdan and Warner [KW] had
something similar to Theorem 2 in the special case of a sphere (with a metric conformal to the
usual, round metric) and the dilation vector field one gets by pulling back r∂r using stereographic
projection.

One can apply Schoen’s Pohozaev-type identity to study singular Yamabe metrics a finitely
punctured sphere. In this case, we ask for a complete, constant scalar curvature, metric on
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Sn\Λ, which is conformal to the round metric. The completeness of the metric g = u
4

n−2 forces
the conformal factor u to blow up as one approaches the singular set Λ. The dimension of the
singular set Λ determines the sign of the scalar curvature. If dim(Λ) > n−2

2 , then scalar curvature
must be negative [AM], while if dim(Λ) < n−2

2 the scalar curvature is positive [SY].
In the case that the singular set Λ = {p1, . . . , pk} is a finite collection of points, the conformal

factor u is asymptotically radial near each singular point pj [CGS]. At this point, we pause to
understand the radially symmetric asymptotes.

One can classify the radially symmetric constant scalar curvature metrics on Sn\{±p} by sep-
arating variables and solving the ODE for the conformal factor. If we reparameterize Sn\{±p} =
Sn−1 × R, and let u = u(t) be the conformal factor, then the equation requiring R = n(n − 1)
becomes

d2u

dt2
=

(n− 2)2

4
u− n(n− 2)

4
u
n+2
n−2 .

In fact, this ODE has a conserved energy,

H

(
u,
du

dt

)
=
(
du

dt

)2

− (n− 2)2

4
u2 +

(n− 2)2

4
u

2n
n−2 . (8)

The curve (u(t), u′(t)) associated to any radially symmetric, constant scalar curvature metric
must thus lie on a level set of the energy H. In particular, there are periodic solutions uε(t),
which are uniquely determined by their minimum value ε. The solution uε(t) lies on the level set

H =
(n− 2)2

4
(ε

2n
n−2 − ε2),

which is a closed curve in the phase plane. The constant solution(
n− 2
n

)n−2
4

corresponds to a single point in the phase plane, and geometrically give a cylinder. As ε → 0+,
the solution converges to u = cosh

2−n
2 t, which gives the (incomplete) round metric on Sn\{±p}.

We will call the radially symmetric solution uε the Delaunay solution with necksize ε.
We can state the asymptotics theorem of [CGS] as follows. Let g = u

4
n−2 g0 be a constant

positive scalar curvature metric which is complete in a closed, punctured ball B̄\{0}, and g0 is
the round metric (or the flat metric). Then for some ε with

0 < ε ≤
(
n− 2
n

)n−2
4

we have
|u(x)− uε(− log(|x|))| = O(|x|).

Korevaar and Schoen proved a stronger asymptotic statement, see [KMPS].
We now use the Pohozaev identity of Theorem 2 to recover the energy H(ε) (and hence ε) as

an integral invariant, following the proof given in [Pol]. Let Λ = {p1, . . . , pk} ⊂ Sn be a finite set
of points, and let (Sn\Λ, g = u

4
n−2 g0) be a complete, constant positive scalar curvature metric

Riemannian manifold, where g0 is the usual round metric. Choose δ > 0 small enough so that
the balls Bδ(pj) (in the round metric) are disjoint, and apply the integral identity of Theorem 2
to Ω = Sn\ ∪kj=1 Bδ(pj). Because g has constant scalar curvature equal to n(n− 1), we have

0 =
k∑
j=1

∫
∂Bδ(pj)

(Ric(X,N)− (n− 1)〈X,N〉) dA. (9)
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Notice that the boundary integrals are homology invariants, and so (in particular) they don’t
depend on δ, so long as δ is sufficiently small. We pick one singular point p1, and move it to
the north pole using a conformal motion. Now apply the Pohozaev identity with X = r∂r, the
conformal dilation towards p1. Reparameterize a neighborhood of p1 using coordinates Sn−1 ×
[0,∞), where − log(|x|) = t ∈ [0,∞), and write

u(t, θ) = uε(t) +O(e−t), X = ∂t, N = u−
2

n−2 ∂t.

Also, a computation gives

Ric(X,N)− (n− 1)〈X,N〉 = − 2(n− 1)
n(n− 2)

u′′ε u
− n
n−2

ε +
2(n− 1)
(n− 2)2

(u′ε)
2u

2−2n
n−2
ε +O(e−t).

Without loss of generality we can assume ∂Bδ(p1) = {t = T} is a neck of uε, so that

uε(T ) = ε, u′ε(T ) = 0, u′′ε (T ) =
(n− 2)2

4
ε− n(n− 2)

4
ε
n+2
n−2 .

Evaluating the integral, we recover the following theorem of [Pol]:

Theorem 3.∫
∂Bδ(p1)

Ric(X,N)− (n− 1)〈X,N〉dA = (n− 1)(n− 2) Vol(Sn−1)
(
ε

2n
n−2 − ε2

)
.
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