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I. INTRODUCTION

A. Motivation

It is to the ancient Greeks that we owe the first steps in establishing a mathematically grounded theorem
of geometry. Euclid’s Elements [8] remains one of the most important pieces of mathematical literature,
despite the modern picture of geometry. As is always the aim with mathematics, an accumulation of effort has
resulted in considerable generalisation and extension. Today the pillar of geometry is the study of topology.
When a child entertains himself with a ball of modelling clay, he is performing topological manipulations. It is
imperative that the clay ball is deformed without tearing or breaking it. A relevant investigation, is how the
local characteristics of the geometry are related to the global nature.

Run-of-the-mill surfaces, both closed (such as the sphere) and those with boundary (such as a disk), have
two sides. By this we mean that we can paint the two sides a different colour to distinguish them. If the surface
is closed, then these two colours will never touch, and if the surface has a boundary then the colours will meet
only at the boundary curve. For example, a torus may be painted red on the outside and blue on the inside.
A disk, may be red on the top and blue on the bottom. Möbius is famous for discovering the existence of a
surface with only one side, the so called Möbius strip. This may be constructed from a rectangle by identifying
one of the edges of a rectangle with a half-twist. The Möbius strip demonstrates a wealth of bizarre facts. For
instance, if the strip is cut down its centre line, it will produce another strip, now with two sides!

This project is mainly directed at the study of the group structure associated with geometry, in particular the
hyperbolic variety. After one is bored with the flat world of Euclidean geometry, it is natural to consider the
sphere - especially since we live on one! We shall be concerned with making use of the ideas of transformations
[6] in the realms of non-standard geometries. Classification of shapes & surfaces is a daunting task, especially
as the number of dimensions increases. We intend to review some of the progress that has been made in this
direction, following the work of Euler, Gauss and Poincaré. We adopt the route laid out in recent lectures in
circulation by Thurston [27], which introduce such topics. Thurston’s geometrization conjecture is at the centre
of the modern study of 3-manifolds [25, 26]. However, hyperbolic geometry is not restricted to the cerebral
ideas of sophisticated mathematics [23].

It has become clear that the classification of surfaces is intimately connected with the study of groups.
Moreover, by observing how certain group operations interact with various geometric objects one can get a
handle on certain crucial invariants. The main difficulties arise when points of these geometric objects exhibit
singularities. And this is the main reason that recent efforts to classify the 3-manifolds has been such a challenge
and has produced a variety of new approaches and ideas [18].

B. An example from origami

The following demonstration was presented to me by Dr. Tadashi Tokieda [28]. Imagine that you take a
piece of paper and crumple it up. For the purpose of this example, suppose that we flatten the paper by
squashing it down on a plane surface.. If we then open up the crumpled page, we will see a network consisting
of edges and vertices. The edges may be either valleys or ridges depending on which way the crease was folded.

It would seem that such a careless process would result in no emergent patterns. Consider first a vertex with
a degree of 4, (the general case is similar). Let the angles about this point be α, β, γ and δ. It is a triviality
to note that these angles must sum to 2π, what is less obvious, is that α + γ = β + δ. This relation can be
confirmed by observing the folding process involved in Fig. 1. In general, the vertex must have the sums of
alternating angles being the same.
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FIG. 1: Explanation for the alternating sum of angles at each vertex.

Paper folding (origami) provides a rich avenue of mathematical study. It differs quite drastically from the
confined space of R2. Indeed, the classical problem of trisecting an angle becomes almost a triviality. It is with
this optimistic attitude that we shall proceed in an analysis of various geometric objects.

C. History & Context

Euclid’s five postulates read as follows [8]:

(i) A straight line segment can be drawn between any two points.

(ii) Any straight line segment can be indefinitely extended in a straight line.

(iii) Given any straight line segment, a circle can be drawn having the segment as a radius and one of the
endpoints as its centre.

(iv) All right angles are congruent.

(v) If two lines are drawn which intersect a third in such a way that the sum of the inner angles on one side is
less than two right angles, then the two lines must inevitably intersect each other if extended far enough.

The last one is known as the parallel postulate, and it cannot be proven as a theorem.

For centuries mathematicians tried to find a proof of the parallel postulate in terms of other Euclidean
axioms [3]. This was because of the widespread belief that the parallel postulate was artificial compared to
the other axioms. Earlier attempts were made at a proof by contradiction by the Jesuit Saccheri (1667-1733)
and later Lambert (1728-1777) [5]. Of course, as we now know, their conclusions actually amounted to
theorems pertaining to non-Euclidean geometry. Unfortunately such a framework for geometry had not yet
been developed.

While Euclid’s axioms comfort the intuition, this brings nil to proof. This is because the parallel postulate
is really independent from the others. A fact that was demonstrated by Bolyai (1802-1860) and Lobachevsky
(1793-1856) by doing the unthinkable and constructing a perfectly valid geometry in which the parallel
postulate did not hold. A simple but relevant such model was demonstrated by Klein (1849-1925) and we shall
discuss it shortly.

In the middle of the nineteenth century, geometric study took a turn which resulted in a new subject we know
as topology. In this field, one is primarily concerned with the properties of shapes & figures which hold true
when such objects are deformed to the extend that metric and projective properties are ruined in the process.
We have already mentioned Möbius (1790-1868) and his work on the “one-sided” geometry. It was from the
investigation into analytic functions of one complex variable that Bernhard Riemann (1826-1866) realised that
these topological results are of critical importance.
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II. PRELIMINARIES

A. Toolbox for Topology

Manifolds give the baseline for smooth surfaces with which we shall be working. Before introducing them in
full rigour, there are a few basic building blocks which we need:

n−ball Bn := {(x1, . . . , xn) ∈ Rn :
∑

x2
i ≤ 1} ∼

n−sphere Sn := {(x1, . . . , xn+1) ∈ Rn+1 :
∑

x2
i = 1} ∼

unitinterval I := [0, 1] ∼

Note that we distinguish balls as being solid (include their interior), while spheres are shells (only boundary).
We shall follow previous customs [2, 20], and use the symbol “∂X” to denote the boundary of X. We shall use
the symbol “'” for “homeomorphic to”.

Example The n− 1-sphere is the boundary of the n-ball, ∂Bn = Sn−1. For the Möbius strip,

∂
( )

= S1.

Example The unit interval is homeomorphic to the 1-ball, I ' B1.

We now discuss various ways in which we can combine spaces into complicated forms. The first of these is the
standard Cartesian product, which has a convenient geometric interpretation.

Example The unit cube in n dimensions is simply three copies of the unit interval, In = I × I × . . .× I ' Bn.

Example The n dimensional torus is similarly a product of 1-spheres (circles), Tn = (S1)n = S1×S1× . . .×S1.

T2 = (doughnut) ' (trefoil) ' (mug).

The next way of joining space is the so called quotient of two spaces. We shall make this precise later. Loosely
speaking, one seeks to identify certain points in a space through equivalence classes. The following examples
will make this clear.

Example Instead of representing the torus as a direct product, it is also possible to arrive at its shape by
identifying opposite sides of a rectangle in a parallel fashion as shown:

Note that the rectangle tiles the entire plane, and one frequently writes T2 ' R2/Z2, to indicate that we take
real numbers “modulo” one. As a matter of fact, it is possible to produce the torus with a regular hexagon:

However, this cannot be done for a regular octagon, since it is impossible to tile the plane with such a shape.
Nevertheless, identifying sides can produce a perfectly legitimate manifold:

In fact, we shall see later that the hyperbolic plane can be tiled with octagons! In some sense this tiling shows
that a genus two (and beyond!) object can be given hyperbolic structure. Such a tiling may be found on the
Escher picture reproduced on the cover page, by joining the noses of the fishes to their fins.
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The last tool we shall describe, is the connected sum of two manifolds. This is defined for two manifolds M1

and M2. The connected sum is denoted M1#M2 and it is obtains be deleting a ball on the interior of each
manifold, and “attaching” them together at the resulting boundary spheres. Both M1 and M2 need to be of
the same dimension for this to work.

Example The connected sum of two tori is T2#T2,

An (oriented) Riemannian surface of genus g, (denoted Σg) is simply the connected sum of g tori:

B. Group Actions

Definition A group G acts on a set X if there is a map Φ : G×X → X where

(i) Φ(e, x) = x for all x ∈ X, where e is the identity in G.

(ii) Φ(g,Φ(h, x)) = Φ(gh, x) for all g, h ∈ G and all x ∈ X.

This motivates us to denote Φ(g, x) by gx.

Definition Suppose X is a topological space, and for each g ∈ G, the mapping λg : X → X given by the action
of G on X, i. e. λg(x) = gx. If λg is a homeomorphism, then we say X is a G-space. If we further have that
gx = x iff g = e, then G is said to act freely on X.

Definition If G acts on X, we may form the quotient X/G as a set of equivalence classes on X where [x1] = [x2]
iff x2 = gx1 for some g ∈ G. Then X/G is called the orbit space of X over G, and the disjoin orbits are simple
the cosets Gx.

Lemma 2.1. Suppose that X is a G-space then the map π : X → X/G defined by π(x) = [x] is an open map.

Proof. Let U be an open subset of X. We know that λg defined above is a homeomorphism for each g ∈ G,
implying λg(U) is open. Then observe that

π−1(π(U)) =
⋃
g∈G

g(U),=
⋃
g∈G

λg(U), (2.1)

which is plainly open in X. Since π is continuous, the preimage of every open set is open and the preimage of
every closed set is closed. It follows that π(U) is open in X/G.

Proposition 2.2. If X is a compact Hausdorff G-space with G a finite group, then X/G is also a compact
Hausdorff space.

Proof. Define π : X → X/G by the equivalence class π(x) = [x]. An open set in X/G are plainly reached as
images of open sets in X meaning that π is continuous. The continuous image of a compact space is compact,
therefore X/G is compact. It remains to show that X/G is Hausdorff. Take [x], [y] ∈ X/G such that [x] 6= [y].
This means that the preimages π−1([x]) and π−1([y]) are disjoint subsets of X. Furthermore, they are finite
since G is finite. Using the Hausdorff property of X, we can construct A,B open in X such that π−1([x]) ⊂ A,
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π−1([y]) ⊂ B and A ∩B = ∅. Notice now that π(X \ A) is closed in X/G, since its preimage (in the same was
as Eq. (2.1))

π−1(π(X \A)) =
⋃
g∈G

λg(X \A),

is a finite union of closed sets and thus closed (in X). In exactly the same way π(X \ B) is closed (in X/G).
Then V = (X/G)\π(X \A) and W = (X/G)\π(X \B) are both open in X/G. These two sets are furthermore
disjoint since (through De Morgan’s laws),

V ∩W = (X/G) \ (π(X \A) ∪ π(X \B)) = (X/G) \ π(X \ (A ∩B)) = (X/G) \ π(X) = ∅.

On the other hand, π−1([x]) ⊂ A implies that [x] /∈ π(X \ A). Thus by definition [x] ∈ V . Similarly [y] ∈ W ,
fulfilling the Hausdorff requirement in X/G.

It may seem reasonable that we would only require the base space X to be Hausdorff for the quotient to be
Hausdorff. The archetypical example is the line with two origins. This is the quotient space of two copies of
the real line R × {a} and R × {b}. The equivalence is (x, a) ∼ (x, b) if x 6= 0. Therefore, where the image of
(0, a) is 0a and the image of (0, b) is 0b, we find that all neighbourhoods of 0a intersect all neighbourhoods of
0b. The action is plainly not by homeomorphism. So to emphasise the point, consider the following example.

Example Let Z act on R2 \ {0} via multiplication by the matrix

A =

(
1/2 0
0 2

)
More precisely, the action n ·v = Anv. Then the images of (0, 1)T and (1, 0)T in the quotient don’t have disjoint
neighbourhoods.

C. Manifolds

Definition An n-dimensional (topological) manifoldM is a Hausdorff space with countable basis for its topology
that is locally Euclidean. In this sense we demand that for each point x ∈ M , there is an open subset U 3 x
and a homeomorphism h : U → U ′ = h(U) ⊂ Rn.

We call the pair (h, U) an (inner) chart of M or a local coordinate system of M near x. And in keeping with
the theme, we call a collection of charts and atlas.

Example Perhaps the simplest nontrivial n dimensional manifold is the n-sphere, embedded in Rn+1, denoted
Sn = {x ∈ Rn+1 : x2 = 1}. A possible atlas is

A = {(Sn \ {(0, . . . , 0, 1)}, h1), (Sn \ {0, . . . , 0,−1}, h2)},

where the homeomorphisms are

h1(x1, . . . , xn+1) =

(
2x1

1− xn+1
, . . . ,

2xn
1− xn+1

)
,

h2(x1, . . . , xn+1) =

(
2x1

1 + xn+1
, . . . ,

2xn
1 + xn+1

)
.

It is simple to verify that these are the stereographic projections from the north and south poles respectively.
Observe that range(h1) = range(h2) = Rn, suggesting the opinion that Sn is nothing by Rn plus a “point at
infinity”.
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Example It is easy to make a Möbius strip: take a ribbon, give it a half-twist and glue the ends together. As on
might expect, the Möbius strip is a manifold. More precisely, we are considering the set [0, 1)× (−1, 1) with the
ends identified in the reverse order, (0, t) ∼ (1,−t) for −1 < t < 1. Thus our point set is M = [0, 1)× (−1, 1).
We can take a two map atlas A = {(U1, h1), (U2, h2)} where our open sets are

U1 =

(
1

8
,

7

8

)
× (−1, 1), h1(x, y) = (x, y),

U2 = (

[
0,

1

2

)
∪
(

3

4
, 1

)
)× (−1, 1) h2(x, y) =

{
(x, y) 0 ≤ x < 1

4 ,
(x− 1,−y) 3

4 < x < 1.

Theorem 2.3. If G is a finite group acting freely on a G-space X, and X a compact n-manifold, then X/G is
a compact n-manifold.

Proof. The conditions of lemma (2.2) are satisfied and we only need to show that each x ∈ X/G has a neigh-
bourhood homeomorphic to Rn. First we shall label the elements of the group G = {g0, g1, . . . , gm} using the
fact that it is finite. Let Wi be the neighbourhood containing gix = λgi(x), such that W0 ∩Wi = ∅ for i 6= 0,
by the Hausdorff property (the reason for this choice will become clear later). It follows that the set

W =

m⋂
i=0

g−1
i Wi,

is a neighbourhood of x since the λgi are homeomorphisms. Now since X is a manifold, there is a neighbourhood
U 3 x such that there is a homeomorphism h : U → h(U) ⊂ Rn. In this way, the continuous image of the
intersections, h(W ∩ U) is open in Rn. Therefore we can find r > 0 such that B(h(x), r) ⊂ h(W ∩ U).
Furthermore, A := h−1(B(h(x), r)) is an open neighbourhood of x in U .

We now claim that the restriction π|A : A → π(A) is a homeomorphism. The function will be bijective if
we can confirm that it is injective (surjectivity is trivial). Suppose π|A (x) = π|A (y). Then x = gky for some

k ∈ {0, 1, . . . ,m}. This restriction enables x, y ∈ U , so that x ∈ U0 and y ∈ g−1
k Uk. Therefore we conclude that

x = gky ∈ U0 ∩ Uk. This is only possible if k = 0, by our original construction of Uk. But this means exactly
that x = y. By lemma 2.1 we know that π is open and continuous (and therefore so is its restriction). Therefore
we have π(A) ∼= A ∼= B(h(x), r) ⊂ Rn. Therefore π(A) is the required neighbourhood, proving that X/G is a
manifold.

Definition The tangent bundle over a manifold M is the manifold TM =
⋃
x∈M TxM , where TxM is the

tangent space to M at x, endowed with the local product topology.

A point of TM is a pair (x,v) where x ∈M and v ∈ TxM .

Example A vector field v on M is a map v : M → TM taking x 7→ (x,v(x)).

D. Curvature

Before proceeding, it is important to cement certain basic concepts from differential geometry applied to
surfaces [20]. The Gaussian curvature at a point on a surface is an indicator of the intrinsic geometry at that
point. The following intuitive definition of curvature follows [10].

Definition Let p be a point on the surface Σ and consider a small neighbourhood U 3 p. We shall describe
this neighbourhood as a ball U = B(p, r). Then consider the set of unit normal vectors for each point in U (the
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surface at the U will look like a porcupine). Now translate these vectors to the origin, so that their endpoints
produce a “patch” on the surface of a unit sphere. If the area of the patch is A(r), then the curvature is

κ := lim
r→0

A(r)

Area(B(p, r))
. (2.2)

The quantity A(r) is signed by convention. If the boundary on the unit sphere is traced out anti-clockwise,
then the area is positive. Clockwise oriented boundaries produce negative areas.

This definition makes it clear that for the flat Euclidean plane, A(r) = 0 always, so that κ = 0. The surface of
a sphere of radius R produces a constant ratio in Eq.(2.2) and results in κ = 1/R2. Another, more mechanical
way of obtaining the curvature is to arrange the coordinate system so that the point under scrutiny is at the
origin, and the tangent plane being horizontal. This means that Σ is locally the graph of a functions f(x, y).
The arrangement means that f(0, 0) = fx(0, 0) = fy(0, 0) = 0. Then the curvature is the determinant of the
Hessian matrix:

κ =

∣∣∣∣ fxx fxy
fyx fyy

∣∣∣∣ = fxxfyy − fxyfyx. (2.3)

Example Consider the surface described by the functions f(x, y) = Ax2 +2Bxy+Cy2. This will be the leading
order contribution for any point arranged such that it is at the origin and flat. Then the curvature at the origin
is

κ = 4(AC −B2).

Let’s now set B = 0 for simplicity. Then if A,B have the same sign, the curvature of positive. This is the
shape of a paraboloid, and we call the point elliptic. On the other hand, if A,B have opposite sign, the graph
describes a hyperboloid and we call the point hyperbolic.

The definitions we have described are extrinsically based, in other words we must hold the surface still while
we make the measurements. In fact, the Gaussian curvature is actually an invariant of the surface - it remains
the same after deformations (without stretching). This fundamental theorem was proved by Gauss and he called
it the “Theorema Egregium” (extraordinary theorem). We shall state it here without proof [11].

Theorem 2.4. (Gauss’ Theorema Egregium) Taking x, y to be coordinates of a surface in E3 corresponding
to F (x, y), centred at the origin with zero first partial derivatives, then the metric admits a power expansion in
the normal coordinates (u, v) as

ds2 = du2 + dv2 − κ

3
(udv − vdu)2 + . . . . (2.4)

This shows that the curvature is obtainable through the metric, and is therefore a intrinsic invariant.

From this deep result, we can show how the curvature is calculable at a point p in terms of both the length
of the circumference Cp(r), the circumference of a circle of radius r centred at p with area Ap(r).

Theorem 2.5. (Bertrand-Diquet-Puiseux theorem) For a smooth surface in E3, with Cp and Ap defined
above, then the following equality holds:

lim
r→0+

3
2πr − Cp(r)

πr3
= κ(p) = lim

r→0+
12
πr2 −Ap(r)

πr4
. (2.5)
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Proof. First we need to recast Eq. (2.4) in normal polar coordinated, u = r cos θ and v = r sin θ. Then one
easily finds

dr =
udu+ vdv√
u2 + v2

and dθ
udv − vdu

u2 + v2
.

Therefore

dr2 = du2 + dv2 − (udv − vdu)2

u2 + v2
.

Substituting these into (2.4) to find that

ds2 = dr2 + dθ2
[
r2 − κ

3
r4 +O(r5)

]
(2.6)

Now we are in a position to calculate lengths and areas on the surface.

Cp(r) =

∫ 2π

0

dθ
√
r2 − κr4/3 +O(r5)

=

∫ 2π

0

dθ r
(

1− κ

6
r2 +O(r3)

)
= 2πr

(
1− κ

6
r2
)

+O(r4),

Ap(r) =

∫ r

0

dr′
∫ 2π

0

dθ
√

(r′)2 − κ(r′)4/3 +O((r′)5)

=

∫ r

0

d r′
∫ 2π

0

dθ r′
(

1− κ

6
(r′)2 +O((r′)3)

)
= πr2

(
1− κ

12
r2
)

+O(r5).

Taking the relevant limits one finds that the only surviving term is the curvature κ.
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III. MODEL SPACES

A. Projective Plane

The question naturally arises whether we can make any progress in geometry before defining lengths and
angles and other magnitude related qualities. One can easily conceive of drastic transformations which destroy
these properties. What (if anything) survives? For example, consider a stationary cube on the ground. As we
look at it we can move around constantly changing our perspective. We observe that angles change, lengths
are stretched or compressed, bisectors not longer bisect and areas dilate. Such transformations are termed
perspective transformations. Clearly they are obedient enough so that concurrency and collinearity are preserved.

Note that perspectivity is not a transitive operation. We call consecutive perpectivities a projective transfor-
mation. We now lay out the two most important axioms of projective geometry:

1. Given any two distinct points in a plane, there is a unique line that passes through them.

2. Given any two distinct lines in a plane, there is a unique point that lies on both of them.

It is then apparent that the words “point” and “line” are interchangeable in any theorem. This is called the
principle of duality, and for every theorem proved, we get another for free (sometimes both collapse to the same
statement).

Theorem 3.1. (Desargues) In a plane two triangles ABC and A′B′C ′ are situated to that the straight lines
joining corresponding vertices are concurrent in a point O, if and only if the corresponding sides, if extended,
will intersect in three collinear points.

Proof. The argument is visually based. It is remarkable that the theorem is true if the triangles lie in two
different (non-parallel) planes. Suppose that AA′, BB′ and CC ′ intersect at the point O. This forms a tripod
in three dimensions. Now AB and A′B′ lie in the same plane and hence intersect at some point F . Similarly
AC and A′C ′ intersect at E, and BC and B′C ′ intersect at D. Since E, F and D are extensions of the sides
of both of the triangles, they lie in the same plane as each of these triangles. Hence they lie on the intersection
of these two planes.

Now simply regard the above picture as a perspective drawing of the R3 configuration and the forwards
direction of the theorem is proved. The reverse is immediate by the duality, since three points being collinear
is dual to three lines meeting at a point.

We now introduce a very important quantity called the cross ratio. It is defined classically for four points on
the line as a “double ratio”,

(A,B;C,D) :=
AC/BC

AD/BD
=
AC

BC
:
AD

BD
=
AC ·BD
AD ·BC

. (3.1)

Note that the line segments are directed (signed). We note that this may also be written in terms of complex
numbers, in terms of the function of four complex variables,

(z1, z2; z3, z4) :=
z1 − z3

z2 − z3
:
z1 − z4

z2 − z4
=

(z1 − z3)(z2 − z4)

(z2 − z3)(z1 − z4)
. (3.2)
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Before we elaborate on the purpose of this quantity, we note certain symmetries. The permutations of the
subscripts under which the value does not change are (1 2)(3 4), (1 3)(2 4), (1 4)(2 3) and of course the identity.
These constitute the klein four-group V E S4. This reduces the number of distinct value from 24 to 6. Each of
these different values may be expressed in terms of the others:

(z1, z1; z3, z4) = λ, (z1, z2; z4, z3) = λ−1,
(z1, z3; z4, z2) = (1− λ)−1, (z1, z3; z2, z4) = 1− λ,
(z1, z4; z3, z2) = λ(λ− 1)−1, (z1, z4; z2, z3) = (λ− 1)λ−1.

The above formulae in terms of λ form the dihedral group of order six with respect to composition D6. It is
worth mentioning that one of the points is allowed to be the point at infinity in Q̂.

In the spirit of duality, we may also define the cross ratio of four line as follows. Let a, b, c, d be lines all
intersecting at the point O. Then define

(a, b; c, d) :=
sin(aÔc)/ sin(bÔc)

sin(aÔd)/ sin(bÔd)
. (3.3)

As a motivation for this, let a line l pass through a at A, b at B, c at C and d at D and note that

|COA| = h
AC

2
=

1

2
OC.OA sin(aÔc),

|BOC| = h
BC

2
=

1

2
OB.OC sin(bÔc),

|AOD| = h
AD

2
=

1

2
OA.OD sin(aÔd),

|BOD| = h
BD

2
=

1

2
OB.OD sin(bÔd).

Taking the relevant ratios of the above verifies that

(A,B;C,D) = (a, b; c, d).

This fact leads to the theorem below.

Theorem 3.2. The cross ratio is invariant under projections.

B. Spherical Geometry

Proposition 3.3. Consider a sphere S ⊂ R3 with radius r. A triangle, with vertices A,B,C on the surface of
S, has interior angles α, β and γ given by

α+ β + γ = π +
|ABC|
r2

, (3.4)

where |ABC| is the area of this triangle on the surface of the sphere.

Proof. The edges of the triangle are the same as the segments of the great circles passing through pairs of
points. Construct A′, B′ and C ′ as shown above.

Then it is clear that |ABC| = |A′B′C ′|. Note that the area of a spherical lune (at angle α) between great
circles of the sphere is determined by the angular fraction of the whole sphere, α(4πr2)/2π = 2αr2. Then the
surface can be tiled by ABC, A′B′C ′ and three lunes from the exterior angles:

4πr2 = 2|ABC|+ 2(π − α)r2 + 2(π − β)r2 + 2(π − γ)r2 ⇔ Eq.(3.4).

Corollary 3.4. For a convex n-polygon on the surface of S, the sum of the angles is given by

n∑
i=1

θi = (n− 2)π +
|Area|
r2

. (3.5)
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An n-sphere can be attained via the quadratic form on Rn+1 given by

Q+(x) = x2
0 + x2

1 + x2
2 + . . .+ x2

n, where x = (x0, . . . , xn) ∈ Rn+1. (3.6)

The space inherits a Euclidean metric dx2 = Σni=0dx2
i . Restricting the value of this quadratic form to unity

gives the unit sphere Sn = {x ∈ Rn+1 : Q+(x) = 1}. This surface has a Riemannian metric of constant positive
curvature κ = +1. The isometries of Sn will be the linear transformations of n+ 1 dimensional Euclidean space
which preserve Q+, which will be the group of orthogonal transformations O(n+ 1).

C. Hyperboloid Model

We now arrive at the first topic for which this project takes its title. Hyperbolic geometry can be constructed
in several different ways.

As we have seen, a sphere in euclidean space with radius r has constant curvature 1/r2. Therefore it is not
unreasonable to imagine that hyperbolic space should be a sphere of imaginary radius r = i. This would have
constant curvature 1/(i)2 = −1. Now we use a quadratic form defined by

Q−(x) = −x2
0 + x2

1 + x2
2 + . . .+ x2

n, (3.7)

in Rn+1. This is results in the metric dx2 = −dx2
0 + dx2

1 + . . . dx2
n. Special relativity makes use of this metric

space (with n = 3), which is referred to as Lorentz space and denoted En,1. Physically, the x0 axis represents
time with xi while i = 1, 2, 3 represents the three spatial dimensions. Associating the “length” of the vector by√
Q−(x), as in the Euclidean case. Therefore a vector may have both real and imaginary length, when Q− = 1

we have the one sheeted hyperboloid and if Q− = −1 we get the two sheeted hyperboloid H.

Notice that H is separated into two disjoint components, and upper sheet H+ (x0 > 0) and a lower sheet
H− (x0 < 0). We identify n dimensional hyperbolic space Hn with the upper sheet H+, and this is called the
hyperboloid model.
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D. Beltrami-Klein Disk & Poincaré Disk

There are two models in which hyperbolic space is contained inside a disk. We shall discuss both here.

The Beltrami-Klein model of hyperbolic geometry is outlined as follows. The “space” consists of only points
interior to a circle, (ignore all points outside). Straight lines are nothing but chords of this circle. The tricky
matter here is to define a distance which is consistent. We imagine that the plane is subjected to projective
transformations, such that the Klein circle and its interior remain inside. We should now require that the
distance we use is invariant under projective transformations. Take two points P and Q, for which we wish
to measure the distance between. It is important to involve the cross section, and this emerges naturally by
extending the usual straight line PQ to intersect the circle at O and S as shown in Fig. 2.

FIG. 2: Left: The Beltrami-Klein Disk model. Various straight lines (geodesics) are shown. Right: The
Poincaré disk model. Note that the geodesics appear as circles orthogonal to the boundary from the point of

view of E2.

Perhaps the positive number (O,S;Q,P ) will suffice as a distance? Then from standard metric space require-
ments, for three points P,Q,R on a line the distances should add PQ + QR = PR. However this is certainly
not true in general for cross ratios. Instead, we have

(O,S;Q,P )(O,S;R,Q) =
QO/QS

PO/PS
· RO/RS
QO/QS

=
RO/RS

PO/PS
= (O,S;R,P ). (3.8)

Therefore, to recover additivity from multiplicativity we define the distance by

dK(P,Q) :=
1

2
ln(O,S;Q,P ), (3.9)

where the factor of 1/2 ensures that the curvature is −1.

The details of the Poincaré model will be easily attainable shortly. For now we will remark that “straight
lines” (geodesics) in this model, consist of circular arcs which are orthogonal to S1.

E. Upper-Half Plane

Next we discuss the framework for the upper half-plane model of hyperbolic non-Euclidean geometry. We
shall identify R2 with C, through the bijection:

R2 3 (x, y) 7→ x+ iy =: z ∈ C.

Definition The upper-half plane, denoted H2, is the set of complex numbers whose imaginary part is positive:

H2 := {z ∈ C : =(z) > 0}. (3.10)

Furthermore, the circle at infinity (in the extended complex plane) is the boundary of H2, and consists of the
reals axis together with the point ∞,

∂H2 := {z ∈ C : =(z) = 0} ∪ {∞}. (3.11)

In order to make measurements in hyperbolic space, we require a notion of “length”. This is traditionally
done through a line integral of arc lengths. Bearing similarity with the Klein disk, we ensure that the length
grows arbitrarily as one approaches ∂H2.
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Definition Let γ : [0, 1]→ H2 be a partially smooth curve in the upper half plane. Then the hyperbolic length
of γ is obtained by integrating as follows.

`H2(γ) :=

∫
γ

dz
1

=(z)
=

∫ 1

0

dt
|γ′(t)|
=(γ(t))

. (3.12)

Observe that if =(γ(t)) is constant for t ∈ [0, 1], then `H2 recovers the usual Euclidean distance, scaled by
this constant. On the other hand, we can examine the distance between i and the point yi where 0 < y < 1.
Parametrise the curve γ(t) = (1− t)i+ tyi, yielding

`H2(γ) =

∫ 1

0

dt
|y − 1|

1 + t(y − 1)
=

∫ y−1

0

du
−1

1 + u
= ln

1

y
.

This explains why we call ∂H2 the boundary at infinity.

Definition Let z, w ∈ H2. We can now define the hyperbolic distance between z and w to be

dH2(z, w) := inf
γ∈Q

`H2(γ), (3.13)

where Q is the set of all partially smooth paths between z and w, i. e. γ(0) = z and γ(1) = w.

To show that (H2, dH2) is a metric space the triangle inequality is easily verified.

The relationship between the four different models presented here is shown in Fig. 3. The hemisphere model
has not been discussed, but it is simply related to the others. Its presence makes it clear how straight lines in
the Poincaré model are mapped to circular arcs in the Klein disk. One will notice that the connection between
the Poincaré disk and the hyperboloid model is identical to the familiar stereographic projection between the
projective plane, CP 2, and the unit sphere S2. This lends itself to a natural generalisation in Hn, a detailed
analysis may be found in [15]. This also enables the metrics defined on the different spaces to be derived from
one another.

FIG. 3: The rules for transforming between the different models for 2 dimensional hyperbolic space. The
figure should be rotated about the x0 axis to view the correct 3 dimensional embedding.

We now move to study triangles in H2. Spherical triangles demonstrate a strong dependency between angles
and area, and a similar result holds in hyperbolic geometry. The following elementary argument is due to Gauss
[25]. An ideal triangle is one which has all of its vertices at the boundary of hyperbolic space ∂H2. Then,

Proposition 3.5. All ideal triangles are congruent, and have an area of π.
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Proof. We work in the upper half plane model of H2. Here it is possible to use inversions to transform an ideal
triangle for that its vertices are at (−1, 0), (1, 0) and ∞. This is shown in Fig. 4.

Therefore, written in Cartesian coordinates, the area we seek is of the region R = {(x, y) ∈ R2 : −1 ≤ x ≤
1, y ≥

√
1− x2}. Then we know how to calculate the hyperbolic area,

Area(R) =

∫ 1

−1

dx

∫ ∞
√

1−x2

dy
1

y2
=

∫ 1

−1

dx
1√

1− x2
=

∫ π/2

−π/2
dθ cos θ

1

cos θ
= π. (3.14)

And the theorem is proved.

Proposition 3.6. A triangle with vertices A,B,C in the hyperbolic plane H2 has interior angles α, β and γ
given by

α+ β + γ = π − |ABC|, (3.15)

where |ABC| is the hyperbolic area of the triangle.

FIG. 4: Right: ideal triangle in the upper-half plane model H2. Left: Triangles with two vertices on ∂H2 and
their respective angles.

Proof. First we prove the theorem for triangles with 2 vertices on ∂H2. Since the angle at this boundary is
zero, we may label a triangle by it’s exterior non-zero angle. Let A(θ) be the area of such a triangle. The key
observation is that A is additive A(θ + φ) = A(θ) +A(φ). Consider the left diagram of Fig. 4.

The two shaded regions in the Beltrami-Klein model are of equal area (since they are reflections in the point
O). Furthermore the region COA′ is common and it follows that A is additive. But A is also continuous, and
hence by Cauchy’s theorem it is linear. Setting φ = π we immediately get A(θ) = θ.

The proof is completed by noting that an arbitrary hyperbolic triangle is a sum or difference of ideal triangles
and triangles with two vertices on ∂H2.

In the figure, we find

|ABC| = |A′B′C ′| − |A′AC ′| − |B′BA′| − |C ′CB′| = π − α− β − γ,

as required.
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Corollary 3.7. For a planar hyperbolic n-polygon in H2, the area of the polygon is related to the sum of the
interior angles θi by

|Area| = (n− 2)π −
n∑
i=1

θi. (3.16)
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IV. THE EULER CHARACTERISTIC

A. Regular polyhedra

Theorem 4.1. (Euler) The number of vertices v, edges e and faces f of a convex polyhedron are related by
the formula

v − e+ f = 2. (4.1)

Proof. Denote the convex polyhedron by P and project its surface from an interior point to the surface of a
sphere centred at that point. This procedure produces a network on the surface of a sphere, with faces of the
polyhedron identified with convex spherical polygons, Pj where j ∈ {1, 2, . . . , f}.

Suppose that the spherical polygon Pj has nj sides. Then by Eq.(3.5), we may relate the area of Pj to the
sum of the interior angles θij where i ∈ {1, 2, . . . , nj}. Without loss of generality, the radius of the sphere may
be set to unity. The total number of vertices may be counted in terms of the number of edges, since each edge
contributes to two vertices, hence

2πe =

f∑
j=1

nj . (4.2)

In terms of angles, each vertex contributes 2π to the total sum over all angles:

2πv =

f∑
j=1

nj∑
i=1

θij
Eq.(3.5)

=

f∑
j=1

(nj − 2)π +

f∑
i=1

|Pj | = 2πe− 2πf + 4π. (4.3)

This reduces to to the Euler formula, Eq.(4.1).

In efforts to generalise this statement, we shall consider expressions similar to v − e + f in a more generic
setting. Of course the value will not always be equal to 2 (consider for example a triangulation of the torus),
instead we shall call its values χ the Euler characteristic which is intimately connected with the topological
structure. As an example we shall consider the five colour theorem [5]:

Theorem 4.2. (The five colour theorem) Every subdivision of the sphere can be properly coloured by using
at most five different colours. By properly coloured we mean that no two regions having a whole segment of their
boundaries in common receive the same colour.

Proof. It is sufficient to consider subdivision whose regions are bounded by simple closed polygons of circular
arcs. If we replace every vertex at which more than three arcs meet by a small circle, and join the interior of
each such circle to one of the regions which meet at the vertex, a new map is obtained with the same number
of regions but only vertices of degree three. Such a division will be called a regular map on the sphere. If this
can be properly coloured with five colours, then we simply need to shrink the circles down to a point to recover
the original map.

The first step is to prove that each regular map will contain a least one region which is bounded by fewer
than six sides. By construction of a regular map, each arc has two ends, and each end is connected to exactly
three arcs. Hence we know 2e = 3v. Denote by fn the number of regions with n sides, and therefore n vertices.
Summing over all faces we obtain:

2e = 3v = 2f2 + 3f3 + 4f4 + . . . . (4.4)

Now combining this with Eq.(4.1), we conclude that 3f − e = 6. And therefore re-expressing (4.4) yields

12 = 6(f2 + f3 + f4 + . . .)− (2f2 + 3f3 + 4f4 + . . .) =

∞∑
n=1

(6− n)fn .

Clearly one of the terms in the sum must be positive, and therefore at lease one of f2, f3, f4 or f5 is positive.

Now let M be a regular map one the sphere with k regions. We complete the proof in two parts.

Case 1. The map M contains a region R with five sides. Call these five neighbouring regions Q1, Q2, Q3, Q4

and Q5. The Jordan curve theorem applied to the sphere guarantees us that we can find a pair among these
which do not touch. Without loss of generality, take these to be Q1 and Q2. Now remove the sides of R
adjoining Q1 and Q2. This produces a new map with k − 2 regions. If this can be properly coloured with five
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colours, then so can M , since when the boundaries are restored, R will be touching regions of a most four
different colours (as Q1 and Q2 are the same colour). Hence we simply paint R the fifth colour.

Case 2. The map M contains a region R with 2,3 or 4 sides. If it has four sides, then again we can find
a pair of adjacent regions which do not touch. Remove the boundary between R and one of these regions.
Otherwise if R has 2 or 3 sides then it doesn’t matter which boundary we remove. Either way we get a new
map with k − 1 regions. If we can find a proper colouring for this map, then we can find a colouring for M ,
since R is neighbour to at most four different colours.

In this fashion, if M is a regular map with k regions, we may always reduce this to a regular map of k − 1
or k − 2 regions. This process may be sequentially applied until we arrive at a map with five or fewer regions,
which can of course be properly coloured with five colours. Returning step by step to M , we find that indeed
M itself can be properly coloured with five colours.

Another example from the field of graph theory will hint at the topological relevance of the Euler characteristic.
A planar graph is a graph whose vertices can be represented by points in the Euclidean plane, and whose edges
are simple (non-intersecting) curves in the same plane.

Theorem 4.3. (Kuratowksi’s theorem) A finite graph is planar if and only if it does not contain a subgraph
homeomorphic to K5 or K3,3.

Here K5 denotes the complete graph with five vertices, and K3,3 denotes the bipartite graph of six vertices.

We shall not prove this theorem in full, however Euler’s formula can determine one direction of the statement:

Proposition 4.4. The two graphs K5 and K3,3 are nonplanar.

Proof. Observe that if a graph is planar, then it may be embedded on the sphere without edge intersection.
Thus we will obtain a subdivision of the sphere, and Euler’s formula is applicable!

First we do away with K5. Notice that there are v = 5 vertices and e =
(

5
2

)
= 10 edges. From Eq.(4.1), there

must be f = 7 faces. Each face is bounded by at least three edges, while each edge bounds exactly two faces.
Therefore 3f ≤ 2e, meaning the number of faces is at most,

f ≤ 2e

3
= 6 +

2

3
< 7 = f,

giving a contradiction.

For the bipartite graph K3,3, there are v = 6 vertices and e = 32 = 9 edges, and hence by (4.1) there are
f = 5 faces. Note that bipartite graphs cannot have odd length cycles, and therefore each face is contained in
at least 4 edges, i. e. 4f ≤ 2e. Hence we find

f ≤ 2e

4
= 4 +

1

2
< 5 = f,

giving the second contradiction.

B. Relation to the Theory of Vector Fields

This section elucidates the relationship between singularities and the Euler characteristic [13]. Note that in
what follows, we make no statement about the genus of the surface. This connection shall be discussed in the
next section.

Definition Let Σ be a closed surface with continuous first derivatives at every point. This enables the existence
of a tangent plane at every point. The normal of this tangent plane will vary continuously over the surface.
Consider a field of normalised tangent vectors defined and continuous at all but finitely many points on the
surface. These points of discontinuity are the so called singular points. We call such a construction a regular
vector field on Σ.
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Enclose an isolated singularity in a small region such that this region contains no other singularities of the
vector field. We shall let the boundary of this region be a simply closed curve. The surface has continuous first
derivatives and it is therefore possible to define a continuous tangent vector field on this boundary. The index
is then the change in angle between the tangent vector field and the original, as one traverses the simple closed
curve divided by 2π. Since the curve is closed this will be an integers.

Example Consider the following singular points described by vector fields in the plane. The index of the
singular point is the value in brackets.

Source (+1) Sink (+1) Centre (+1) Dipole (+2) Saddle-node (-1) Monkey-saddle (-2)

Proposition 4.5. (Poincaré index theorem) If Σ is a smooth surface and v is a regular vector field on Σ
with isolated zeros, the Euler characteristic of Σ is

χ(Σ) =
∑

z∈zeros

indexv(z). (4.5)

Consequently χ(Σ) is independent of the triangulation and the sum of the indicies at the zeros is independent
of v.

Proof. We shall first find the value of χ(Σ) for a specific vector field. Then we shall complete the proof by
showing that this is invariant the sum on the right hand side of (4.5) does not depend on the choice of v.
Construct v as follows. Divide Σ into a network in such a manner that all regions are bounded by three edges
(this is a triangulation of the surface). In each region, introduce four singular points, as shown in the diagram
below.

There is a sink at the centre and three saddle-nodes on the edges. The three vertices are sources. Breaking
up the triangle into six sub-triangles to ensure that the vector field is continuous on its interior. Notice that
the boundaries of the larger triangle allow for the vector field v to be defined continuously over Σ except at the
isolated singularities by simply tiling.

Recalling that the index of sinks and sources is +1 and the index of saddle-nodes is −1. Then each face
contains a sink and therefore contributes +1 to the sum of the indexes. Each edge contains a saddle-node and
contributes −1, while each vertex is a source and hence contributes +1. Hence we have found,∑

z∈zeros

indexv(z) = v + f − e = χ(Σ).

It remains to show that this sum is independent of v. Consider two vector fields v and w on Σ. Proceed by
subdividing Σ by a network with the condition that the singularities of both vector fields to not fall on the edges
or vertices of this division. Furthermore, by making the regions small enough, we are able to ensure that each
region has at most one singularity of v or w in its interior. Now that the regions separate the singular points,
the difference in indexes at a point z for two vector fields v and w can be arrived at by the change in relative
directions of the two vector fields in traversing the boundary of a region in the positive sense (divided by 2π).
However, if we sum over all regions, every edge in the network will be traversed twice: once for each of the two
regions bounded by the edge. Therefore, the total sum is reduced to zero by cancellations each term. Thus:∑

z∈zeros

indexv(z)− indexw(z) = 0,

where the set of zeros is over v and w. This completes the proof.
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C. Generic surfaces

Two-dimensional surfaces display many important but still simple facts. In our earlier discussion of topological
transformations, it was mentioned that objects should not be torn or punctured in their manipulation. This
amounts to preserving a property called the genus of a surface. Roughly speaking, this is equal to the number
of “holes” a surface has. More precisely,

Definition The genus g of a surface Σ is the largest number of non-intersecting closed cuts that can be made
on Σ without separating it into two parts.

From a topological point of view, a closed surface is completely characterised by its genus g = 0, 1, 2, . . ..

Proposition 4.6. Suppose that a closed surface Σ of genus g is divided into a number of regions by marking a
number of vertices on Σ and joining them by curved arcs. Then

2(1− g) = v − e+ f, (4.6)

where v is the number of vertices, e is the number of arcs and f is the number of regions.

We have as a matter of fact already proved this for a sphere (cf. Eq.(4.1)), as this is an object with g = 0.

Proof. To prove the formula (4.6), we may treat Σ as a sphere with g handles. It is possible to continously
deform a g genus object into this form and this operation will keep v − e + f unchanged. Note that it is
implicit in the statement of the theorem, that a region obtained by such a subdivision may not entirely include
a handle. Therefore it is possible to arrange that the deformation of the sufrace includes closed curves Ci and
Ki (contained in Σ) where the i-th handle joins the sphere. We now cut the surface along each Ci, thereby
reducing the surface to a zero genus object.

Each handle now has a free edge bounded by C ′i which was previously joined to Ci. Because of
this, Ci has the same number of vertices and arcs as C ′i. Clearly the boundary of any region has the same
number of vertices as edges, and therefore the quantity v−e+f remains unchanged through this cutting process.

We now continuously deform the resultant object (its handles severed), into a sphere. What remains is a
sphere with 2g regions omitted, precisely those bounded by Ci and C ′i. We know that Eq.(4.1) holds for a
sphere, so that

v − e+ (f + 2g) = 2 ⇔ Eq.(4.6).

Example Consider the doughnut with two holes (g = 2) shown in Fig. 5. This can be subdivided &
continuously deformed to produce the “concrete brick”.

Evidently in this case f = 2 × 7 + 3 × 4 = 26, e = 4 × 2 × 5 + 2 × 6 + 4 = 56 and v = 2 × (6 + 8) = 28.
Therefore

v − e+ f = 28− 56 + 26 = −2 = 2(1− g).

We are now in a position address a topic raised in [22], namely that you “can’t comb a hairy ball”. Indeed
were this possible, there would exist a vector field on the surface without singularities which we now know to
be impossible by theorem 4.5. Moreover, there is only one surface for which there are no singularities. For
χ(Σ) = 0 to hold we must have g = 1. Therefore the only possible surface with this property is the torus. It is
simple to produce a construction to prove the existance.
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FIG. 5: A “figure-eight” surface transformed into a rigid polyhedron on the right.

D. Higher dimensions

The Euler characteristic we have thus far described applies to 2-dimensional surfaces embedded in R3.
Formula (4.1) suggests a natural generalisation for the Euler characteristic of an n-dimensional manifold M
which may be triangulated. To clarify the meaning of this statement, we need to generalise the triangle to
arbitrary dimension.

The “3-dimensional triangle” is more commonly known as a tetrahedron, i. e. a triangular based pyramid. Call
the n-dimensional tetrahedron Tn. From the structural point of view, these are the simplest figures requiring
the given dimension n. Notice that the tetrahedron has 4 vectors, 6 segments and 4 triangular faces. It is then
clear how to proceed: each Tn contains n + 1 vertices. Moreover, each each subset of i + 1 vertices of a Tn,
(i ∈ {0, 1, . . . , n}) determines another copy of Ti. Therefore a combinatorial approach is needed, and we see
that there are (

n+ 1

i+ 1

)
=

(n+ 1)!

(n− i)!(i+ 1)!
, (4.7)

ways of choosing the vertices to form a Ti in a Tn. For example, T4 is a 4-dimensional object with 5 vertices,
10 line segments, 10 triangular faces and 5 solid tetrahedra.

Consider a triangulation of M involving β0 vertices, β1 edges, β2 faces,. . ., βn n-dimensional tetrahedra. The
Euler characteristic of M is then

χ(M) =

n∑
k=0

(−1)kβk. (4.8)

Example The n-dimensional tetrahedron Tn can be used to triangulate the (n − 1)-sphere, Sn−1. The circle
and the sphere are simple:

χ(S1) = χ
( )

= 3− 3 = 0, and χ(S2) = χ
( )

= 4− 6 + 4 = 2.

We are in fact equipped to determine χ(Sn) using what we have shown. In this case, the number of k-tetrahedra
Tk is βk given by choosing k + 1 vertices from n+ 1 via Eq. (4.7). Therefore

χ(Sn) =

n∑
k=0

(−1)k
(
n+ 1

k + 1

)
=

{
0 if n odd,
2 if n even,

using the binomial theorem to make the parity distinction.
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V. GEOMETRIC GROUP STRUCTURES

A. Flows on the billiard table

What follows is a motivational example involving translation surfaces and their properties. A standard
billiards table is a flat rectangular region in R2. Cue balls are directed along the surface travelling at a unit
speed until colliding elastically with either the wall or another ball. We shall simply examine the trajectory of
an isolated ball moving in the planar domain.

From now on, the pool table will be the rectangle U := (0, a) × (0, b). Denote by θi the incident angle of a
trajectory just before it strikes the boundary ∂U and θf the angle it rebounds at. If the reflection occurs on a
horizontal side of U , then

θf = −θi =: Sh(θi).

And for reflections on a vertical component of the boundary,

θf = π − θi =: Sv(θi).

It is plain that Sh and Sv are commuting involutions (modulo 2π) and hence generate the Klein four-group
V = Z2 × Z2.These functions are naturally associated with linear symmetries in R2, defined by

Sh(x, y) = (x,−y) and Sv(x, y) = (−x, y),

which are reflections in the x-axis and the y-axis respectively. The composition of these two operations is
So := Sh ◦ Sv = ◦Sv ◦ Sh. The diagram shows the surface constructed through symmetric images of U , namely
Sh(U), Sv(U) and So(U). Sides are identified as shown in the diagram: for each g ∈ V = {e, Sh, Sv, So},
the upper/lower side of g(U) is identified with the lower/upper side of Sh ◦ g(U) respectively. Similarly the
left/right side of g(U) is identified with the right/left side of Sv ◦ g(U).

This is nothing but the 2-dimensional flat torus T2 = S1 × S1. We have therefore found that trajectories of
a billiard ball on a pool table are exactly the linear flow on a torus! The trajectory is simply parametrised by
t ∈ R,

F tu,v(x, y) := (x+ ut, y + vt). (5.1)

These may be further classified by the following proposition (the proof is omitted):

Proposition 5.1. If the ratio u/v ∈ Q, then every trajectory described by the flow F tu,v is periodic. Alternatively,

if the ratio u/v is irrational then any given trajectory is dense and equidistributed in T2.

B. Crystallographic Group

Before proceeding to more complicated environments, we shall discuss the symmetry groups in R2, known as
the wallpaper groups. It has been known for centuries [16] that there are only 17 distinct groups of this variety,
no two of which are isomorphic.

Recall that an isometry is a distance preserving map between metric spaces. In particular a Euclidean plane
isometry is a function τ : R2 → R2 such that for any two points x, y in the plane,

d(x, y) = d(τ(x), τ(y)),
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where d denotes the standard Euclidean distance. When considering isometries from the plane to itself these
may be entirely classified (the orientation is shown by arrowheads on circles):

Translations - Rotations - Reflections - Glide Reflections

Proposition 5.2. Every orientation preserving (proper) isometry of R2 is either a translation or a rotation.
Contrariwise, every orientation reversing (improper) isometry of R2 is a reflection or a glide reflection.

Moreover, every isometry of the plane may be reduced to a composition of reflections. For example, a
translation by a distance 2d may be arrived at by first reflecting in a line perpendicular to the translation
direction moving a distance d, and then reflecting again in the same fashion to complete the translation. In a
similar way, a rotation by 2θ may be obtained by reflecting in a line at an angle θ/2 and another in a line at an
angle 3θ/2. More is true:

Proposition 5.3. Any Euclidean plane isometry can be reduced to a composition of reflections in three different
mirrors.

Proof. The isometry τ is entirely determined by its effect on three non-collinear points. Suppose x, y and z are
such points. If we are not dealing with the identity, we may assume without loss of generality that one of the
points is not fixed: x 6= τ(x). Hence we set our first reflection to be in the perpendicular bisector of the line
segment joining x and τ(x). Call this reflection f . All further reflections will keep τ(x) fixed. If τ(y) = f(y)
and τ(z) = f(z) then we are done. Otherwise we may say τ(y) 6= f(y). Take h to be a reflection in the angle
bisector of the angle f(y) and τ(y) makes at τ(x). In the projective plane, lines are regarded as generalised
circles. Then τ(y) = h ◦ f(y), so that it remains to map h ◦ f(z) to τ(z). If it is not already so, we simply need
to reflect in the line through τ(x) and τ(y).

The set of all isometries in n dimensional Euclidean space forms a group, named E(n), with respect to
composition. We are at the moment studying those with n = 2. Note that the composition of two proper, or
of two improper, isometries is a proper isometry. And unsurprisingly, the composition of a proper or improper
isometry (in either order), is an improper isometry.

In order to move to the wallpaper patterns, we need to formally introduce the discrete isometries. This shall
be unpacked in Sec. VI, but for now it will suffice to motivate this as follows.

Definition A subgroup G of E(n) is called discrete iff for each point x ∈ Rn there exists a ball B(x, r) ⊂ Rn
such for all g ∈ G, we have either g(x) = x or g(x) 6∈ B(x, r).

Definition A plane symmetry group is a discrete subgroup of E(2) which contains two independent translations.
For ease, we shall now work in the complex plane C ∼= R2. We shall define the lattice group in a natural way:

G(ω1, ω2) = {z 7→ z + ω1m+ ω2n : m,n ∈ Z} = 〈z 7→ z + ω1, z 7→ z + ω2〉, (5.2)

with associated lattice Λ(ω1, ω2) = {ω1m + ω2n : m,n ∈ Z}, where ω1, ω2 ∈ C. There is a further condition
that ω1/ω2 6∈ R, i. e.the complex numbers are not parallel.

The motivation for this is that if t and s represent translations by ω1 and ω2 respectively, then all elements in
the group are of the form tisj . Working backwards, any discrete subgroup of E(2) consisting of two independent
translations must have two independent “smallest” translations.

Next we wish to include rotations in our subgroup of E(2). This is characterised by the following theorem.

Theorem 5.4. (The Crystallographic Restriction) Let G be a plane symmetry group. Then each rotation of G
has order 1, 2, 3, 4 or 6.
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Proof. Let t be the smallest translation in G and let r be the smallest (positive) rotation. Let r have centre X
and rotate anticlockwise by 2π/m, m ∈ N. Take another point Y = t(X) and define

Z = rtr−1t−1(Y ) = rt(X) = r(Y ).

Then rtr−1r−1 is a translation sending Y to Z. Since t is the smallest translation, Y Z is at least equal to
XY = XZ, meaning that 2π/m ≥ π/3. In other words, m ≤ 6.

It remains to eliminate m = 5. To see this, note that if the centre of rotation lies on a lattice point, through
t2 we construct a rotation by π (called the diad rotation). Therefore 2π/m must divide π, i. e. m is even. Hence
for both m = 3 and m = 5 (being the smallest such rotations), the centre of rotation cannot lie on a lattice
point. For such a lattice, we will thusly obtain a tiling on the plane in m-gons. This rules m = 5 out of the
picture.

We arrive at the conclusion that there are only five basic lattice types which constitute a plane symmetry
group. From this point, it is a simple matter to identify which symmetries are associated with which lattices.
For example, the lattice comprising of equilateral triangles enjoys a 6-fold symmetry.

Definition An n-dimensional crystallographic point group K is a group of isometries of Rn which fixes a point
x and leaves some n-dimensional lattice unchanged.

We now return to the n = 2 dimensional case. Observe that a crystallographic point group cannot contain
translation or glide reflections. Infact, the elements of the group are either reflections in a line through x or
rotations centred at x. Thus, K can be nothing more than the cyclic groups Cn or the dihedral groups Dn,
where theorem 5.4 implies n = 1, 2, 3, 4 or 6. This definition is motivated by the next result.

Proposition 5.5. Each plane group G gives rise to a crystallographic point group as a homomorphic image.

We require the following lemma to ease the proof.

Lemma 5.6. E(n) is the semidirect product of O(n) extended by T , the subgroup of translations in R2.

Proof. Any element s of E(n) may be written s(x) = Ax+ v where A ∈ O(n) and v ∈ Rn. A translation t ∈ T
may be represented by t(x) = x+ w, for some w ∈ R2. Then

ts(x) = A−1(Ax+ v + w − v) = x+A−1w,

which is plainly a translation. Thus if t is a translation and u is any isometry, u−1tu is also a translation.

Returning to the full proof of 5.5, set n = 2.

Proof. Now we can combine this with the second isomorphism theorem to conclude that H := T ∩G is a normal
subgroup of G, since plane groups are in turn subgroups of E(2). It remains to find a map φ such that kerφ = H.

We now fix a point x in the plane. Consider g ∈ G and write t as the translation carrying x to g(x). Thus
s := t−1g leaves x invariant, and so must be a rotation about x or a reflection with an axis passing through
x. Thus g = ts where t is a translation and s leaves x unchanged. It is elementary to show that the set of
all s which leaves x invariant forms a group, we denote K. Similarly that the map φ : G → K, defined by
φ(g) = φ(ts) = s, is a group homomorphism. Furthermore, this construction gives kerφ = H. Therefore the
first isomorphism theorem gives K ∼= G/H.

The lattice formed which is left unchanged is Λ = {t(x) : t ∈ T}. Take some x0 ∈ Λ, so that x0 = t0(x) for
some t0 ∈ T . Thus for ts = g ∈ G gives

s(x0) = st0(x) = t−1gt0(x) = t−1gt0g
−1g(x) = t−1(gt0g

−1)ts(x) ∈ Λ,

since s(x) = x and the conjugate of t0 is a translation.

Pursuing this analysis will produce the 17 unique plane groups, and images showing the symmetries may be
found in [1].
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C. Möbius Transformations

Definition A Möbius transformation of the Riemann sphere Ĉ is a map of the form

f(z) :=
az + b

cz + d
, (5.3)

where a, b, c and d are complex numbers with the proviso that ad−bc 6= 0. We let f(∞) = a/c and f(−d/r) =∞.

The Möbius transformations form a collection of bijections from the extended complex plane to itself. Fur-
thermore, these transformations are homeomorphisms and form a group under compositions as we shall see [14].
In the following example, we illustrate the analogy between the Möbius transformations and GL(2,C), the set
of 2× 2 invertible matrices with elements in C. The question was posed to me by a fellow student.

Example The function f(z) = 1/z is special for a number of reasons, one of which is the fact that if you apply
it to a number twice, you get back the original number, i.e. f(f(z)) = 1/(1/z) = z. Do other functions behave
in similar ways? Consider f(z) = 1/(1− z). After applying and reapplying this function we find the sequence

x→ 1

1− z
→ 1− z

z
→ z, (5.4)

which will then repeat. For brevity we shall write this nested composition of functions as fn(z) when the
function is applied n times. The set of consecutive compositions of a function is called the orbit. For the
previous function, we found that f(f(f(z))) = f3(z) = z.

Now the question; For any natural number n, does there exist a rational function f , from the Riemann
sphere1 to itself, such that the orbit is periodic with length n? By rational function, we simply mean a function
which is the ratio of polynomials. We’ve already found such examples where n = 2 and n = 3. The function
f(z) = z is the trivial case providing n = 1.

A little searching yields f(z) = (z + 1)/(1− z) which has a period of 4;

z → 1 + z

1− z
→ −1

z
→ 1 + z

z − 1
→ z − 1

z + 1
→ z. (5.5)

It seems that linear fractional functions might be good enough. Indeed, the problem is made easier by noting
the link between such functions (Möbius functions) and their relation to 2 × 2 matrices. Square matrices are
particularly useful and the 2× 2 variety multiply in the following way,(

a b
c d

)(
α β
γ δ

)
=

(
aα+ bγ aβ + bδ
cα+ dγ cβ + dδ

)
.

On the other hand, if we compose two different Möbius functions we get

a
(
αx+β
γx+δ

)
+ b

c
(
αx+β
γx+δ

)
+ d

=
(aα+ bγ)x+ (aβ + bδ)

(cα+ dγ)x+ (β + dδ)
.

Notice that the parameters are changed in exactly the same way. Thus composition of Möbius functions can
be represented by multiplication of 2× 2 matrices. This allows the question about functions to be changed into
one about matrices. We can view a 2× 2 matrix as an operation on a cartesian plane. If we want an operation
of period n, the simplest to consider would be a rotation of 2π/n around the origin. After applying this n
times, an object will rotate through one entire revolution, returning it to where it began.

Rotation anticlockwise about the origin by an angle θ is given by the formula

(x, y) 7→ (x cos θ − y sin θ, x sin θ + y cos θ),

which can be rewritten in terms of matrices as(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
=

(
x cos θ − y sin θ
x sin θ + y cos θ

)
.

To answer the question posed, the function

f(x) =
x cos(2π/n)− sin(2π/n)

x sin(2π/n) + cos(2π/n)

must have a period of length n with respect to function composition.

1 We need this proviso to do away with division by zero.
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The requirement that ad− bc 6= 0 translates to a non-zero determinant in the 2× 2 matrix picture. We have
seen that the Möbius transformations are closed under composition, suggesting there may be a group structure
to them.

Proposition 5.7. The Möbius transformations form a group of conformal maps of the Riemann sphere Ĉ.

Proof. To find the inverse of f according to Eq.(5.3), define

g(z) :=
dz − b
−cz + a

.

Observe that ad − (−c)(−b) = ad − cb 6=), so that g is a Möbius transformation. Simple substitution shows

that f(g(z)) = g(f(z)) = z for all z ∈ Ĉ. Note that fz̄(z) = 0, and therefore to verify that f is conformal, we
need to prove that fz 6= 0. This is readily checked: Firstly, if r = 0 we have fz = p/s 6= 0. Otherwise, if r 6= 0,
then fz(z) = (ad − bc)/(cz + d)2 6= 0 for any z ∈ C. For the point at infinity, write w = 1/z and then note
that fz(z) = −(ps − qr)wz/(r + sw)2 by the chain rule. Evaluating at w = 0 we clearly see that fz(z) 6= 0,
completing the proof.

An intuitive reason for what has been shown above can be reached by decomposing a Möbius function. A
Möbius transformation is equivalent to a sequence of simpler transformations. Define

f1(z) := z +
d

c
,

f2(z) :=
1

z
,

f3(z) :=
bc− ad
c2

z,

f4(z) := z +
a

c
.

The first and last functions (f1 and f4) represent simple translations by d/c and a/c respectively. The third
transformation f3is a spiral transformations (a rotation & dilation). The second function f2 represents an
inversion in the unit circle S1 combined with a reflection in the real axis. It is an algebraic exercise to check
that

f4 ◦ f3 ◦ f2 ◦ f1(z) =
az + b

cz + d

Eq.(5.3)
= f(z).

The Möbius group is usually denoted Aut(Ĉ) as it is simply the automorphism group of the Riemann sphere.
With every invertible complex 2× 2 matrix H we can associate the Möbius transformation f ,

H =

(
a b
c d

)
7→ f(z) =

az + b

cz + d
. (5.6)

This identification means that the map π : GL(2,C)→ Aut(Ĉ) which sends H to f is a group homomorphism.
However this is not a bijection since any matrix obtained from a scalar multiple of H determines the same
transformation. This tells use that ker(π) = {λI : λ ∈ C}. Thus the first isomorphism theory provides a
description of the Möbius group,

Aut(Ĉ) ∼= GL(2,C)/((C \ {0})I) =: PGL(2,C),

which is called the projective general linear group. This name comes from the action of PGL(2,C) on the
complex projective CP 2, as discussed in Sec. III, is identical to that of the Möbius group on the Riemann
sphere. The bijection is arrived at from the homogeneous coordinates [z1, z2] and the ratio z1/z2.

Remark Given a set of three distinct points z1, z2 and z3 on the Riemann sphere, and a second set of distinct
points w1, w2 and w3, then there exists precisely one Möbius transformation f satisfying f(zi) = wi for i = 1, 2, 3.
Consider the definition

h1(z) :=
(z − z1)(z2 − z3)

(z − z3)(z2 − z1)
, (5.7)

which is easily checked to be a Möbius transformation. Then h1(z1) = 0, h1(z2) = 1 and h1(z3) = ∞. If h2 is
defined in a similar way to map w1, w2 and w3 to 0, 1 and ∞ respectively, then setting f = h−1

2 ◦ h1 gives the
requirement. Moreover, the expression in Eq.(5.7) bears similarity to the cross ratio (3.2). It is an important
characteristic of the Möbius function that it leaves the cross ratio invariant. This can be seen by simply checking
that it is conserved through h1 above.
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Example Consider the Möbius transformation given by q(z) = i(1 + z)/(1 − z). The image of the unit circle
is found as

q(eiθ) = i
1 + eiθ

1− eiθ
=

1

tan(θ/2)
∈ R.

The point z = 1 is mapped to ∞. In other words, the unit circle is mapped to the extended real axis. It is a
simple check to find that q defined above maps B2 to H2.

Corollary 5.8. Four distinct points z1, z2, z3 and z4 belong to the same line or circle iff their cross ratio is
real. In the projective plane, lines are regarded as generalised circles.

Using the notation in (5.6), we see that the vector (z1, z2)T ∈ C2 is an eigenvector of H precisely when
f(z1/z2) = z1/z2. Then z1/z2 is a fixed point of f . Note that from the Jordan Canonical form of H, we know
that H is conjugate to (

λ 0
0 λ−1

)
for some λ 6= 0, or to

(
1 1
0 1

)
,

for when the eigenvalues of H are distinct and both equal to 1 respectively. This has analogous results for
Möbius transformations.

Theorem 5.9. A non-identiy Möbius transformation has either 1 or 2 fixed points in Ĉ. If it has 1, then it is
conjugate to z 7→ z + 1. If it has 2, then it is conjugate to z 7→ kz for some k/neq0, 1.

Proof. First suppose that the Möbius transformation f has two fixed points u and v. We have the leisure of
picking another g such that g(u) = 0 and g(v) = ∞. Then by construction g ◦ f ◦ g−1 fixes 0 and ∞. We
therefore know that g ◦ f ◦ g−1(z) = λ2z for some λ 6= 1, 0,−1.

Otherwise, f has precisely one fixed point, u. This time pick g such that g(u) =∞. Then g◦f ◦g−1 fixes only
the point ∞. Thus g ◦ f ◦ g−1(z) = z + q. However, we can then form the expression q−1g ◦ f ◦ (q−1g)−1(z) =
z + 1.

This characterisation affords its own nomenclature. A non-identity is named

(i) parabolic if it is conjugate to z 7→ z + 1, (⇔ trH = ±2)

(ii) elliptic if it is conjugate to z 7→ kz for |k| = 1 (k 6= 1), (⇔ trH ∈ (−2, 2))

(iii) hyperbolic if it is conjugate z 7→ kz for k ∈ R+ (k 6= 0, 1), (⇔ trH ∈ (−∞,−2) ∪ (2,∞))

(iv) loxodromic if it is conjugate z 7→ kz for |k| 6= 1 and k 6∈ R+. (⇔ trH 6∈ R)

The connection to the trace of H is easily seen by observing that for different eigenvectors λ and λ−1,

tr

(
λ 0
0 λ−1

)
= λ+ λ−1 ≥ 2,

from the arithmetic-geometric mean inequality when λ > 0. The negative case is a trivial modification and the
boundaries are readily checked.

We now disclose our purpose for the discussion of Möbius transformations, and the reason why they are of
core importance to Hyperbolic geometry [4]. Indeed the following proposition determines which of the Möbius
transformations of H2 are isometries of H2. First note that with such a restriction a, b, c ∈ R, an associated
Möbius transformation will leave the real line unchanged. Moreover, we find that H2 is mapped to itself:

=
(
az + b

cz + d

)
=

1

2i

(
az + b

cz + d
− az̄ + b

cz̄ + d

)
= =(z)

(
ad− bc
|cz + d|2

)
=

=(z)

|cz + d|2
, (5.8)

meaning that is =(z) > 0 implies =(f(z)) > 0.

Definition The special linear group SL(2,R) is the group of all real 2× 2 matrices with unit determinant,

SL(2,R) := {
(
a b
c d

)
: a, b, c, d ∈ R and ad− bc = 1}. (5.9)

Observe that a Möbius transformation remains unchanged if the variables a, b, c and d have their sign flipped.
Therefore we define PSL(2,R) as the set of matrices in SL(2,R) with two matrices A,B identified iff A = −B.
This is called the projective special linear group.



27

Remark The projective special linear group emerges naturally as the quotient

PSL(2,R) ∼= SL(2,R)/{I,−I}.

Proposition 5.10. Let f be a Möbius transformation of H and let z, w ∈ H. Then the distance is unchanged:

dH(f(z), f(w)) = dH(z, w). (5.10)

Proof. It will suffice to show that the length of a path γ from z to w keeps its value. Note that f ◦ γ is a path
from z to w, suggesting we apply the chain rule:

`H(f ◦ γ) =

∫ 1

0

dt
|f ′(γ(t))||γ′(t)|
=(f ◦ γ(t))

=

∫ 1

0

dt
|γ′(t)|
=(γ(t))|

= `H(γ),

where we have used the previous results (5.8) and the chain rule, to simplify the expression.

The classification of Möbius transformations carries over to the isometries of H2. Their actions on the Klein
disk are shown below:

We can do better. The next theorem identifies all isometries of H2 in terms of Möbius transformations plus
reflection in the imaginary axis.

Theorem 5.11. The group Isom(H2) is generated by Möbius transformations from PSL(2,R) together with
z 7→ −z̄.

Proof. Let φ be an isometry of H2. Then geodesics are mapped to geodesics, so in particular the imaginary
axis I is mapped to a geodesic. Now take another isometry ψ ∈ PSL(2,R such that ψ ◦φ(I) = I. Then we can
ensure that ψ fixes the entire axis by composing it with dilations (z 7→ kz) and inversions (z 7→ −1/z) to fix
say i, and hence all of I. We know that it takes three independent points to fix an isometry (by triangulation).
Since we have entirely determined a geodesic in H2, it remains to determine the orientation. Hence there are two
options: ψ◦φ(z) = z or ψ◦φ(z) = −z̄, that is, ψ◦φ is either the identity, or it is a reflection in the imaginary axis.

If ψ ◦ φ = Id, then φ = ψ−1 ∈ PSL(2,R). Otherwise, if ψ ◦ φ(z) = −z̄ for all z ∈ H2, then

φ(z) =
az̄ + b

cz̄ + d
, (5.11)

where ad− bc = −1. This verfies the theorem statement.

And so we have classified all the isometries of H2. It is the sign of the determinant in Eq. (5.11) which
characterises the orientation of an isometry. The isometries which preserve the orientation are PSL(2,R),
which hence form a subgroup of Isom(H2) of index two.
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VI. KLEINIAN & FUCHSIAN GROUPS

The connection between the theory of Kleinian groups and Hyperbolic geometry was made by Thurston [24].
The result is that when a Kleinian group G is isomorphic to the fundamental group of π1 of a hyperbolic
3-manifold, then the quotient space H3/G is a model for that manifold. We shall not prove this result, but we
shall make a start at the description of Kleinian groups and their properties.

A. Hyperbolic 3-space

Let Q be a sphere orthogonal to the unit sphere S2. Then γ := Q ∩ S2 a circle. It is well known that
orthogonal spheres are fixed by inversion. Hence an inversion in Q fixes γ and maps S2 onto itself. In fact, it
is not hard to see that B3 will also be mapped to itself. Notice that for any plane p which passes through the
centre of Q intersects it in a circle γ′, then restricted to p, the map is nothing but inversion in γ′. We have
found an isometry:

Proposition 6.1. Let φ be an inversion in Q ⊥ S2; Then φ is an orientation reversing isometry for the
hyperbolic metric.

It quickly becomes clear that many of the propositions for 2-dimensional inversions hold in the 3-dimensional
case as well. For example: for each point x ∈ B3 there is an inversion in a sphere orthogonal to S2 which
interchanges the origin and x. Moreover, we attain a Poincaré model using B3 for H3. Between any two
distinct points in B3, there is a unique path with the shortest hyperbolic length. This is an arc of a circle
which is orthogonal to S2.

Let’s now bring Möbius transformations into the game. Let f ∈ Aut(Ĉ). Then it is well-known that f can
be written as the composition of inversions in an even number of circles, γ1, γ2, γ3, . . . , γ2N . For each of these
circles there is a unique sphere Qn orthogonal to S3 such that Qn ∩ S3 = γn. Let φn be an inversion in Qn.

Then we know that φ2N ◦ . . . ◦ φ1 acts on S2 as f . This scheme extends f , to some function f̃ from R3 ∪ {∞}
to itself. The map agress on S2 with f and maps B3 to itself. The function f̃ is called the Poincaré extension
of the Möbius transformation f .

Proposition 6.2. For every Möbius function f : Ĉ→ Ĉ, the extension f̃ maps the unit ball to itself and is an
orientation preserving isometry for the hyperbolic metric.

Proof. In the notation above, we know that each φn is an orientation reversing isometry. Thus f̃ is an even
number of orientation reversing isomtries and therefore and orientation preserving isometry.

It follows from this that every Möbius function has a unique extension. The next theorem will come as not
surprise, based on our discussion of H2. The proof follows [4].

Theorem 6.3. Every orientation preserving isometry of hyperbolic 3-space in B3 is f̃ for some Möbius trans-
formation f .

Proof. Suppose that φ : B3 → B3 is an orientation preserving isometry for B3 equipped with the hyperbolic
metric. Then we know that there is an inversion ψ in a sphere orthogonal to S2 such that ψ ◦ φ(0) = 0. We
determined the form of dH2 , and to achieve this in B2 we simply need to apply the Möbius transformation

z 7→ i
1 + z

1− z
,

which sends B2 to H2, as in Sec. V C. In Sec. III E we found that in H2, the distance between i and iy where
0 < y < 1 is ln(1/y). Notice that the origin in B2 is mapped to i in H2. This means, that when we go up to
B3, if we take u ∈ S2, then (where 0 < t < 1),

dB3(0, tu) = ln

(
1 + t

1− t

)
.

Thus the curve σ(t) := tu is a geodesic (0 ≤ t < 1). Therefore ψ ◦ φ ◦ σ is also a geodesic which starts at the
origin. This enables us to write

ψ ◦ φ(tu) = tv,

where v ∈ S2, where v = g(u).
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Consider two unit vectors x,y ∈ S2, then as t → 0 the vectors tx and ty become separated by a euclidean
distance t2|x− y|+O(t2). Therefore:

lim
t→0+

dB3(tx, ty)

t
= 2|x− y|.

Substituting the isometry ψ ◦ φ into the above gives |g(x) − g(y)| = |x − y|. This forces the function g to
preserve the Euclidean inner product, and hence g ∈ O(3). Generically this means that g is a combination of
reflections through the origin (recall that in Sec. V B we mention that any rotation can be achieved through
reflections). These reflections are included in the space of inversions in spheres orthogonal to S2, giving ψ ◦ φ,
and hence φ as such a composition of inversions.

It is worth remarking at this stage that the upper half-space model,

H3 := {(x, y, z) ∈ R3 : z > 0}. (6.1)

The boundary ∂H3 = Ĉ. The hyperbolic metric is attained in and identical way to dH2 . The results from B3

carry through by an inversion in the sphere

Q := {x ∈ R3 : |x + (0, 0, 1)| =
√

2}.

This map travels bijectively between B3 and H3. Hence we have found

PGL(2,C) ∼= Isom+(H3).

B. Discrete Subgroups

We have already remarked that the Möbius transformations are naturally identified with the space of all 2×2
matrices, denoted by GL(2,C). As a finite dimensional vector space over C, we may define a norm which will
induce a metric. This norm will induce a metric, and we are able to study properties of GL(2,C), as a metric
space.

Definition A subgroup G of SL(2,C) is called discrete if there is a neighbourhood N ∈ SL(2,C) such that
G ∩N = {Id}.

This is the same definition we made in Sec. V B, in the discussion on crystallographic groups. The method is
not different, we are now describing isometries of H3.

Remark An equivalent formulation of the above defintion reads as follow. A subgroup G of M is discrete iff
there is no sequence of distinct elements gn ∈ G with gn → Id.

Example Consider G < SL(2,C) and let f ∈ SL(2,C). Then G and fGf−1 := {fgf−1 : g ∈ G} are either both
discrete or both non-discrete. This is based on the observation that if gn → Id, then fgnf

−1 → Id by continuity.
Hence if G is not discrete then neither is fGf−1. Similarly, if fGf−1 is not discrete and fgnf

−1 → Id, then
gn → Id.

The above results hold equally for subgroups of PSL(2,C), and we shall be primarily concerned with them
as our consideration of isometries limits us to the Möbius groups.

Definition A discrete subgroup of PSL(2,C) is called a Kleinian group. A discrete subgroup of PSL(2,R) (or
Γ) is called a Fuchsian group. Evidently a Fuchsian group is a Kleinian group.

Note that a finite subgroup of PSL(2,C) is automatically a Kleinian group.

Proposition 6.4. Every finite subgroup of PSL(2,C) is conjugate in the Möbius group to a subgroup of SO(3).

Proof. Consider a finite Kleinian group G acting on the unit ball B3. The orbit W = Gp is finite for any
p ∈ B3, and therefore there is a unique closed ball B̄(p0, r) of smallest hyperbolic radius r containing W . (This
fact is slightly subtle, but the proof mirrors that for Euclidean space).

We know that g ∈ G acts isometrically on B3 and hence can only permute elements of W . We therefore find

W = g(W ) ⊂ g(B̄(p0, r)) = B̄(gp0, r),

for each g ∈ G. This ball has the same smallest radius, and uniqueness thus gives that gpo = p0 for each g ∈ G.
In other words, p0 is a fixed point for all elements of G.

Now conjugate G by a Möbius transformation f taking p0 7→ 0. Then fGf−1 is a group of isometries which
fix the origin. It follows that fGf−1 < SO(3), which means exactly that G is conjugate to a subgroup of
SO(3).

Therefore, finite Kleinian groups are in some sense “ordinary” and we must pursue infinite groups to find
interesting examples.
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C. Discontinuous Subgroups

Definition A subgroup G of PSL(2,C) acts discontinuously at a point x ∈ H3 if there is some neighbourhood
U 3 x such that there are only finitely many g ∈ G for which U ∩ g(U) is non-empty.

This splits the Riemann sphere into two categories for a given G. The regular set Ω(G) ⊂ Ĉ is the set of all

points at which G acts discontinuously. The complement Λ(G) := Ĉ \ Ω(G) is called the limit set of G. The
regular set is open in C (by definition), and if it is also non-empty, we call G a discontinuous group. Note from
the definition that Ω(G) is invariant under action by G and therefore so is Λ(G). Since Ω(G) is always open,
Λ(G) is closed.

Example If a Kleinian group acts discontinuously at x ∈ H3, then the stabilizer, defined by

Stab(x) := {g ∈ G : g(x) = x},

is a finite subgroup of G and hence conjugate to a subgroup of SO(3).

Proposition 6.5. If G is discontinuous then it is discrete.

Proof. Assume the contrary and let x ∈ H3. Let gn be a discontinuous sequence of elements of G converging
to the identity, gn → Id. This means that for all ε > 0, there is some integer Nε such that dH3(gn(x)− x) < ε
for all n > Nε. Therefore, if U is a neighbourhood of x containing B(x, ε), then gn(U) ∩ U is non-empty for
n > Nε. This means that G does not act discontinuously at x. But x was arbitrary. Therefore we have shown
that if G is not discrete then it is not continuous.

The converse of the above is not true, and an example can be found in [14].

Consider g ∈ G being a loxodromic or hyperbolic transformation. In this case there are two fixed points:
one “source” and one “sink”. Therefore gn(x) tends to one fixed points whilte g−n(x) tends to the other one
as n→ n. Therefore both fixed points are in Λ(G). The fixed points of an elliptic transformation need not lie
in the limit set.

As we did for the crystallographic groups, we may imagine that R is a fundamental set for G acting on
H3. Then hyperbolic 3-space is tiled by the copies g(R) where g ∈ G. This gives another way of determining
whether G acts discontinuously at a point x ∈ H3: precisely when there is a neighbourhood of x which meets
only finitely many copies R. For the Euclidean plane groups, the limit set is trivial. It is simply the point at
infinity. Hyperbolic geometry on the other hand offers a rich structure to the limit set Λ(G). Beautiful fractal
patterns have been observed from the action of Kleinian groups [19].
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VII. CONCLUSION

A. Back to curvature

Returning back to our notion of curvature, one may note the similarity between propositions (3.3) and (3.6),
we see that the angles are closely related to the area. We now follow the discussion in [10]. Consider a surface
Σ embedded in E3 and triangulate it. Recover a polyhedra by “flattening” the triangles. Make no assumption
about the genus, so that the Euler characteristic is χ(Σ) = v − e + f . We are in a similar position as for
Eq.(4.4), and therefore 2e = 3f ⇔ f = 2(e− f).

Each vertex is surrounded by planes which make some angle α with this vertex. We define the angle defect
at vertex vi as the amount by which the sum of these angles differs from 2π,

δ(v) = 2π −
∑
i

αi(v),

where the sum runs over all adjoining planes to v. The total angular defect can be calculated by recalling that
the sum of the angles in each face f is π, since they are nothing but flat Euclidean triangles. Hence the total
angular defect is ∑

k

δ(vk) = 2πv − πf = 2π(v − e+ f) = 2πχ(Σ). (7.1)

The above formula amounts to the Gauss-Bonnet theorem for polyhedra. This theorem holds in a smooth
setting as well.

Theorem 7.1. (Gauss-Bonnet theorem for closed surfaces) If Σ is a compact two dimensional Rieman-
nian manifold (without boundary), let κ be the Gaussian curvature of Σ. Then∫

Σ

dA κ = 2πχ(Σ), (7.2)

where dA is the area element of the surface.

Proof. (outline) The compactness of the Riemannian manifold allows us to take and infinitesimal triangulation.
The claim is that the angular defect becomes the curvature. Observe that one of the limits in the Bertrand-
Diquet-Puiseux theorem appears to take this form 2.5. We shall try a different tack. Define the angular defect
of a polygon to be the amount by which the sum of its angles fails to make the sum of angles of a Euclidean
polygon with the same number of edges,

δ(v1, v2, . . . , vn) = (n− 2)π −
n∑
k=1

αk

This measures the size of the rotation suffered by a vector during a counterclockwise parallel transport about
the polygon. Then, provided the following limit exists, the curvature should be equal to

κ(x) = lim
P→x

δ(P)

Area(P)
, (7.3)

where the above limit assumes that the polygon P can be shrunk to a point. Then the total curvature over a
surface Σ is given by

lim
P→x

∑
δ(P) =

∫
Σ

dAκ.

The above statements are made precise by taking into consideration the additivity of δ over polygons. The
compactness of Σ permits the limits to be passed, and enables the curvature to equate to the Euler characteristic.
It should be noted that the definition in (7.3) is consistent with our first definition of curvature.

A geodesic curve γ on a surface Σ is such that the tangent vector remains tangent under parallel transport
along γ. Geodesics are the “straight lines” on Σ, and we have already used this fact frequently. The geodesic
curvature is defined as follows for an oriented curve on Σ. Approximate this curve by geodesic segments γi to
obtain a polygonal shape P on Σ. Now tracing out the tangent vector to the γi as one moves along the boundary
of P, we see that the vector rotates by and angle αi at each of the corners (signed so that αi > 0 if γi turns left
and αi < 0 if γi turns right). Then the geodesic curvature is the total rotation

∑
i αi. The formulation leads

to an inclusion of surfaces with boundary to the Gauss-Bonnet theorem [10]: the total geodesic curvature of a
simple Riemannian surface (no holes!) Σ with boundary ∂Σ, plus the total curvature of Σ is equal to Σ. We
now present two examples to demonstrate this form of the Gauss-Bonnet theorem.
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Example A tennis ball has a closed curve etched on its surface which symmetrically divides the surface into
two equal pieces. Mark a point on this curve and place the ball on a flat surface touching at this point. Roll
the ball in such a way that the point of contact is always on the curve (moving in one direction along the
curve) until it again returns to the marked point. The vertical axis perpendicular to the plane is the same for
initial and final positions and therefore the tennis ball has made some revolution about this vertical axis. The
Gauss-Bonnet formula tells us what this angle is. The angle is nothing but the total curvature along this curve.
The shape of this curve is complicated, but we know that the total curvature on its interior is 2π (half the total
of 4π for a sphere). Since χ(B2) = 1, we find that the angle is 2πχ(S2)− 2π = 0. So the sphere makes a zero
angle of revolution.

Example Another related example is the Foucault pendulum which demonstrates the rotation of the earth. If
the pendulum is situated at the north pole, then the plane of motion remains fixed. Therefore with respect
to the earth it rotates by π/12 ≈ 15◦ per hour. Now suppose that the pendulum is suspended from a point
at a latitude of ψ. Then the total curvature of the polar cap is simply the area for a unit sphere, namely
2π(1 − sinψ). As in the case for the tennis ball, we conclude that total rotation of the plane of motion of the
pendulum is 2π − 2π(1 − sinψ) = 2π sinψ. For Paris, ψ ≈ 48◦ which gives a rotation of π sinψ/12 ∼ 11◦ per
hour.

B. Final comments

We have seen that surfaces of constant curvature obey some degree of order. The following theorem is a
precise description of all surfaces with constant curvature which are further (a) compact and (b) orientable.

Theorem 7.2. (Poincaré-Koebe Uniformisation Theorem) Let Σ be a compact orientable surface of
constant curvature without boundary. Then there is a covering space M and a discrete group of isometries Γ
such that the quotient M/Γ is homeomorphic to the surface Σ. Furthermore, the covering space M is completely
determined by the curvature as follows.

(i) if the curvature of Σ is zero, then M is the Euclidean plane E2,

(ii) if the curvature of Σ is positive, then M is the sphere S2,

(iii) if the curvature of Σ is negative, then M is the hyperbolic plane H2.

It was Thurston [26] who first made the bold conjecture of a uniformisation of 3-manifolds. In it, he laid out
eight model geometries in a similar manner to the three above. Unsurprisingly, the situation with 3-manifolds is
considerably more complicated than those of only 2 dimensions which we have largely been discussing. Extensive
work was done in an attempt to prove the geometrization conjecture and much progress was made by Hamilton
[12] who used the Ricci flow to make certain statements about the geometries. Only recently, and somewhat
out of the blue, did Perelman [21] prove the conjecture using the same methods introduced by Hamilton.

One might wonder how things are going on the (n ≥ 4)-manifold side of things. Here we encounter the
so called exotic spaces which make such a classification impossible! Milnor [17] developed the structure of
differentiable manifolds of dimension ≥ 5. It was Freedman and Donaldson who produced results on 4-manifolds
[7, 9] for which they received the Fields Medal at the 1986 International Congress of Mathematicians. In some
sense therefore, the 3 and 4 dimensional manifolds have proven to be the most subtle.

The eight geometries laid out by Thurston include, as one might expect, the more familiar E3, S3 and H3.
In 1982 Thurston proved the theorem for a large class of manifolds, (the Haken manifolds) and this is what led
him to make the conjecture.
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