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Abstract

This paper serves as an introduction to isoperimetric inequalities. It
provides an intuitive approach as opposed to rigor. The classical isoperi-
metric inequality states that amongst all regions in a plane enclosed by a
Jordan curve with a fixed perimeter, the circular region has the maximal
area. Isoperimetric inequalities specify the relation between two or more
geometric quantities. Surprisingly, these inequalities have outstanding
applications in a variety of fields. This paper focuses on isoperimetric
inequalities such as the Gaussian isoperimetric inequality, which is used
in Information Theory for decoding error probabilities for the Gaussian
channel[1].

1



2 CONTENTS

Contents

Contents 2
0.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
0.2 Classical isoperimetric inequality . . . . . . . . . . . . . . . . . 3
0.3 Gaussian isoperimetric inequality . . . . . . . . . . . . . . . . 11
0.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Bibliography 15

0.1 Introduction

”Everyone knows what a curve is, until he has
studied enough mathematics to become confused
through the countless number of possible
exceptions”

— F. Klein, Methods of modern mathematical
physics

Higher mathematics is abstract. The abstract concepts it presents may seem
inapplicable to real-world problems to the layman. This paper aims to demys-
tify isoperimetric inequalities. These inequalities have become powerful tools
in modern mathematics. A popular isoperimetric inequality is known as the
classical isoperimetrical inequality. It was proposed by Zenodorus, a Greek
mathematician. This document exposes the applications of isoperimertic in-
equalities in modern fields. An obvious application of isoperimetric inequalities
is in area optimization. This case was exploited by Queen Dido of Carthage. We
will not describe Queen Dido’s application of the inequality, interested readers
might find [8] informative. This singular application, area optimization, seems
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insignificant when one considers the complexity of proving the classical isoperi-
metric inequality. This document will provide applications which are specific to
computers and computer networks as they have become ubiquitous tools in the
21st century.
In computer networks, data is transferred from sender to receiver as a sequence
of on and off signals via a communication channel. The issue with data transfer
is that it is sometimes done through unreliable or noisy channels hence loss of
data is inevitable. This poses the challenge of how to determine if data contains
errors at the receiver’s side. Information theory, a subject mostly attributed to
Claude E. Shannon, presents concepts such as error correction and detection
which allow the detection of error and restoration of data.

Theorem 1 Among all sets in Rn with prescribed Gaussian measure, the half-
spaces have minimal Gaussian perimeter

At first glance, this theorem seems divorced from reality. Readers who are
confused by this theorem should not worry, an intuitive will be given in section
0.3, and an application of it will be presented in section 0.4

0.2 Classical isoperimetric inequality

We now present the classical isoperimetric inequality, however, we begin a pre-
liminary definitions.

Definition 1 (Jordan arc) Let f : [0..1]→ R2 be a path from a = (x1, y1)tob =
(x2, y2) where a, b ∈ R2. We say that f is a Jordan arc iff f in one-to-one,
with the exception that a = b is allowed.

Definition 2 (Jordan curve) Let f be a Jordan arc from a to b where a, b ∈
R2. f is a Jordan curve iff a = b

Intuitively, a Jordan curve is a closed curve which does not intersect itself.

Theorem 2 Among all regions of area A in the plane, enclosed by a Jordan
curve C with fixed perimeter L, we have,

4πA ≤ L2

Equality holds if and if the curve is a circle.
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An attempt to demystify the inequality, before proof, is as follows. The area of a
circle is given by equation Acircle = πr2 Using the equation of the circumference,
L = 2πr, we have

Acircle = π( L
2π

)2

Acircle = (L
2

4π
)

Hence, for any region of area A enclosed by a curve of length L we have that
A ≤ (L

2

4π
) =⇒ 4πA ≤ L2.

Starting at this point, where there will be no confusion, we will refer to the
classical isoperimetric inequality as simply the isoperimetric inequality, this is
done for brevity. Jakob Steiner, a Swiss mathematician, is perhaps the most
mentioned mathematician in texts whose subject matter are isoperimetric in-
equalities. This is largely because he is one very first modern day mathematician
to produce significant contributions to the proof of the isoperimetric inequality.
We will begin by exploring his contributions. We now establish a few facts
before looking into Steiner’s first approach towards proving the isoperimetric
inequality.

• The circle encloses maximal area out of all closed curves in a plane of
equal length.

• The circle has the smallest perimeter out of all closed curves in a plane
with equal areas.

It is important to realize that the above statements are equivalent. Given closed
curves which in a plane have the same area, the optimal curve is the one which
encloses the same area with the smallest perimeter. Given that a curve has
the smallest perimeter among all curves of equal area, one can increase the
perimeter to make it roughly equal the other curves. This increase in perimeter
will increase the area hence the curve encloses maximal area.

Theorem 3 An inscribed angle in a semicircle is a right angle

Proof 1 Let ~OA = u, ~OC = v and ~OB = w. Then ~AB = w − u and
~BC = v − w ~AB · ~BC = (w − u) · (v − w). We know that u = −v since

u lies in the same semicircle opposite v. ~AB · ~BC = (w + v) · (v − w) =

w · v − w · w + v · v − v · w This means that ~AB · ~BC = |v|2 − |w|2 = 0. We
then conclude that AB and BC are perpendicular.
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Figure 0.1: Illustration of mentioned sides in following proof

Theorem 4 Out of all possible triangles with two sides of given length, the
triangle of maximum area is the right triangle with the given sides as the per-
pendicular sides.

Proof 2 Given 4ABC then A(ABC) = 1
2
ab sin(AB̂C) where a = AB, b =

BC. We know that a and b are fixed hence maximum area is achieved when
sinAB̂C is maximum. Hence the maximum area is achieved when AB̂C = 90.

Steiner’s approach was an attempt to prove Dido’s problem, so it considered
maximizing an area which was bounded on one side by a straight line. We now
aim to prove that a semi-circle has maximal area amongst all given curves.

Figure 0.2: Illustration of Steiner’s approach

Consider a Jordan curve which is bounded on a side by a straight line. Pick
an arbitrary point, P , on the curve. X and Y are the points where the curve
meets the straight line. Let A2 be the area of 4XPY and A1, A2 be areas
of the other sections within the curve which not enclosed by 4XPY . The
idea is to move X and/or Y along the same line they lie in with XP and PY
fixed, such that XP̂Y = 90. The resulting triangle, 4XPY , will have a larger
area by theorem 4. This process is repeated, and as the iterations increase the
curve becomes a semicircle. One can gather intuition using theorem 3 to be
convinced of this fact. It is obvious that the area can not decrease, however,
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it could increase. This approach is normally introduced in texts as the four-
hinge problem. This approach is nice and intuitive, however, it only works in
2 dimensions. In an attempt to produce more general and complete ways of
solving the isoperimetric inequality, we introduce the following concepts.

• Steiner symetrization.

• Calculus of variations.

Steiner symetrization

Steiner symetrization is a symetrization technique which is also due to Jakob
Steiner. It’s power lies in in two facts:

• It preserves area/volume[2]

• Perimeter does not increase under Steiner symmetrization

Definition 3 (Steiner symetrization) Let L ⊂ Rn be a compact convex set,
and let u ∈ Rn be a unit vector. Think of L as a family of line segments parallel
to u. Translate each of these line segments along the direction u until they are
all balanced symmetrically around the plane u⊥. The result is a new convex set
suL, called the Steiner symmetrization of L with respect to the direction u.[3]

Let C be a Jordan curve. Let H be a vertical hyperplane in Euclidean space
that cuts curve C in two opposite points. P is the region enclosed by curve C.
We then slice P using lines which are perpendicular to H. Let L = {x + δp :
p ⊥ H, δ ∈ R ∀x ∈ H} be the set of all such lines.

Figure 0.3: Steiner symmetrization of region P
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Steiner symmetrization takes all line segments L ∈ L∩P and maps them such
that they are symmetrical about H to obtain P ∗. The measure of each line,
L, is preserved.

Properties

Theorem 5 Let K ⊂ Rn be compact and convex[3]. Let H be a hyperplane
that intersects K and splits it into two sections. Again, let v ∈ Rn and
c ⊥ H.The volume of K after Steiner symmetrization about L in the direction
of v is preserved, that is, V (K) = V (svK).

A discussion prior to the proof might be helpful. It should be noted that
dim(H) = n − 1 by the definition of a hyperplane. Our previous discussion
revealed that the length of the slices should be unchanged thus it is should be
clear that Steiner symmetrization preserves volume/area.

Proof 3 ∀h ∈ Rn where (h1, h2, ..., hn−1) ∈ H consider the line Sn = {h+ vβ : β ∈ R}.
We know that the measure of each slice is preserved by Steiner symmetrization,
denote the measure of each slice of the region K by Mn. Formally, this means∫
hn∈K∩Sn

dh = Mn =
∫
hn∈Sv(K)∩Sn

dh

V (K) =

∫
(h1,h2,...,hn−1)∈H

∫
hn∈K∩Sn

dhdh1dh2...dhn−1

=

∫
(h1,h2,...,hn−1)∈H

(Mn)dh1dh2...dhn−1

=

∫
(h1,h2,...,hn−1)∈H

∫
hn∈Sv(K)∩Sn

dhdh1dh2...dhn−1

= V (Sv(K))

Theorem 6 If BH and AK are segments, each of given length, lying on fixed
parallel lines, the sum BA+KH is at minimum when there is symmetry, and
BA = KH.

Theorem 7 Steiner symetrization does not increase perimeter, that is, P (C∗) ≤
P (C)
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Proof 4 Consider the lines π1, π2, ..., πn which are perpendicular to H. Let
πk cut C at Pk and Qk, and also cut C∗ at P ′k and Q′k. Using the previous
theorem,

P ′1P ′2 +Q′1Q′2 ≤ P1P2 +Q1Q2 (1)

We can create similar pairs for all lines πk,πk+1 where 1 ≤ k ≤ n−1. Then if K
is a polygon P1P2P3...Pn−1PnQnQn−1...Q2Q1P1 constructed in this way and in-
scribed in C, and if K̂ is the corresponding polygon P ′1P ′2...P ′n−1P ′nQ′nQ′n−1...Q′2Q′1P ′1
inscribed in C∗. Naturally, it follows that

P (K̂) ≤ P (K) (2)

Let K̂ be a polygon of that satisfies (2) inscribed in C∗, and such that

P (K̂) ≥ P (C∗)− ε, ε ∈ R (3)

It the follows that

P (C∗) ≤ P (K̂) + ε

≤ P (K) + ε

≤ P (C) + ε

P (C∗) ≤ P (C)

The last inequality follows from the fact that ε is arbitrary.

The properties of Steiner symmetrization reveal that the volume is unchanged
after symmetrization, however, the perimeter is decreased except when the
region is symetrical about the hyperplane in the direction of the symmetrization
vector. Furthermore, if the set is already symmetrical about the plane in every
direction then its the ball/circle. In conclusion, Steiner symmetrization will
reduce the perimeter of any set with the exception of a circle but preserve the
volume/area. One can futher conclude using the bullet points in section 0.2,
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page 4 that the circle encloses maximal area among all curves of equal perimeter.
Unfortunately, Steiner’s ingenious contributions are incomplete. The problem
is that they fail to prove existence of a solution, that is, they fail to show that
there exists a curve which encloses maximal area among all curves with the
same perimeter. The reason might be unclear, consider the following paradox.

Paradox 1 (Perron) Let N be the largest integer. Suppose N > 1 then
N2 > N . This contracts the definition of N, hence N = 1

We now look at other methods for a proof of existence of a curve that encloses
maximal area among curves of equal perimeter.

Calculus of variations

Calculus of variations is a branch of mathematics which is very closely related
to the isoperimetric inequalities. Its focus is the optimization of physical in-
equalities. A hefty amount of the problems considered in calculus of variations
have origins in physics where one has to minimize the energy associated to the
problem under consideration. Its creation began with the brachistone curve
problem which is was formulated by Johann Bernoulli in 1696 [5]. The word
brachistone comes from greek, it means shortest time. This paper concerns
itself with isoperimetric inequalities hence an attempt at stating and proving
the brachistone problem will not be made. The problem can be restated such
that it fits a problem that can be solved using the calculus of variations.

Problem

Among all curves y = f(x) where y(a) = ya, y(b) = yb and∫ b

a

√
1 + y′(x)2dx = L

find one for which
∫ b
a
y(x)dx is maximum.

Lax’s Proof

We now present a proof of the isoperimetric inequality for completeness and also
to intrigue the interested reader. This proof is due to Peter Lax. It is arguably
the most concise of proofs of the isoperimetric inequality In an attempt to make
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this proof more understandable, we be begin by presenting a simple proposition.
In attempt at simplifying the proof, we will prove that the semi-circle encloses
maximal area out of all curves with the same perimeter, bounded on one side
by a straight line.

Proposition 1 Let a, b ∈ R then ab ≤ a2+b2

2

Proof 5 Take a, b ∈ R then (a− b)2 ≥ 0 and equality is achieved iff a = b.

a2 − 2ab+ b2 ≥ 0

a2 + b2 ≥ 2ab

a2 + b2

2
≥ ab

Proof 6 (Lax) Let x(s), y(s) be the parametric representation of the curve.
Let s be the arc length where 0 ≤ s ≤ π. Suppose that the curve is positioned
such that (x(0), y(0)) and (x(π), y(π)) lie on the x-axis, that is, y(0) = y(π) =
0. The area enclosed the curve is given by equation 1.

A =

∫ π

0

y
dx

ds
ds (4)

Using proposition 2, we get

A =

∫ π

0

y
dx

ds
ds ≤ 1

2

∫ π

0

(y2 + (
dx

ds
)2)ds (5)

We know that s is the arc length so,

ds2 = dx2 + dy2

1 = (
dx

ds
)2 + (

dy

ds
)2

To simplify notation, let dx
ds

= x̃ and dy
ds

= ỹ. Hence equation 2 becomes

A ≤ 1

2

∫ π

0

(y2 − ỹ2 + 1)ds (x̃2 = 1− ỹ2)
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We ensured that y = 0 when s = 0 and s = π, so we can factor y such that
y(s) = v(s) sin s where v(s) is bounded and differentiable. The derivative of y
with respect to arc length then becomes

ỹ = ṽ sin s+ u cos s

Hence

A ≤ 1

2

∫ π

0

(v2(sin2 s− cos2 s)− 2vṽ sin s cos s− ṽ2 sin2 s+ 1)ds (6)

Observing that 2vṽ = d
ds
v2, we integrate by parts equation 3 to obtain

A ≤ 1

2

∫ π

0

(1− ṽ2 sin2 s)ds (7)

Inequality (7) is ≤ π
2

and equality only holds when ṽ = 0. Recall that we

said that ab = a2+b2

2
iff a = b in proposition 1, in this case this means that

A = 1
2

∫ π
0

(1 − ṽ2 sin2 s)ds iff y = x̃ =
√

1− ỹ2 since we applied proposition
1 to obtain inequality (7). This means that y(s) = ± sin s and x =

∫
x̃ds =∫

yds = ∓ cos s + l, l ∈ R. Hence the curve is a semi-circle. This proof can
also be used to show that the circle encloses maximal area, more or less in
the same fashion. However, the arc length will range from 0 ≤ s ≤ π and
π ≤ s ≤ 2π.

0.3 Gaussian isoperimetric inequality

The Gaussian isoperimetric inequality was developed extensively in the study of
the functional analytic aspects of probability theory[6]. Here, we only present
it to illustrate it’s power in Information theory. We begin with a definition of
a measure. In 1,2 and 3 dimensional Euclidean space, there exists simple and
intuitive concepts of measure. We speak of the length of a line segment, area
under a curve and the volume of a sphere for instance. The concepts of length,
area and volume are familiar concepts. It is only natural that there exists a
generalization of the principal concept of measure in higher dimensions.

Theorem 8 Among all sets in Rn with prescribed Gassian measure, half spaces
have minimal Gaussian perimeter.
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Definition 4 A set of sets S is said to be pairwise disjoint iff: ∀X, Y ∈ S :
X 6= Y =⇒ X ∩ Y = ∅

It has been mentioned that measure is a generalisation of volume. Without an
explicit definition of a measurable space, we can further explain what a measure
is. A measure is a function which takes an element X(of a measurable space
Γ) and returns a non-negative number which we will refer to as the ”measure
of X”. We denote the measure by µ : Γ → R≥0 ∪ {−∞,∞}. Further, in
addition to non-negativity, a measure satisfies the following properties.

1. µ(∅) = 0

2. Countable Additivity Let {Sn} ⊂ Γ be a sequence of pairwise disjoint
sets. Then, µ(∪∞n=1Sn) =

∑∞
n=1 µ(Sn)

A Gaussian measure is probability measure. This means that is a special
case of a measure. It satisfies non-negativity and countable additivity prop-
erties. However, it has an additional property that t is normalized, that is,
∀A ∈ Γ : 0 ≤ µ(A) ≤ 1.

One can split n dimensional space with a n−1 dimensional hyperplane. A half-
space is simply the space which remains after the section of the space which
falls on one side of the hyperplane is removed.

Definition 5 Let µ : (Rn,Γ) → [0, 1] be a probability measure on the given
measurable space. We say that µ is a Gaussian measure if it is defined by

µ(X) =
1√
2π

n

∫
X

e−
1
2
‖x‖2dµ(x) (8)

where ‖ · ‖ denotes the length of vectors in Rn.

In order to gather intuition on the Gaussian isoperimetric inequality, we begin
by restating the classical isoperimetric inequality. Among all compact sets A in
Rn with a smooth boundary ∂A and with a fixed volume, Euclidean balls are
the ones with the minimal surface measure[6]. The surface measure we were
concerned with was the perimeter. The notion behind the Gaussian isoperimet-
ric inequality is similar. The measure, however, is different as we now focus on
the Gaussian measure. Also there exists a Steiner symmetrization equivalent in
the context of the Gaussian isoperimetric inequality. It is known as Gaussian
symmetrization. A formal presentation of the Gaussian isoperimetric inequality
is presented by both Ros[10] and Ledoux[6].
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0.4 Applications

Information Theory

Information theory is a field which most texts credit Claude Shannon for its in-
ception. This is largely due his 1948 two-part paper published in the Bell System
Technical Journal. Pierce[9] presents a comprehensive history of information
theory. The main focus of the field in the simplest view is data compression,
error decoding and data recovery. The importance of these issues is quite ob-
vious. Given the a stream of data, the symbols of the stream are mapped to
another sequence. The resultant sequence of symbols is in bits as they rep-
resent analog signals which can be transferred over a physical communication
channel.

Figure 0.4: Data transmission process. Source http://goo.gl/lIAkI6

Given a set of points in Euclidean space. We can divide the space into regions
such that around each point the borders of the regions are equidistant from the
two nearest points. The regions are referred to as Voronoi regions.

Figure 0.5: Voronoi diagram.

Tillich and Zémor [1] apply the Gaussian isoperimetric inequality to Voronoi
regions of codes in Euclidean space and obtain a precise description of how

http://goo.gl/lIAkI6
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the maximum-likelihood decoding error probability varies as a function of the
minimum Euclidean distance.
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