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Abstract

In this project we show the connection between three variational problems;
eigenvalues of the Laplacian operator, density of the hyperbolic metric and
expected lifetime of Brownian motion in a domain D. We show that both
the first Dirichlet eigenvaule and the hyperbolic metric are monotone de-
creasing with expanding domain. We then show that finding the universal
lower bound, with respect to the inradius of a domain, of the hyperbolic
metric and finding the universal upper bound, with respect to the inra-
dius of the domain, of the expected lifetime of a Brownian motion, both
of which represent a Schlicht Bloch Landau problem. We also show that
the expected lifetime of Brownian motion in a domain D and the torsion
function from elasticity are one and the same. The first Dirichlet eigen-
value and the torsional rigidity have a similar variational characterization
given by Rayeigh’s theorem showing the connection between the first and
the third variational problem. Armed with this connection we conjecture
that the extremal domain of these three problems must be the same.
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1 Introduction.

In this project we look at three variational problems: minimizing eigenvalues of
the Laplacian operator, density of the minimizing hyperbolic metric, and max-
imizing the expected lifetime of Brownian motion in a domain D. We do this
with an aim to show the connection between these variational problems and
gain further insight into the extremal domains for each of these problems.

The first variational problem arises from the relation between the first Dirich-
let eigenvalues and the geometry of underlying domains. We therefore make use
Hayman’s theorem [9] which states that for λD the first Dirichlet eigenvalue for
the Laplacian in a simply connected domain D, there is a universal constant a
such that λD ≥ a

R2
D

for RD the radius of the largest disk contained in D. Studies

have been done to find the best constant a and to identify the extremal domain
in the inequality above. Our approach is to look at first Dirichlet eigenvalues
for several basic domains so as to characterize the first Dirichlet eigenvalue from
computations and relevant theorems.

The second variational problem goes on to look at properties of the density
of the hyperbolic metric in simply connected domains. The density of the hy-
perbolic metric, σ(z;D) represents a function of a conformal map of the unit
disk onto a simply connected domain, D. Similar to variational problem 1, it
is known from function theory that there is a universal constant c such that
σD = infz∈D σ(z;D) ≥ c

RD
and problems revolve around finding the best value

of c known as the schlicht Bloch-Landau constant and the extremal domain.

The third variational problem looks at the expected lifetime of Brownian
motion. For Bt the Brownian motion in domain D we denote τd(z) = inf{t >
0 : Bt 6∈ D}, where z is the initial starting point, as the first exit time of Bt from
D. Thus E(τD(z)) is the expectation of τD under the measure of the Brownian
motion starting at the point z in D. It is known that, whenever D is a planar
simply connected domain, then supz∈D E(τD(z)) ≤ bR2

D. Problems from the
above inequality revolve around finding the best value of the constant b and the
extremal domain for the inequalty. In our case we go on to look at the prop-
erties of the expeceted first exit time of Brownian motion in simply connected
domains in relation to the the first two variational problems.

Looking at these problems simultaneously also allows for one to improve the
value of the constant a in the first variational problem as was done by Bañuelos
and Carroll [9] to show that a > 0.6197.
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2 Eigenvalues of the Laplacian Operator.

This chapter is motivated by the following theorem from Hayman

Hayman’s Theorem. Let D be a simply connected domain in the complex
plane. Let RD be the inradius of the D, that is, the radius of the largest disk
contained in D, and let λD be the first Dirichlet eigenvalue for the Laplacian in
D. There is a universal constant a such that

λD ≥
a

R2
D

.

We compute first Dirichlet eigenvalues for various domains with a view to find-
ing the extremal domain for the above inequality. We then look at general
eigenvalue properties through several theorems thereafter.

Dirichlet eigenvalues are fundamental modes of vibrations of an idealized drum
with a given shape. The fundamental mode is the pure tone of the lowest pitch
or frequency and multiples of that frequency are called harmonic overtones.
These help in deducing features of the shape of the drum. In this case the
drum is thought of as an elastic membrane Ω which is represented as a planar
domain whose boundary is fixed. Dirichlet boundary conditions specify that the
boundary of the membrane is fixed.

2.1 Examples.

2.1.1 Taut string analogy.

We consider the problem

utt = c2uxx for 0 < x < L, t > 0 (2.1.1)

u(x, 0) = φ(x), ut(x, 0) = ψ(x), 0 ≤ x ≤ L
u(0, t) = u(L, t) = 0, for t ≥ 0.

The above describes a taut string stretched between points at x = 0 and x = L
which are held fixed. At t = 0, the string takes an initial shape given by φ(x)
and initial velocity profile ψ(x).
Using separation of variables to obtain the general solution,

u(x, t) = X(x)T (t) (2.1.2)

substituting (2.1.2) into (2.1.1) we get

X(x)T ′′ = c2X ′′T (t)

which we can write as,
T ′′

c2T (t)
=

X ′′

X(x)
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2.1 Examples.

The left hand side of the equation above is a function of t only while the right
hand side is a function of x only. The only way to maintain equality for all
0 < x < L and all t > 0 is if each of the sides is equal to a constant. We
introduce a separation constant, λ such that:

T ′′

c2T (t)
=

X ′′

X(x)
= −λ

We now have two ordinary differential equations

{
T ′′ = −c2λT (t)

X ′′ = −λX(x)

Looking at the boundary information first:

u(0, t) = 0 = X(0)T (t)

(Trivially T (t) = 0 is a solution but not an insightful one)

u(x, t) = 0 for t > 0, 0 < x < L

also u(L, t) = 0 = X(L)T (0) is also solved by X(L) = 0.

Now X ′′ = −λX(x) subject to X(0) = X(L) = 0 thus solvable for certain values
of λ, the eigenvalues.
Determination of the sign of λ:

assume λ is negative say λ = −k2 then X ′′ = k2X(x) with general solution

X = Aekx +Be−kx (A,B) arbitrary constants

X(0) = X(L) = 0

we find: 0 = A+B

and 0 = AekL+Be−kL

so 0 = AekL −Ae−kL

i.e. ekL = e−kL A 6= 0.

This gives a contradiction unless k = 0 which is not useful. So we have shown
that λ is positive. Hence λ = k2, with general solution X = A cos kX+B sin kX
Now boundary conditions yield

0 = A and 0 = B sin kL

hence from boundary conditions at x = L : kL = nπ n = 1, 2, 3, . . .

k =
nπ

L

∴ X = B sin
nπX

L

Now λn =
n2π2

L2
and Xn(x) = Bn sin

nπX

L
.

Equation for T is T ′′ = −c2k2T so the general solution is given by

T = C cos kct+D sin kct i.e. Tn = Cn cos
nπct

L
+Dn sin

nπct

L
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2.1 Examples.

We can write (2.1.2) as
Un(x, t) = Xn(x)Tn(t)

Un(x, t) = {Cn cos nπctL +Dn sin nπct
L } sin nπX

L with Bn absorbed into Cn and Dn.

To satisfy initial conditions we form a linear combination of all possible
solutions of the form

u(x, t) =

∞∑
n=1

{
an cos

nπct

L
+ bn sin

nπct

L

}
sin

nπX

L

ut(x, t) =

∞∑
n=1

{
−nπc
L

an sin
nπct

L
+
nπc

L
bn cos

nπct

L

}
sin

nπX

L

φ(x) = u(x, 0) =

∞∑
n=1

an sin
nπX

L
.

Definition. A set {ei|i ∈ N} is a basis for a Hilbert space H if every x can be
expressed uniquely in the form

x =

∞∑
i=1

xiei

for some xi in the field of scalars. If in addition {ei|i ∈ N} is an orthonormal
set, then we refer to it as an orthonormal basis, or a complete orthonormal se-
quence.

We know that { 1√
π
,
√

2
π cosnx,

√
2
π sinnx}∞n=1 forms an orthonormal basis for

the real L2[0, π].

Using the Fourier sine series expansion of the above

an =
2

L

∫ L

0

φ(ζ) sin
nπζ

L
dζ

ψ(x) = ut(x, 0) =

∞∑
n=1

bn
nπc

L
sin

nπx

L

bn =
2

L

L

nπc

∫ L

0

ψ(ζ) sin
nπζ

L
dζ

u(x, t) =

∞∑
n=1

{(
2

L

∫ L

0

φ(ζ) sin
nπζ

L
dζ

)
cos

nπct

L
+

(
2

nπc

∫ L

0

ψ(ζ) sin
nπζ

L
dζ

)
sin

nπct

L

}
sin

nπx

L
.

Each succesive term involves the basic solutions. cos nπctL sin nπx
L and sin nπct

L sin nπx
L
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2.1 Examples.

n = 1 fundamental mode: sin πct
L sin πx

L frequency: w1 = πc
L

n = 2 first harmonic: sin 2πct
L sin 2πx

L frequency: w2 = 2πc
L

n = 3 second harmonic: sin 3πct
L sin 3πx

L frequency: w3 = 3πc
L

2.1.2 Rectangle analogy.

Consider now a taut elastic membrane which is confined to the region 0 ≤ x ≤ a
and 0 ≤ y ≤ b and which has stationary boundaries at x = 0, x = a, y = 0 and
y = b. Suppose also that there are initial conditions of shape φ(x, y) and zero
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2.1 Examples.

velocity.That is, we have the problem

utt = c2(uxx + uyy) : 0 ≤ x ≤ a, 0 ≤ y ≤ b, t > 0

u(0, y, t) = u(a, y, t) = 0 : 0 ≤ y ≤ b, t > 0

u(x, 0, t) = u(x, b, t) = 0 : 0 ≤ x ≤ a, t > 0

u(x, y, 0) = φ(x, y) : 0 ≤ x ≤ a, 0 ≤ y ≤ b
ut(x, y, 0) = 0 : 0 ≤ x ≤ a, 0 ≤ y ≤ b.

Again, using the usual sepation techniques we obtain eigenvalues of the form

λnm =

√
n2π2

a2
+
m2π2

b2
for n = 1, 2, . . .m = 1, 2, . . .

2.1.3 Infinite strip analogy.

utt = c2(uxx + uyy) : −∞ ≤ x ≤ ∞, 0 ≤ y ≤ b, t > 0

u(x, 0, t) = u(x, b, t) = 0 : −∞ ≤ x ≤ ∞, t > 0

u(x, y, 0) = φ(x, y) : −∞ ≤ x ≤ ∞, 0 ≤ y ≤ b
ut(x, y, 0) = 0 : −∞ ≤ x ≤ ∞, 0 ≤ y ≤ b.

The above problem is taken physically (and mathematically) as a limit of very
long rectangles. After taking into consideration the above mentioned conditions,
the first dirichlet eigenvalue of the infinite strip comes out to,

λ1(D) =
π2

b2
.

In fact, it was proved by J. Hersch [12]that λD ≥ π2

4R2
D

for convex D, with

equality if and only if D is an infinite strip.

2.1.4 Disk analogy.

(We now look at the wave equation in two spatial dimensions)
utt = c2(uxx + uyy).
To change to spherical coordinates we consider the following
x = r cos θ
y = r sin θ
r =

√
x2 + y2

θ = tan−1 y
x

In general,

∆u = urr +
n− 1

r
ur +

1

r2
∆θu.

In our case, (n = 2)

∂2u

∂x2
+
∂2u

∂y2
=
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
.
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2.1 Examples.

So the wave equation changes to

∂2u

∂t2
= c2

{
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2

}
.

utt = c2(urr +
1

r
ur +

1

r2
uθθ) (0 < r < a, t > 0).

With boundary held fixed at r = a

u(a, θ, t) = 0 0 ≤ θ ≤ 2π, t > 0

and some initial displacement

u(r, θ, 0) = φ(r, θ) 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π

but zero initial velocity, say

ut(r, θ, 0) = 0 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π

with usual assumption about separability

u(r, θ, t) = R(r)Θ(θ)T (t)

the partial differential equation becomes

RΘT ′′ = c2
{
R′′ΘT +

1

r
R′ΘT +

1

r2
RΘ′′T

}
dividing by RΘTc2:

1

c2
T ′′

T
=
R′′

R
+

1

r

R′

R
+

1

r2

Θ′′

Θ

The left hand side is a functon of t, the right hand side is a function of r and θ

Now T ′′ = −c2k2T (2.1.3)

and r2R
′′

R
+ r

R′

R
+

Θ′′

Θ
= −r2k2 (2.1.4)

with boundary conditions on R(r): R(a) = 0, R′(0) = 0
For the T equation: T = a cos kct+ b sin kct
further separation of (2.1.4)

r2R
′′

R
+ r

R′

R
+ r2k2 = −Θ′′

Θ
= ν2

thus Θ′′ = −ν2θ

Θ = c cos νθ + d sin νθ θ = θ + 2π
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2.1 Examples.

Several orders of Bessel functions of the first kind

so the equation in R reads as follows

r2R′′ + rR′ + r2k2R− ν2R = 0

or r2R′′ + rR′ + (r2k2 − ν2)R = 0.

Above is the Bessel equation and the solution is given by

R = fJν(kr) + gYν(kr)

with Jν=bessel function of first kind, order ν
and Yν=bessel function of second kind, order ν.
Bessel functions of the second kind all go to−∞ as r −→ 0. Such functions cannot
be solutions as the centre of the membrane must have finite displacement.

R(r) = fJn(kr)

using boundary conditions u(a, θ, t) = 0, 0 ≤ θ ≤ 2π, t ≥ 0

R(a)Θ(θ)T (t) = 0

we have R(a) = 0 thus Jn(kr) = 0 solves

x2y′′ + xy′ + (x2 − ν2)y = 0

to get, using series expansion, the series

y(x) = Jν(x) =

∞∑
k=0

(−1)k

k!Γ(ν + k + 1)

(x
2

)2k+ν

.

10



2.1 Examples.

Bessel functions are aperiodic thus, the spacing of zero is not constant. Sub-
scripting the constant k

Jn(knma) = 0 m=zero of Jn at r = a.

Now,

unm(r, θ, t) = (anm cos knmct+ bnm sin knmct)Jn(knmr)(cn cosnθ + dnsinnθ)

using initial condtions

ut(r, θ, 0) = R(r)Θ(θ)T ′(0) = 0.

So T ′(0) = 0 which results in the choice of bnm = 0

unm(r, θ, t) = (cos knmct)Jn(knmr)(cn cosnθ + dnsinnθ)

forming double Fourier series (and also absorbing anm into cnm and dnm)

u(r, θ, t) =

∞∑
n=0

∞∑
m=0

(cos knmct)Jn(knmr)(cn cosnθ + dnsinnθ).

As for the eigenvalues, we recall that λ was our separation constant.λ = c2k2.

Rewritten k =
√
λ
c . We therefore seek λ so that

J0

(√
λ

c
r

)
= 0

Values of λ satisfying the above equation are the eigenvalues of this problem[4].
From our knowledge of Bessel functions, there is an infinte sequence of positive
numbers j1, . . . , jn, . . .which tend to∞ as n increases, and satisfying J0(jn) = 0.
These are the positive zeros of J0. We now choose the numbers λ to satisfy

√
λ

c
r = jn
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2.2 Eigenvalue Properties.

with n any positive integer. The eigenvalues are the numbers

λn =

(
jnc

r

)2

.

To this end, knowing that first zero of the Bessel function of the first
kind j0 ≈ 2.4048 and comparing the above mentioned 4 domains, it is
clear that the infinte strip is the best candidate for the extremal do-
main for the variational problem proposed by Hayman[9]. Moreover,
it is extremal for all convex domains as was proved by Hersch[12].

2.2 Eigenvalue Properties.

All the theorems, proofs and more in this section are given in greater detail in
Chavel’s book[3].

Spectral Theorem. Let T be a compact self-adjoint operator on a Hilbert space
(H, < �, � >). Then there exists a finite or infinite sequence (µk)∞k=1 of real eigen-
values and a finite or infinite orthonormal sequence (xk)∞k=1 of corresponding
eigenvectors such that for each x ∈ H

T (x) =
∑
k

µk < x, xk > xk.

If the sequence (xk)∞k=1 is infinite, then it converges to zero.

Relating the above to the Laplacian operator, ∆ = 1− T where T is a compact
operator. Applying the spectral theorem to the Laplacian operator we see that
µk = 1

λk
.

For the Dirichlet eigenvalue problem (∆φ+ λφ = 0, satisfying boundary condi-
tions φ = 0 on ∂D), the set of eigenvalues consists of a sequence

0 ≤ λ1 < λ2 < λ3 < . . . ↑ +∞,

and each associated eigenspace is finite dimensional. Eigenspaces belonging to
distinct eigenvalues are orthogonal in L2(D) and L2(D) is the direct sum of all
the eigenspaces. Furthermore, each eigenfunction is C∞ (smooth) on (D).

As soon as we know that the eigenfunction φ ∈ C2(D) ∩ C1(D) , then its
eigenvalue λ must be nonnegative. One uses φ|∂D = 0, sets f = h = φ and
applies the following Green formula∫

D

{h∆f+ < ∇h,∇f >}dV = 0

12



2.2 Eigenvalue Properties.

to obtain

0 =

∫
D

{φ∆φ+ < ∇φ,∇φ >}dV

=

∫
D

{−λφ2 + |∇φ|2}dV

=⇒ λ =

∫
D
|∇φ|2dV∫
D
φ2dV

≥ 0.

We also note that the orthogonality of eigenspaces is a direct consequence
of the Green formulas∫

D

{h∆f − f∆h}dV =

∫
∂D

{h∂f
∂n
− f ∂h

∂n
}dA = 0

because h = f = 0 on ∂D.
( ∂f∂n is the directional derivative of f in the direction of the outward pointing
normal −→n ).

Indeed, let φ, ψ be eigenfunctions of the respective eigenvalues λ, τ . Then

0 =

∫
D

{φ∆ψ − ψ∆φ}dV = (λ− τ)

∫
D

φψdV

then orthogonality of eigenfunctions follows.
We refer to the dimension of such eigenspaces as the multiplicity of the eigen-
value. Henceforth, it is useful to write the eigenvalue sequence

0 ≤ λ1 < λ2 < λ3 < . . . ↑ +∞,

with each eigenvalue repeated according to its multiplicity.

Rayleigh’s Theorem. We are given a normal domain with fixed eigenvalue
problem having the function space G(D), a Hilbert space, and eigenvalues

λ1 ≤ λ2 ≤ . . . ,

where each eigenvalue is repeated the number of times equal to its multiplicity.
Then for any f ∈ G(D), f 6= 0, we have

λ1 ≤
∫
D
|∇f |2dV
‖f‖2

with equality if and only if f is an eigenfunction of λ1. If {φ1, φ2, . . . } is a
complete orthonormal basis of L2(D) such that φj is an eigenfunction of λj for
each j = 1, 2, . . . then for f ∈ G(D), f 6= 0, satisfying

(f, φ1) = · · · = (f, φk−1) = 0. (*)

we have the inequality

λk ≤
∫
D
|∇f |2dV
‖f‖2

with equality if and only if f is an eigenfunction of λk.
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2.2 Eigenvalue Properties.

Proof. The argument is based on the consideration that if φ is an eigenfunction,
and f ∈ G(D), then

−λ
∫
D

φfdV =

∫
D

< ∆φ, f > dV = −
∫
D

< ∇φ,∇f > dV

is valid.
For any given f ∈ G(D) set

αj =

∫
D

< f, φj > dV.

For k > 1, (*) is equivalent to saying α1 = · · · = αk−1 = 0. So for all k = 1, 2, . . .
and r = k, k + 1, . . . we have

0 ≤
∫
D

< ∇(f −
r∑
j=k

αjφj),∇(f −
r∑
j=k

αjφj) > dV

=

∫
D

< ∇f,∇f > dV − 2

r∑
j=k

αj

∫
D

< f, φj > dV +

r∑
j,l=k

αjαl

∫
D

< φj , φl > dV

=

∫
D

< ∇f,∇f > dV + 2

r∑
j=k

αj

∫
D

< f,∆φj > dV −
r∑

j,l=k

αjαl

∫
D

< φj ,∆φl > dV

=

∫
D

< ∇f,∇f > dV −
r∑
j=k

λjα
2
j .

We conclude that
∞∑
j=k

λjα
2
j ≤

∫
D

|∇f |2dV < +∞

and ∫
D

< ∇f,∇f > dV ≥
∞∑
j=k

λjα
2
j ≥ λk

∞∑
j=k

α2
j = λk‖f‖2

and the inequality for λ1 follows easily.(case of k = 1)

From Rayleigh’s theorem we now have a variational characterization of the
first eigenvalue:

λ1(D) = inf

{∫
D
|∇f |2dV∫
D
f2dV

|f ∈ C2
0 (D)

}
.

In light of this it is also important to note the domain monoticity of the first
Dirichlet eigenvalue:
so if D1 ⊂ D2 then λ1(D1) ≥ λ1(D2). The larger the domain, the smaller the
eigenvalue.

14



2.2 Eigenvalue Properties.

Nodal sets.
The nodal set,N , is the set of points in D such that the eigenfunctions of −∆φ =
λφ in D are zero.

N = {x ∈ D : φ(x) = 0}.

Nodal set allow us to visualize the sets where φ(x) > 0 or φ(x) < 0. They mark
a division (natural one) of the domain into regions. First Dirichlet eigenvalue
ensures the absence of nodes hence the first eigenfunction φ1(x) has a sign in D
thus φn(x) must change its sign in D.

Courant’s Nodal Domain Theorem. Let λ1 ≤ λ2 ≤ . . . ↑ be our list of
eigenvalues and {φ1, φ2, . . . } a complete orthonormal basis of L2(D) with each
φj an eigenfunction of λj , j = 1, 2, . . . . Then the number of nodal domains of
φk is less than or equal to k, for every k = 1.2. . . . .

Proof. We prove by contradiction. Suppose there are at least k + 1 nodal do-
mains. Let N1, . . . , Nk, Nk+1, . . . be nodal domains of φk. For each j = 1, . . . , k
define

ψj =

{
φk|Nj onNj

0 D̄ −Nj
One then obtains, as above, the existence of a nontrivial function

f =

k∑
k=1

αjφj

satisfying
(f, φ1) = · · · = (f, φk−1) = 0.

One verifies that φj ∈ G(D) for each j = 1, . . . , k. Then Rayleigh’s theorem,
the max-min method and the divergence theorem imply

λk ≤
∫
D
|∇f |2dV
‖f‖2

≤ λk.

So f is therefore, an eigenfunction of λk vanishing identically on Nk+1. But then
the maximum principle states that for a bounded domain D with ∂D ∈ C1(D)
and f ∈ C2(D)∩C0(D̄), supx∈D f(x) = supx∈∂D f(x) implying that f vanishes
identically on D which is a contradiction.

For completeness we make note of Weyl’s asymptotic theorem without proof.
According to the Weyl formula,

lim
λ→+∞

[
N(Ω, λ)− Cd,Wµd(Ω)λd

λd

]
= 0, λ→ +∞,

where

• if we let ∆D be the Dirichlet Laplacian on Ω then N(Ω, λ) is the number
its eigenvalues lying below λ2.
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2.2 Eigenvalue Properties.

• µd(Ω) is the d-dimensional volume of Ω.

• ωd is the volume of the unit ball in Rd and Cd,W := (2π)−dωd is the
standard Weyl constant.

The following theorem is a classical eigenvalue inequality due separately to
Faber[7] and Krahn[8].

Faber-Krahn’s Theorem. Let D ⊂ Rn be a bounded domain and let B be the
ball centered at the origin with V ol(D) = V ol(B). Then λ1(D) ≥ λ1(B), with
equality if and only if D = B almost everywhere.
Here again, λ1(D) is the first eigenvalue of the Laplacian, with Dirichlet bound-
ary conditions.

In other words, the first Dirichlet eigenvalue is no less than the corresponding
Dirichlet eigenvalue of a Euclidean ball having the same volume. Furthermore,
the inequality is sharp in the sense that if the first Dirichlet eigenvalue is equal
to that of the corresponding ball, then the domain must actually be a ball.

Proof. Recall variational characterization of the first eigenvalue:

λ1(D) = inf

{∫
D
|∇u|2dV∫
D
u2dV

|u ∈ C2
0 (D)

}
(a)

By the Courant nodal domain theorem, we can take a test function for the
Rayleigh quotient be non-negative. Let u be a test function, and for 0 ≤ t ≤
û = max(u). Let Dt = {u > t}.

Now we define a comparison function u∗ : B → [0,∞) as follows. First let
Bt be the ball centered at the origin with V ol(Bt) = V ol(Dt). Then let u∗
be the radially symmetric function such than Bt = {u∗ > t}. By the co-area
formula, ∫ û

t

∫
∂Dτ

dA

|∇u|
dτ = V ol(Dt) = V ol(Bt) =

∫ û

t

∫
∂Bτ

dA

|∇u∗|
dτ.

(The co-area formula expresses the integral of a function over an open set in
Euclidean space in terms of the integral of the level sets of another function.)
Differentiating with respect to t gives us∫

∂Dt

dA

|∇u|
=

∫
∂Bt

dA

|∇u∗|
(b)

for all t. Then∫
D

u2dV =

∫ û

0

∫
∂Dt

u2dA

|∇u|
dt =

∫ û

0

t2
∫
∂Dt

dA

|∇u|
dt (c)

=

∫ û

0

t2
∫
∂Bt

dA

|∇u∗|
dt =

∫
B

u2
∗dV.
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2.2 Eigenvalue Properties.

Now, for 0 ≤ t ≤ û let

ψ(t) =

∫
Dt

|∇u|2dV, ψ∗(t) =

∫
Bt

|∇u∗|2dV.

by the co-area formula

ψ′ = −
∫
∂Dt

|∇u|dA, ψ′∗ = −
∫
∂Bt

|∇u∗|dA.

We use the Cauchy-Schwarz inequalty, the isoperimetric inequality, and the fact
that the derivative of u∗ is constant on ∂Bt (since u∗ is radial) to see(∫

Dt

|∇u|dA
)(∫

∂Dt

dA

|∇u|

)
≥
(∫

∂Dt

dA

)2

= (Area(∂Dt))
2

≥ (Area(∂Bt))
2 =

(∫
Bt

|∇u∗|dA
)(∫

∂Bt

dA

|∇u∗|

)
.

(The isoperimetric inequality is a geometric inequality involving the square of
the circumference of a closed curve in the plane and the area of a plane region
it encloses, as well as its various generalizations.)
We use equation (b) to cancel the common factor of∫

∂Dt

dA

|∇u|
=

∫
∂Bt

dA

|∇u∗|
,

and so

−ψ′ =

∫
Dt

|∇u|dA ≥
∫
Bt

|∇u∗|dA = −ψ′∗.

Integrating this last differential inequality and using ψ(û) = 0 = ψ∗(û) we see∫
D

|∇u|2dV = ψ(0) ≥ ψ∗(0) =

∫
B

|∇u∗|2dV.

Combine this inequalty with (c) and (a) to give the desired inequality on the
eigenvalues:

λ1(D) ≥ λ1(B).

Moreover, equality of the eigenvalues forces the level sets ∂Dt to be all be
spheres centered at the origin. Also, the equality case of the Cauchy-Schwarz
inequality forces |∇u| to be constant on the level set ∂Dt. Thus u must be
radially symmetric, and so in this case u = u∗.

Alternatively the Faber-Krahn inequality can be stated as follows,
A geometric isoperimetric inequality:

V ol(D) = V ol(B)⇒ Area(∂D) ≥ Area(∂B),
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2.2 Eigenvalue Properties.

where B is a ball, implies a physical isoperimetric inequality:

V ol(D) = V ol(B)⇒ λ1(∂D) ≥ λ1(∂B).

At this point it suffices to state Hersch’s theorem[12] reinforced by the Faber-
Krahn inequality as follows:
If D ⊂ Rn is convex with in-radius, RD = 1 then

λ1(D) ≥ λ1(slab with width 1).
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3 Hyperbolic density of simply connected do-
mains.

In this section we aim to show the relation between Hayman’s inequality[9]
and the density of the hyperbolic metric in a simply connected domain in the
complex plane. We first gather all the background concepts concerning the
density metric, looking at a number of essential mapping theorems and theory
of conformal mappings in great detail, before computing density metrics for a
few simply connected domains and finally analysing the properties of this metric
therein showing the link with the first variational problem.

3.1 Conformal Mappings.

Basic theory of conformal mappings.
A mapping f : A→ B is called conformal if, for each z0 ∈ A, f rotates tangent
vectors to curves through z0 by a finite angle θ and stretches them by a definite
factor r. Simply put a mapping which preserves magnitudes and direction of
angles.
The conformal mapping theorem states that if f : A → B and f ′(z0) 6= 0
for each z0 ∈ A then f is conformal.
Points where f ′(z0) = 0 form singular points and at such points angles cease to
be preserved and hence f ceases to be conformal.
The conformal property may be described in terms of the Jacobian derivative
matrix of a coordinate transformation. If the Jacobian matrix of the transfor-
mation is everywhere a scalar times a rotation matrix, then the transformation
is conformal. So in real coordinates

f =
[
a −b
b a

]
.

=
√
a2 + b2

[
cos θ − sin θ
sin θ cos θ

]
Inverse Function Theorem. Let f : A → C be analytic (with f ′continous)
and assume that f ′(z0) 6= 0. Then there exists a neighbourhood V of f(z0) such
that f : U → V is a bijection and its inverse function f−1 is analytic with
derivative given by

d

dw
f−1(w) =

1

f ′(z)
where w = f(z).

The above only allows us to conclude the existence of a local inverse for f.

Proposition 1. 1. If f : A→ B is conformal and bijective then f−1 : B →
A is also conformal.

2. If f : A→ B and f : B → C are conformal and bijective, then g ◦ f : A→
C is conformal and bijective.
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3.1 Conformal Mappings.

Proof. 1. Since f is bijective, the mapping f−1 exists. By the inverse function
theorem, f−1 is analytic with

d

dw
f−1(w) =

1
d
dz f(z)

where w = f(z) so
d

dw
f−1(w) 6= 0.

∴ f−1 is also conformal.

2. Certainly g ◦f is bijective and analytic, since g and f are. (inverse of g ◦f
is f−1 ◦ g−1.) The derivative of g ◦ f at z is g′(f(z)) ◦ f ′(z) 6= 0 ∴ g ◦ f is
conformal by definition.

Conformal maps we have discussed thus far focus on regions which are open
connected sets but an extension to closed sets can be made via the following
theorem.

Osgood-Caratheodory Theorem. If A1 and A2 are bounded simply con-
nected regions whose boundaries γ1 and γ2 are simple continuous closed curves,
then any conformal map of A1 one-to-one onto A2 can be extended to a contin-
uous map of A1 ∪ γ1 one-to-one onto A2 ∪ γ2

Fractional Linear Transformations.
The simplest kind of a conformal mapping is the fractional linear transformation
(known also as Möbius or bilinear transformation) which is a mapping of the
form

T (z) =
az + b

cz + d

where a, b, c, d are fixed complex numbers for ad− bc 6= 0 otherwise T would be
constant.

Proposition 2. The map T defined by the fractional linear transformation is
bijective and conformal from

A =

{
z|cz + d 6= 0, i.e. z 6= −d

c

}
onto B =

{
w|w 6= a

c

}
.

Inverse is also a fractional linear transformation given by

T−1(w) =
−dw + b

cw − a
.

Proof. Indeed T is analytic on A and S(w) = (−dw+b)
(cw−a) is analytic on B.

T is bijcetive if we can show that T ◦ S and S ◦ T are identities because T will
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3.1 Conformal Mappings.

have S as its inverse. We proceed as follows;

T (S(w)) =
a(−dw+b

cw−a ) + b

c(−dw+b
cw−a ) + d

=
−adw + ab+ bcw − ab
−cdw + bc+ dcw − da

=
(bc− ad)w

bc− ad
= w.

Similarly, ST (z) = z.
Finally, T ′(z) 6= 0 because

d

dz
S(T (z)) =

d

dz
z = 1

and so
S′(T (z)) � T ′(z) = 1

∴ T ′(z) 6= 0.

Proposition 3. Any conformal map of D = {z : |z| < 1} onto itself is a
fractional linear transformation of the form.

T (z) = eiθ
z − z0

1− z̄0z
fixed z0 ∈ D and θ ∈ [0, 2π].

T of the above form is a conformal map of D onto D.

Proof. We first verify that for T of this form, |z| = 1 implies that |T (z)| = 1.
Now,

|T (z)| =
∣∣∣∣ z − z0

1− z̄0z

∣∣∣∣ =
z − z0

|z||z−1 − z̄0|
.

But |z| = 1 and so z−1 = z̄. Hence we get

|T (z)| = |z − z0|
|z̄ − z̄0|

= 1.

Only singularity of T is at z = z̄−1
0 which lies outside the unit circle.

Thus by the maximum modulus theorem, T maps D onto D. But by proposition
2

T−1(w) = eiθ
[
w − (−eiθz0)

1− (−eiθ z̄0)w

]
which, since it has the same form as T is also a map from D to D. Thus T is
conformal from D onto D.
Let R : D → D be any conformal map. Let z0 = R−1(0) and let θ =argR′(z0).
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3.1 Conformal Mappings.

The map T defined in the proposition also has T (z0) = 0 and θ =arg T ′(z0);
indeed,

T ′(z) = eiθ
[

1− |z0|2

(1− z̄0z)2

]
which at z = z0, equals

eiθ
(

1

1− |z0|2

)
a real constant times eiθ. Thus by uniqueness of conformal maps from the
Riemann mapping theorem, R = T .

From the above, we conclude that the only way to map a disk onto itself
conformally is by means of a fractional linear transformation.
(The maximum modulus theorem states that if f(z) is analytic inside and on
simple closed curve C and is not identically equal to a constant , then the max-
imum value of |f(z)| occurs on C.)

Some common transformations.

1. upper quarter plane to upper half plane.

2. infinite strip to upper half plane.

3. disk to its comlement.
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3.1 Conformal Mappings.

4. disk to upper half plane.

5. upper semi-disk to upper quarter plane.

Conformal map of a strip into a unit circle.

z 7→ ez 7→ ez − i
ez + i

.

(strip 7→ upper half plane 7→ unit circle)
The preceeding mapping theorems and more on applications of conformal map-
pings can be found in Marsden and Hoffman[5].

Solution of Dirichlet problems by Conformal mapping.
The idea is to map a Dirichlet problem,{
uxx + uyy = 0 for (x, y) ∈ D
u|∂D = 0

to a Dirichlet problem for the unit disk in a different plane say w − plane.
We can solve the problem for the unit disk, then map back this solution the
z − plane for the original problem in D[4]. This process appears as a change of
variables in the integral solution for the disk. The conformal mapping can be
regarded as a change of variables that preserves the property of harmonicity. If
is u harmonic in a region B and f : A → B is analytic, then u ◦ f is harmonic
in A because the Laplacian in 2 dimensions is conformally invariant.
If values of u are prescribed on the boundary circle γ, say u(ζ) = g(ζ) for a
given function g : D → D is conformal, then for |z| < 1,

f(z) =
1

2πi

∮
γ

g(ζ)

(
ζ + z

ζ − z

)
1

ζ
dζ.

This integral formula determines f(z) at points in the open disk, given values
of Re[f(z)] on the boundary unit circle. The solution of the Dirichlet problem
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3.2 Mapping Theorems.

for the unit disk, which asks for a harmonic function taking values given by g
on the boundary unit circle, is retrieved from this formula as

u(x, y) = Re[f(x+ iy)].

3.2 Mapping Theorems.

Riemann Mapping Theorem. Let A be a simply connected region such that
A 6= C. Then there exists a bijective conformal map f : A→ D where D = {z :
|z| < 1}. Furthermore, for any fixed z0 ∈ A we can find f such that f(z0) = 0
and f ′(z0) > 0. With such a specification, f is unique.

If A and B are two simply connected regions with A 6= C, B 6= C then there
is a bijective conformal map g : A→ B. Indeed, if f : A→ D and h : B → D are
conformal, we can set g = h−1 ◦ f . Two regions A and B are called conformal if
there is a bijective conformal map from A to B thus Riemann mapping theorem
implies two simply connected regions (unequal to C) are conformal.

Proof. We prove the uniqueness in the theorem.
Suppose f and g are bijective conformal maps of A onto D with f(z0) =

g(z0) = 0, f ′(z0) > 0 and g′(z0) > 0. We want to show that f(z) = g(z) for all
z ∈ A.

We define h on D by h(w) = g(f−1(w)) for w ∈ D. Then h : D → D and
h(0) = g(f−1(0)) = g(z0) = 0. By Schwarz’s lemma |h(w)| ≤ |w| for all w ∈ D.
For h−1 = f ◦ g−1 also applies so |h(ζ)| ≤ |ζ| for all ζ ∈ D

With ζ = h−1(w), this gives us |w| ≤ |h(w)|. Combining the above two
inequalities, we get |h(w)| = |w| for all w ∈ D. The Schwarz’s lemma now tells
us that h(w) = cw for a constant c with |c| = 1 thus cw = g(f−1(w)). With
z = f−1(w) we obtain cf(z) = g(z) for all z ∈ A. In particular cf ′(z0) = g′(z0).

Since both f ′(z0) and g′(z0) are positive real numbers so is c thus c = 1 and
so f(z) = g(z) i.e. unique.

The proof of existence breaks into parts that use different ideas. Consider a
family of functions,

F = {analytic, injective f : Ω→ D such thatf(z0) = 0}.

The argument shows the following;

1. F is nonempty.

2. If some f ∈ F satisfies

|f ′(z0)| ≥ |g′(z0)| for all g ∈ F

then f is surjective.

3. F is equicontinuous.
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3.2 Mapping Theorems.

So the Arzela-Ascoli theorem, Weierstrass theorem and Hurwitz theorem com-
plete the argument of existence.

Corollary to Riemann mapping Theorem. Let G be a region which is not
the whole plane and such that every non-vanishing analytic function on G has
an analytic square root. If a ∈ G then is an analytic function f on G such that

1. f(a) = 0 and f ′(a) > 0.

2. f is one-to-one.

3. f(G) = D = {z : |z| < 1}.

Koebe quarter Theorem. A one-to-one analytic function f : D → C from
the unit disk D onto a subset of the complex plane contains a disk whose center

is f(0) and whose radius is f ′(0)
4 . The Koebe function f(z) = z

(1−z)2 shows that

the constant 1
4 in the theorem cannot be improved.

If a univalent function (one-to-one and analytic) on the unit disk maps 0 to
0 and has derivative 1 at 0 then, the image of the unit disk contains the ball of
radius 1

4 . So for any w 6∈ f(D) we have that |w| > 1
4 .

Bieberbach’s conjecture. For a holomorphic function of the form

f(z) = z +
∑
n≥2

anz
n

which is defined and injective on the open unit disk then

|an| ≤ n for n ≥ 2.

The above gives a necessary condition on a holomorphic function in order
for it to map the open unit disk of the complex plane injectively to the complex
plane i.e. coefficient inequality for univalent functions.
(Bieberbach’s conjecture was proved by Louis de Branges in 1984.)

Proof. (Koebe quarter theorem)
Applying an affine map, it can be assumed that

f(0) = 0, f ′(0) = 1,

so that
f(z) = z + a2z

2 + . . .

(An affine map preserves linearity of points and ratios distances between points
lying on a straight line but not angles or length.)
If w is not in f(D) then

h(z) =
wf(z)

w − f(z)
= z + (a2 + w−1)z2 + . . .
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3.3 Hyperbolic metric.

is one-to-one in|z| < 1.
Applying the coefficient inequality from Bieberbach’s conjecture (i.e. a2 = 2)
to f and h gives

|w|−1 ≤ |a2|+ |a2 + w−1| ≤ 4

so that

|w| > 1

4
.

Koebe Distortion Theorem. Let f(z) be a univalent function on |z| < 1
normalized so that f(0) = 0 and f ′(0) = 1 and let r = |z| then

r

(1 + r)2
≤ |f(z)| ≤ r

(1− r)2

1− r
(1 + r)3

≤ |f ′(z)| ≤ 1 + r

(1− r)3

1− r
1 + r

≤
∣∣∣∣zf ′(z)f(z)

∣∣∣∣ ≤ 1 + r

1− r

with equality if and only if f is a Koebe function f(z) = z
(1−eiθz)2 .

The Koebe Distortion Theorem gives a series of bounds for a univalent func-
tion and its derivatives. The term ”distortion” comes from the geometric in-
terpretation of f ′(0) as the infnitesimal magnification factor of arclength under
f.

3.3 Hyperbolic metric.

The parallel postulate says that if a line segment intersects two straight lines
forming two interior angles on the same side that sum to less than two right
angles, then the two lines, if extended indefinitely, meet on that side on which
the angles sum to less than two right angles. Hyperbolic geometry is a non-
Euclidean geometry in which the parallel postulate is replaced by the assump-
tion that through any point in a plane there are two or more lines that do not
intersect a given line in the plane. A characteristic property of hyperbolic ge-
ometry is that the angles of a triangle add to less than a straight angle.
The Poincaré disk is a model for hyperbolic geometry in which a line is repre-
sented as an arc of a circle whose ends are perpendicular to the disk’s boundary
(and diameters are also permitted). Two arcs which do not meet correspond to
parallel rays, arcs which meet orthogonally correspond to perpendicular lines,
and arcs which meet on the boundary are a pair of limits rays [13].
For the Poincaré hyperbolic disk, the hyperbolic metric is invariant under Mőbius
transformations, which are all the conformal mappings conformal mappings from
the disk onto itself.
The hyperbolic density ρ(ζ) in the unit disk D is defined for all ζ ∈ D by the
formula

ρ(ζ) =
1

1− |ζ|2
.

26



3.3 Hyperbolic metric.

The hyperbolic metric which is defined from this density by integration is given
by

ρ(ζ1, ζ2) = inf

∫
γ

ρ(τ)|dτ |.

where infimum is taken over all paths in D joining ζ1 and ζ2.
Definition of our metric: σ(z0,D) = |f ′(z0)| (= ρ(τ))

• z0 ∈ D

• f(z) is a map of D onto D so that f(z0) = 0

Schwarz lemma
Let D = {z : |z| < 1} be the open unit disk centered at the origin and let
f : D → D be a holomorphic map such that f(0) = 0 and |f(z)| ≤ 1 for all
z ∈ D then |f(z)| ≤ |z| for all z ∈ D and |f ′(0)| < 1.
Moreover, if |f(z)| = |z| for some z 6= 0 or |f ′(0)| = 1 then

f(z) = az for a ∈ C with |a| = 1

Examples of hyperbolic metrics for various domains.
Using our knowledge of conformal mappings onto a unit disk we can now show
the metrics for different domains.

1. If D is the unit disk then

σ(z0,D) =
1

1− |z0|2
.

Consider f(z)− z0−z
1−z̄0z the conformal map of D onto itself.

f ′(z) =
(1− z̄0z)(−1) + (z0 − z)z̄0

(1− z̄0z)2

f ′(z0) =
(1− z̄0z0)(−1)

(1− z̄0z0)2

|f ′(z0)| = 1

1− |z0|2
= σ(z0,D).

2. If H is the upper half-plane y > 0, where z = x+ iy then

σ(z,H) =
1

2y
.

3. If S is the strip y1 < y < y2, where z = x+ iy then

σ(z, S) =
π

2(y2 − y1)
cosec

π(y − y1)

y2 − y1
.
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3.3 Hyperbolic metric.

Principle of the Hyperbolic metric. Suppose w = f(z) maps a domain D1

into a domain D2 so that f(z0) = w0 then

σ(w0,D2)|f ′(z0)| ≤ σ(z0,D1)

equality holds if and only if f(z) maps D1 onto D2.

The following theorem aids in proving the above principle:
Suppose that D1 and D2 are two domains whose complements contain at least
two points. Suppose also that z0 ∈ D1 and that w0 ∈ D2, then there exists a
unique map w = f(z) from D1 onto D2 such that f(z0) = w0 and f ′(z0) > 0.

Proof. ( Principle of Hyperbolic metric)
suppose that f1(ζ) maps the unit disk D onto D1 so that f1(0) = z0 and
thatf2(ζ) maps the unit disk D onto D2 so that f1(0) = w0 then

F (ζ) = f−1
2 ◦ f ◦ f1(ζ)

maps D into itself so that F (0) = 0.
By Schwarz’s lemma

|F ′(0)| = |f ′2(0)|−1|f ′(z0)||f ′1(0)| ≤ 1 (a)

i.e. |f ′(z0)| ≤ |f
′
2(0)|
|f ′1(0)|

=
σ(z0,D1)

σ(w0,D2)

equality holds in (a) if and only if F (ζ) = eiθζ. This is a case of f mapping D1

onto D2 thus done.

The above theorem tells us that maps of D1 into D2 decreases the hyperbolic
lengths unless map is reversible i.e. from D1 onto D2. After applying this to
the idenity map we see that if D1 ⊂ D2,

σ(z0,D1) ≥ σ(z0,D2)

when z ∈ D1, with strict inequalty unless D1 = D2. The hyperbolic metric
decreases strictly with expanding domain.
All the properties of the hyperbolic metric we have shown are found in Hayman[2].

Conformal Radius and relation to inradius.
The conformal radius is a way to measure the size of a simply connected planar
domain D viewed from a point z in it. It is well-suited to use in complex analysis,
with regards to conformal maps and conformal geometry[14].
Given a simply connected domain D ⊂ C in the complex plane, and a point
z ∈ D , by the Riemann mapping theorem there exists a unique conformal map
f : D → D onto the unit disk with f(z) = 0 ∈ D and derivative f ′(z) > 0. The
conformal radius of D from z is then defined as

rad(z,D) =
1

f ′(z)
.
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3.3 Hyperbolic metric.

If ψ : D → D′ is a conformal bijection and z ∈ D, then

rad(z′,D′) = |ψ′(z)|rad(z,D)

the above shows the conformal radius is well behaved under conformal maps.
As a consequence of the Schwarz lemma and the Koebe 1/4 theorem: for z ∈
D ⊂ C,

rad(z,D)

4
≤ dist(z, ∂D) ≤ rad(z,D).

We note that the lower bound in the inequality is as a result of the Koebe
theorem while the upper bound results from the Cauchy-Schwarz inequality.
It is clear that the conformal radius is the reciprocal of our hyperbolic metric
σ(z,D). Optimal scenario for the inequality:

• The upper bound is clearly attained by the unit disk with the z = 0 ∈ D
origin
Comparison with the disk gives that σD ≤ 1

RD
.

• The lower bound is attained by the following ’slit domain’: D = C\R+

and z = −r ∈ R−.

It is clear from the above inequality that the hyperbloic metric has an inverse
relation with the inradius much like the first Dirichlet eigenvalue, λ1. It follows
from the Koebe Theorem, with c = 1

4 , that there is a universal constant c such
that

σD = inf
z∈D

σ(z;D) ≥ c

RD

the best value of c above is known as the schlicht Bloch-Landau constant. The
conformal mapping for which c is attained is the extremal function and the
related domain the extremal domain. A disk of radius c in this domain is then
called the extremal disk.
The key property of the hyperbolic metric is that it decreases with
increasing domain and this mirrors the domain monoticity of the first
Dirichlet eigenvalue clearly showing the parallels between variational
problem 1 and the hyperbolic metric in a simply connected domain.
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4 Expected lifetime of Brownian motion in a do-
main.

Let Bt be the Brownian motion in domain D. Let

τd(z) = inf{t > 0 : Bt 6∈ D},

where z is the initial starting point, be the first exit time of Bt from D. We will
denote by E(τD(z)) the expectation of τD under the measure of the Brownian
motion starting at the point z in D. It is known that, whenever D is a planar
simply connected domain, then

sup
z∈D

E(τD(z)) ≤ bR2
D.

[11]. Problems from the above inequality revolve around finding the best value
of the constant b and the extremal domain for the inequalty.

If U denotes the disk of radius RD, then supz∈U E(τU (z)) =
R2
D

2 and the domain

monoticity of the expected times gives supz∈D E(τD(z)) ≥ R2
D

2 reiterating that
the extremal domain has to contain an extremal disk. The larger the domain
the larger the lifetime.
In this section we wish to verify the link between the expected first exit time of
the Brownian motion and the the first two variational problems.

4.1 Properties of Brownian Motion.

A stochastic process is a random variable for which response variable Zt is
indexed by t which is time of observation. Standard Brownian Motion is a
stochastic process {Bt, t ≥ 0} with state space, R, with the following properties

1. independent increments i.e. Bt −Bs is independent of Br for r ≤ s
(memoryless property)

2. stationary increments i.e. Bt−Bs andBt+x−Bs+x have same distributions
for all s, t, x

3. gaussian increments: Bt −Bs ∼ N(0, t− s) for (s < t)
(N(0,t-s) means Gaussian distribution wtih mean parameter, 0 and vari-
ance parmeter, t-s.)

fBt−Bs(z) =
1√

2π(t− s)
e−

z2

2(t−s)

4. continuous sample paths

5. B0 = 0
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4.1 Properties of Brownian Motion.

Probabilistic Intepretation.
Recall the first exit time τD(z). A standard Brownian motion in the plane
departs from a point in D and runs until it exits D in a time τD that depends
on the path. This is a stochastic process in D whose transition probabilties
(one step jump probabilties) are denoted by pD(t, x, y) so that the probabilty
that the process that initially departs from x ∈ A ⊂ D, where A is a Borel set,
at time t is ∫

A

pD(t, x, y)dy

These transition probabilities are the fundamental solutions of the heat equation
in D - the heat kernel for D - they satisfy

1

2
∆ypD(t, x, y) =

∂

∂t
pD(t, x, y).

(The heat kernel represents the evolution of temperature in a region whose bound-
ary is held at a fixed particular temperature (typically zero) such that initial unit
energy is placed at a point t = 0.)

The explanation of the above is that of a plate with shape D, its boundary
maintained at zero temperature and one unit of heat put at x at time t = 0:
the resulting heat density at the point y at time t is pD(t, x, y). The connec-
tion between this heat problem and the Brownian motion in D is that each is a
diffusion of concentration at x at time 0 that is absorbed on reaching the bound-
ary of the domain[10]. The phenomenon is that heat flow works by replacing
the temperature at with the average value of the neighbouring temperatures in
the diffusion process and this accounts for the continuous sample paths in the
Brownian motion evolution.

The exit time τD of the diffusion depends on the particular Brownian path and
as such it is a random variable, a measure function, on path space. Taking the
integral relative to the Weiner measure Px (strictly positive probability measure)
on the path space we denote this by

E(τD(x)) =

∫ ∞
0

P (τD(x) > 0)dt.

P (τD(x) > 0) is the probability that a Brownian motion that departs from x
has not, at time t, already been absorbed at the boundary of the domain so it
is the probability that this Brownian motion is still in D at time t and therefore
equals

∫
D
pD(t, x, y)dy[10]. This gives

E(τD(x)) =

∫
D

(∫ ∞
0

pD(t, x, y)dt

)
dy.

We see that

f(x, y) =

∫ ∞
0

pD(t, x, y)dt
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4.2 Torsional rigidity.

is a function of x and y alone. For fixed x, the function f(x, y) is positive,
harmonic and symmetric in D\{x} as a function of y and it vanishes on the
boundary D. It exhibits the Markov property i.e. the conditional probability
distribution of future states of the process depends only upon the present state.
f(x, y) is the Green’s function GD(x, y) for D, and the expected lifetime of
Brownian motion in D starting from x is

Ex(τD) =

∫
D

GD(x, y)dy.

(Green’s function is an integral representation for the solution of the Dirichlet
problem )
Above is the probabilist’s normalization of the Green’s function (making it a
probabilty density or mass function) for one half of the Dirichlet Laplacian[10].
In the unit disk U = {y : |y| < 1} it is given by

GD(0, y) =
1

π
log

1

y
.

At this point we may conclude that

∆(Ex(τD)) = ∆

(∫
D

GD(x, y)dy

)
= −2

since the Green’s function provides the solution

v(x) =

∫
D

GD(x, y)f(y)dy

to the Poisson problem 1
2∆v + f = 0 in D and v = 0 on the boundary of D.

To further explore the relationship between Green’s function and the expected
lifetime we can compute explicit formulae for the expected lifetime of Brownian
motion certain domains:

• for the unit disk D = D(0, R) one has Ex(τD) = 1
2 (R2 − |x|2)

• for the strip S = {(x1, x2) : |x2| < R} one has Ex(τS) = R2 − x2
2)

4.2 Torsional rigidity.

Torsional rigidity is the torque required per unit angle of twist per unit length
of beam.A round bar offers the most resistance to any twist because it has the
greatest torsional rigidity. From the problem raised by St. Venant we now know
that among all simply connected domains of given area, a disk of that area has
the greatest torsional rigidity[10].
We consider functions f(x, y) defined in the interior of a given plane domain D
and on the boundary ∂D which satisfy the boundary condition

f = 0 on ∂D
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4.2 Torsional rigidity.

then for P , the torsional rigidity of domain D as presented by Póyla and
Szegő[1], necessarily,

4

P
:= inf

{∫ ∫
|∇f |2dxdy∫ ∫
|f |2dxdy

}
(a)

with equality if and only if
f = cv

• c is a constant different from 0

• v is characterized by the following{
vxx + vyy + 2 = 0 in D

v = 0 on ∂D
(b)

In fact, v is the stress function, the partial derivatives of which determine the
components of stress[1]. The stress function can also be expressed as follows

v = Φ− 1

2
(x2 + y2)

From the characterization of the stress function it is equivalent to having Φ
harmonic and taking prescribed boundary values:{

Φxx + Φyy = 0 in D

Φ = 1
2 (x2 + y2) on ∂D

Φ exists and is uniquely determined by the Poisson integral formula.
From the theory of elasticity it is known that

P = 2

∫ ∫
vdxdy (c)

This we can see directly by integration by parts of (a) via

4

(∫
D

vdV

)2

= P

∫
|∇v|2dV

= P

(
−
∫
D

v∆vdV

)
= 2P

(∫
D

vdV

)
So it follows that

P = 2

∫ ∫
vdxdy

We must now prove that the definition of P is equiavlent to that given in
connection with the variational form above.
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4.3 Link between the value of the first exit time of a Brownian particle and
the torsion function.

We now consider a function f satisfying (a). By the differential equation (b)

2

∫ ∫
fdxdy = −

∫ ∫
f(vxx + vyy)dxdy

=

∫ ∫
(fxvx + fyvy)dxdy −

∫ ∫ [
∂(fvx)

∂y
+
∂(fvy)

∂y

]
dxdy

Due to boundary conditions on f , it follows that

2

∫ ∫
fdxdy =

∫ ∫
(fxvx + fyvy)dxdy (d)

The function v, saitisfying (b), is a particular function f . Applied to this case
(d) yields in conjunction with (c)

P = 2

∫ ∫
vdxdy =

∫ ∫
(v2
x + v2

y)dxdy (e)

Hence it follows that equality is attained in (a) when f = v. For a general f , it
follows from (d) that(

2

∫ ∫
fdxdy

)2

≤
(∫ ∫

(v2
x + v2

y)
1
2 (f2

x + f2
y )

1
2 dxdy

)2

≤ P
∫ ∫

(f2
x + f2

y )dxdy (f)

We used in succession Cauchy-Schwarz inequality and equation (e) to obtain
our earlier assertion.
If the case of equality is attained in both inequalities under (f), there exists a
constant c such that

f2
x + f2

y = c2(v2
x + v2

y), fx = cvx, fy = cvy

and we conclude finally that f = cv is the only form for which equality is at-
tained.

4.3 Link between the value of the first exit time of a Brow-
nian particle and the torsion function.

A uniqueness result for the heat equation on a finite interval.
Solutions to the inhomogeneous heat equation

ut − kuxx = f(t, x) (Heat)

are unique under Dirichlet conditions.
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4.3 Link between the value of the first exit time of a Brownian particle and
the torsion function.

Proof. Assume we have two solutions to the heat equation above with specifed
Cauchy (initial value) and Dirichlet data. Then by subtracting them and calling
the difference w; we get another solution w satisfying

wt − wxx = 0; (t;x) ∈ [0;T ]× [0;L];

w(0;x) = 0; x ∈ [0;L];

w(t; 0) = 0 = w(t;L) t ∈ [0;T ].

We want to show that w(t;x) = 0 for (t;x) ∈ [0;T ] × [0;L]. We multiply both
sides of the new heat equation by w and integrate dx over the interval [0;L] to
derive ∫

[0,L]

wwtdx =

∫
[0,L]

wwxxdx

differentiate under the integral,

d

dt

1

2

∫
[0,L]

w2(t, x)dx =

∫
[0,L]

wwtdx

=

∫
[0,L]

wwxxdx

= −
∫

[0,t]

(wx(t, x))2dx︸ ︷︷ ︸
≤0

+w(t, x)wx(t, x)|x=L
x=0︸ ︷︷ ︸

= 0 by boundary cond.

≤ 0

So if we define the energy by

H(t) :=

∫
[0,L]

w2(t, x)dx,︸ ︷︷ ︸
≥0

then we have shown that
d

dt
H(t) ≤ 0.

But H(0) = 0 by the initial conditions of w. Therefore, H(t) = 0 for t ∈ [0;T ].
But since w2(t, x) is continuous and non-negative, it must be that w2(t;x) = 0
for (t, x) ∈ [0, T ]× [0, L] thus uniqueness is shown.

We have shown that the expected lifetime is the solution to the boundary value
problem {

∆u = −2 in D,

u = 0 on the boundary of D
(****)

which describes the torsion or stress for a beam of cross section D. The torsional
rigidity PD of a beam of cross section D has the form

PD =

∫
D

|∇u(z)|2dm(z)
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4.4 Existence of extremal domains for the expected lifetime of Brownian
motion.

where u(z) = Ez(τD) is the solution of (****) and dm(z) is the Lebesgue mea-
sure in D. We have also integrated by parts in the equation of torsional rigidity
to see that

PD = 2

∫
D

Ez(τD)dm(z)

where dm=volume element for the usual Lebesgue measure.

The expected lifetime of Brownian motion in D and the torsion function from
elasticity are one and the same. This is also verified by the uniqueness of the
heat kernel. From the probabilistic view of the torsion function it follows that
if x is a point in D1 and if the domain D1 is contained in the domain D2

then u1(x) ≤ u2(x) where u1 and u2 are the torsion functions for D1 and D2

respectively[10].

4.4 Existence of extremal domains for the expected life-
time of Brownian motion.

We restate the first inequality at the beginning of this section as a theorem
proved by Carroll[11].

Theorem L. There exists a simply connected domain D of finite inradius RD
and a point z ∈ D for which

Ex(τD) = AR2
D (1)

A is the best possible b from supz∈D E(τD(z)) ≤ bR2
D and represents a universal

constant We make use of the following proposition and lemma with a view to
proving the above theorem.

Proposition 1. Suppose that the sequence of conformal maps {fn}∞1 , fn : D→
D normalized so that fn(0) = 0 and f ′n(0) > 0, converges to a non-constant
function f , uniformly on compact subsets of D. Suppose that

M = sup
n
RDn <∞

Then
lim
n→∞

E0(τDn) = E0(τD).

Loosely speaking the proposition states that the convergence of a sequence of
simply connected domains of uniformly bounded inradius implies the conver-
gence of the expected lifetime of Brownian motion for these domains.

Lemma 1. Let h be a conformal mapping of the unit disk D with h(0) = 0.
Let Rh(D) ≤ M < ∞ and E0(τh(D)) ≥ L > 0. There is a positive number η,
depending only on M and L, such that

|h′(0)| ≥ 0

36



4.4 Existence of extremal domains for the expected lifetime of Brownian
motion.

We have to assume that h(D) has finte radius otherwise the lemma does not
hold. In fact, h(z) = ηz

(1−z)2 conformally maps the unit disk onto the plane slit

along the negative real axis from −∞ to −η4 .

Proof of theorem L. By definition of A as the supremum of the quantity Ez(τD)
R2
D

over all simply connected domains D and over all points z in D, we may choose
a sequence of simply connected domains Dn, and a point zn in each Dn, such
that

Ezn(τDn)

R2
D

≥ A− 1

n
, n ≥ 1.

By applying a suitable translation, we may assume that zn = 0 in each case and
then, by applying a suitable scaling, we may further assume that E0(τDn) = 1.
We write fn for the conformal mapping of the unit disk D onto Dn for which
fn(0) = 0 and f ′n(0) > 0. Then, n ≥ 0,

1

R2
fn(D)

≥ A− 1

n
, that is Rfn(D) ≤

1√
A− 1

n

(i)

Thus since A ≥ 1.584 first part of the proposition is satisfied by the sequence
{Dn}, with M = 1√

0.584
.

Another expression for the expected lifetime E0(τh(D)) is 1
2

∑∞
n=1 |an|2, where h

is a conformal in the unit disk and h(z) =
∑∞
n=1 anz

n. To obtain the expression
for the expected lifetime we use conformal invariance, solution in the disk; u0 =
1
2 (1− |z|2) and that |∇u0|2 = 2(E0) in the torsional rigidity expressions. Since

E0(τfn(D)) = 1, we deduce that f ′n(0) ≤
√

2.
By Lemma 1, there is a positive η for which fn(0) ≥ η for each n. Hence
f ′(0) ≤ n and is therefore positive, so that f is not constant. We may therefore
assume that the sequence of conformal maps {fn}∞1 converges uniformly on
compact subsets of the unit disk to a conformal mapping f of the unit disk onto
a simply connected domain D. By Proposition 1, E0(τD) = 1.
We lastly show that 1

R2
f(D)

= A.

By definition of A, 1
R2
f(D)

≤ A. Suppose, if possible, that 1
R2
f(D)

< A, so that

Rf(D) >
1
A . There is, then, a disk D(a, r) contained in D with radius r = 1√

A+3ε

for some positive ε. It follows that the closed disk D(a, r − ε) is contained in
D. We denote by γ the simple closed curve in D which is the preimage under
f of the circle C(a, r − ε). Then fn → f uniformly on γ. In particular, there
is a natural number N such that |fn − f | ≤ ε on γ for n ≥ N. But then
|fn − a| ≥ r − 2ε = 1√

A + ε on γ, so that fn(γ) encloses the disk D(a, 1√
A + ε).

We have found that Rfn(D) ≥ 1√
A + ε, which violates (i) for sufficiently large n.

Hence D is an extremal domain for the inequality (1), proving Theorem L.

Since we use conformal mappings of the unit disk to several domains
under the normalization f(0) = 0 and f ′(0) > 0 the variational problem
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4.4 Existence of extremal domains for the expected lifetime of Brownian
motion.

in this section leads us to that the constant b represents the schlicht
Bloch-Landau constant also. This is verified further by that the ex-
tremal domain, from the domain monoticity of the expected lifetimes,
must necessarily contain an extremal disk.
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5 Conclusion.

Up to now we have studied the three seemingly different variational problems
and managed to obtain various characterizations of them. The first variational
problem deals with simply connected domains namely convex domains as the
base case such that the maximum inscribed disk bears the best resamblance
to original domain. From Hersh’s theorem the first Dirichlet eigenvalue is in-
versely proportional to the inradius of the domain and this is mirrored with
the hyperbolic metric which decreases with expanding domain. So we see that
the problem of finding the lower bound for the first Dirichlet eigenvalue is re-
lated to the problem of schlicht Bloch-Landau constant of the hyperbolic metric.

From the hyperbolic metric we are trying to find the schlicht Bloch-Landau
constant i.e the value of c for which the conformal map in relation to the in-
radius is an extremal function. While in the third variational problem we use
conformal mappings of the unit disk to ascertain the existence of an extremal
domain for the expected exit time of the Brownian motion which leads us to that
the constant b in supz∈D E(τD(z)) ≤ bR2

D really is the schlicht Bloch-Landau
constant and the second variational problem and the third are clearly related.

Also the similarity of the variational characterization of the torsional rigidity
to that of the first Dirichlet eigenvalue shows a clear relationship between vari-
ational problem 1 and variationa problem 3 albeit an inverse one. This inverse
relation is shown further by the domain monoticity of the expected lifetimes
which increase with expanding domain while the first Dirichlet eigenvalue de-
creases with expanding domain.

We have shown that the three variational problems are similar hence it is our
belief that the extremal domain is the same for the three variational problems.
However to this day the problem of finding the extremal domain has not been
solved but studies have leaned towards a slit domain as the extremal domain.
One difficulty in ascertaining this extremal domain is that the candidate slit
domains offer very low regularity. The confines of this project were the study
of simply connected domains. From a combination of Hersch’s theorem on first
Drichlet eigenvalue, R.Sperb in calculating b in supz∈D E(τD(z)) ≤ bR2

D to be
1 and Szegő in calculating c in σ(z;D) ≥ c

RD
. Concerning convex domains the

strip is the extremal domain for all three problems [15].
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Sitzungsher.-Bayer. Akad. Wiss., Math. -Phys. Munich. (1923), 169-172.
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