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1. Introduction

1.1 Notations and Definitions

1.1.1 Definition. We define the gradient of the scalar function f(x1, x2, · · · , xn) by the vector field of
the partial derivatives of f and denoted by ∇f i.e

∇f =

(
∂f

∂x1
,
∂f

∂x2
, · · · , ∂f

∂xn

)
1.1.2 Definition. The divergence of the vector field F = (F1, F2, · · · , Fn), in the coordinates (x1, x2, · · · , xn)
is defined by

divF = ∇ · F =
∂F

∂x1
+
∂F

∂x2
+ · · ·+ ∂F

∂xn

one of the impotent properties of divergence is the linearity

div(F +H) = divH + divH,

div(φF ) = φ(divF ) + 〈∇φ, F 〉. (1.1.1)

1.1.3 Definition. Let φ ∈ Ck(M) , k ≥ 2,where M is bounded domain in Rn we define the Laplacian
operator of φ, by

∆φ = div(∇φ).

Taking φ, ψ ∈ Ck(M) , k ≥ 2, we get

∆(φ+ ψ) = ∆φ+ ∆ψ,

div(φ(∇ψ)) = ψ(∆φ) + 〈∇φ,∇ψ〉, (1.1.2)

∆(φψ) = ψ(∆φ) + 2〈∇φ,∇φ〉+ φ(∆ψ).

The Divergence Theorem . Let F be continuously differentiable, compactly supported vector field
on M , then ∫

M

(divF ) dx =

∫
∂M

〈ν, F 〉dA. (1.1.3)

where ν is outward normal vector and dA is an unit surface on the boundary of M proof of this theorem
in ”I. Chavel, Eigenvalues in riemannian geometry,”

Green formulas . Applying divergence Theorem into equation (1.1.2), such that at least ψ ∈
C1(M), φ ∈ C2(M), we get∫

M

div(φ(∇ψ)) dx =

∫
M

(ψ(∆φ) + 〈∇φ,∇ψ〉) dx =

∫
∂M

〈ν, φ(∇ψ)〉dA.

Which implies that the first Green’s formula given by∫
M

(ψ(∆φ) + 〈∇φ,∇ψ〉) dx =

∫
∂M

φ〈ν,∇ψ〉dA. (1.1.4)

1
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Taking ψ ∈ C2(M) and replacing φ by ψ in equation (1.1.4) we get∫
M

(φ(∆ψ) + 〈∇ψ,∇ψ〉) dx =

∫
∂M

ψ〈ν,∇φ〉dA. (1.1.5)

Immediately from equations (1.1.4) and (1.1.5), we deduce the second Green’s formula∫
M

((ψ(∆φ)− φ(∆ψ)) dx =

∫
∂M

(φ〈ν,∇ψ〉 − ψ〈ν,∇φ〉)dA. (1.1.6)

As special case of the divergence theorem, if the vector field F = 0 in the boundary, then∫
M

(divF ) dx = 0 (1.1.7)

Therefore the Green’s formulas are given as∫
M

(ψ(∆φ) + 〈∇φ,∇ψ〉) dx = 0, (1.1.8)

And ∫
M

((ψ(∆φ)− φ(∆ψ)) dx = 0. (1.1.9)

1.1.4 Definition.

(a) Let L2(M) be the space of those measurable functions for which the Lebesgue integral of the square
of the absolute value of the functions is finite.∫

M
|f |2 dx < +∞

For f, h ∈M , the inner product on L2(M), is defined as

(f, g) =

∫
M
fg dx,

With the associated norm

||f ||2 =

∫
M
|f |2 dx,

(b) The space of the measurable vector fields is denote by L2(M), and we define the inner product of
two vector fields F, G on M by

(F,G) =

∫
M
〈F,G〉 dx,

with the associated norm

||F ||2 =

∫
M
|F |2 dx.
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Now let the real valued function φ ∈ C1(M) and the vector field F ∈ C1(M) be compactly supported.
Then applying equation (1.1.1) into (1.1.3) we get∫

M
{φ(divF ) + 〈∇φ, F 〉} dx = 0.

The definition above yields that

(∇φ, F ) = −(φ, divF ). (1.1.10)

1.1.5 Definition. We define the weak derivative of a function f ∈ L2(M), by the vector field Y ∈
L2(M) such that if

(Y,X) = −(f, divX).

for every compactly supported vector field X ∈ C1(M). The weak derivative is denoted Y = ∇f

1.1.6 Remark. If the weak derivative exist, then it is unique.

We define the Sobolev space H1(M) of order one to be subspace of L2(M).

H1(M) = {f ∈ L2(M) : ∇f ∈ L2(M)}

With the inner product defined as

(f, g)1 = (f, g) + (∇f,∇h)

The associated norm is

||f ||21 = ||f ||2 + ||∇f ||2

also we note that

f ∈ C∞(M) : ||f ||21 ≤ ∞

As consequence to the Sobolev space H1(M) of order one we defined the symmetric bilinear form
(energy integral) as

D[f, h] = (∇f,∇h) (1.1.11)

for f, h ∈ H1(M).

Laplace operator is self-adjoint operator . For φ, ψ ∈ L2(M), using integration by part twice we
get

〈φ,4ψ〉 =

∫
M
φ4 ψ dx =

∮
∂M

φ(5ψ) · v dx︸ ︷︷ ︸
=0

−
∫
M
5φ · 5ψ dx = −

∫
M
5φ · 5ψ dx

But

−
∫
M
5φ · 5ψ dx = −

∮
∂M

ψ(5φ) · v dx︸ ︷︷ ︸
=0

+

∫
M
ψ4 φ dx = 〈ψ,4φ〉

Therefore

〈φ,4ψ〉 = 〈4φ, ψ〉
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Dirichlet boundary condition.

−∆φ = f in M (1.1.12)

φ = 0 on ∂M (1.1.13)

this mean that φ is unique solution of the variation problem{
φ ∈ H1(M), ∀ψ ∈ H1(M),∫
M (∇φ · ∇ψ) dx =

∫
M (fψ) dx

(1.1.14)

Existence and uniqueness of a solution for (1.1.14) follows from the Lax-Milgram Theorem, and poincaré
inequality. We denote by{

AD : L2(M) −→ H1(M),

AD : f 7−→ φ. where φ is solution of (1.1.14)
(1.1.15)

Neumann boundary condition. . We consider φ as the solution of the Neumann problem and let f
function in L2(M)

−∆φ = f in M (1.1.16)

∇φ · ν = 0 on ∂M

where ν is toward unit normal vector on M . this mean that φ is unique solution of the variation problem{
φ ∈ H1(M), ∀ψ ∈ H1(M),∫
M (∇φ · ∇ψ) dx =

∫
M (fψ) dx

(1.1.17)

Existence and uniqueness of a solution for (1.1.17) follows from the Lax-Milgram Theorem, and poincaré
inequality. We denote by{

AN : L2(M) −→ H1(M),

AN : f 7−→ φ. where φ is solution of (1.1.17)
(1.1.18)

1.2 Abstract of the Spectral Theory

Let H be a Hilbert space endowed with inner product(•, •) and let the operator T be linear continuous
map from H 7−→ H. We say that

(i) T is positive if ∀φ ∈ H (Tφ, φ) ≥ 0

(ii) T is self-adjoint if ∀φ, ψ ∈ H (Tφ, ψ) = (ψ, Tφ)

(ii) T is compact if the image of any bounded set is relatively compact (i.e has compact closure in H)

1.2.1 Theorem. Let A : H −→ H be compact, self-adjoint and positive operator on Hilbert space
H. Then there is finite or infinite sequence {λn}Nn=0 or {λn}∞n=0 of real eigenvalues λn 6= 0 and

corresponding orthonormal sequence {en}Nn=0 or {en}∞n=0 respectively in H such that:

(i) A(en) = λnen ∀n

(ii) (ker(A))⊥ = span
(
{en}Nn=0 or {en}∞n=0

)
(iii) if N =∞, then lim

n−→∞
λn = 0.
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Application to the Laplace operator.

Dirichlet boundary condition . Applying the above theorem to H = L2(M) with the operator{
AD : L2(M) −→ H1(M),

AD : f 7−→ φ.

(i) AD is positive, let φ ∈ L2(M). and φ = AD(λφ) such that φ is the solution of (1.1.14). We get

(λφ,AD(λφ)) =

∫
M

(λφ, φ) dx =

∫
M
|∇φ|2 dx ≥ 0.

(ii) AD is self-adjoint, let φ, ψ ∈ L2(M) and φ = AD(f), ψ = AD(λψ)

(λφ,AD(λψ)) =

∫
M

(λφ, ψ) dx =

∫
M
∇φ · ∇ψ dx =

∫
M

(λψ, φ) dx = (λψ,AD(λφ))

(iii) the compactness follows from the following theorem

1.2.2 Theorem. (I) For any bounded open set M , the embedding H1(M) 7−→ L2(M) is
compact.

(II) If M is a bounded open set, with the Lipschitz boundary the embedding H1(M) 7−→ L2(M)
is compact.

As consequence of the spectral theorem there exists a Hilbert basis {φn} of L2(M), and a positive
sequence {νn} converging to zero, such that for every n,

ADφn = νnφn

Since νn is positive for all n and the operator AD is positive, then

(φn, A
Dφn) = νn‖φn‖2 ≥ 0

Now from equation(1.1.17) we have

νn

(∫
M

(∇φn · ∇ψ) dx

)
=

∫
M
φnψ dx

Therefore −∆φn =
1

νn
φn which implies that λn =

1

νn
. Which implies that there exist orthonormal

basis {φn} of L2(M), such that −∆φn = λnφn

1.3 Rayleigh Quotient

For the function φ ∈ C2(M), we its the define Rayleigh quotient as

R(φ) =
D[φ, φ]

‖φ‖2
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To connect the Rayleigh quotient with the eigenvalue problem, consider R(φ+ εψ) for ψ ∈ C2(M) and
φ ∈ C2(M). Then find the critical point of

f(ε) =
D[φ+ εψ, φ+ εψ]

‖φ+ εψ‖2
(1.3.1)

at ε −→ 0 where ε is any constant. Using equation (1.1.11) into (1.3.1)

f(ε) =
(∇(φ+ εψ),∇(φ+ εψ))

‖φ+ εψ‖2

=

∫
M (∇(φ+ εψ))2 dx∫
M (φ+ εψ)2 dx

Then the derivative with respect to ε equal to zero at ε = 0

0 = f ′(0) =
2
(∫
M (φ)2 dx

) (∫
M (∇(φ) · ∇(ψ)) dx

)
− 2

(∫
M (∇φ)2 dx

) (∫
M (φψ) dx

)(∫
M (φ)2 dx

)2
Arranging the equation above we get(∫

M (∇(φ) · ∇(ψ)) dx
)(∫

M (φ)2 dx
) =

(∫
M (∇φ)2 dx

)(∫
M (φ)2 dx

)2 (∫
M

(φψ) dx

)

Therefore ∫
M

(∇(φ) · ∇(ψ) dx =

(∫
M (∇φ)2 dx

)(∫
M (φ)2 dx

) (∫
M
φψ) dx

)
= R(φ)

(∫
M

(φψ) dx

)
Now using equation (1.1.5), we get

R(φ)

(∫
M

(φψ) dx

)
=

∫
M

(∇(φ) · ∇(ψ)) dx = −
∫
M

(∆(φ)ψ) dx

Therefore ∫
M

(∆φ+R(φ)φ)ψ dx = 0. (1.3.2)

which gives us ∆φ+R(φ)φ = 0, because equation (1.3.2) is satisfied ∀ψ ∈ C2(M). Thus any critical
point φ is an eigenfunction of −∆ with the eigenvalue R(φ).



2. The Second Chapter

2.1 Theorems on the eigenvalue problems

Neumann eigenvalue problem. For ∂M 6= ∅ and M compact and connected, find all real numbers
λ for which there exists a non-trivial solution φ ∈ C2(M) ∩ C1(M) to

4φ+ λφ = 0, (2.1.1)

which satisfy the boundary condition

vφ = 0, on ∂M.

Here v is an outward unit normal vector on ∂M

Dirichlet eigenvalue problem . For ∂M 6= ∅ and M compact and connected, find all real numbers
λ for which there exists a non-trivial solution φ ∈ C2(M) ∩ C0(M) to

4φ+ λφ = 0,

satisfying the boundary condition

φ = 0, on ∂M.

Orthogonality of the eigenfunctions. Let ν, µ be two eigenvalues of respective eigenfunctions φ, ψ
such that ν 6= µ Then φ and ψ are orthogonal to each other, i.e 〈φ, ψ〉 = 0. Since Laplace operator is
self-adjoint operator, then we have

〈φ,4ψ〉 = 〈ψ,4φ〉

we deduce that

µ〈φ, ψ〉 = ν〈ψ, φ〉

Which implies that

(µ− ν)〈φ, ψ〉 = 0

Which implies the claim.

2.1.1 Remark. The first eigenvalue of Neumann eigenvalue problem is λ1 = 0 corresponding to to
constant eigenfunction.

2.1.2 Theorem. From equation (2.1.1), the set of the eigenvalues consist of the sequence

0 ≤ λ1 ≤ λ2 ≤ · · · ↑ +∞

and each associated eigenspace is finite dimensional. L2(M) is the direct sum of the all eigenspaces.
Furthermore, each eigenfunction is C∞ on M .

7
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Proof. First, we show that the sequence of the eigenvalues are non-negative, since the eigenfunction φ
in C2(M) ∩ C0(M) (Dirichlet), or φ in C2(M) ∩ C1(M) (Neumann), using Green formula, i.e

−
∫
M
φ4 φ dx =

∫
M
〈∇φ,∇φ〉 dx

This implies that

λ

∫
M
φ.φ dx =

∫
M
|∇φ|2 dx

Therefore

λ = ||φ||−2

∫
M
|∇φ|2 dx ≥ 0. (2.1.2)

Since the integration (2.1.2) is zero only if φ is constant. From the remark above we conclude that
λ1 ≥ 0. Now we can list the set of the eigenvalues, considering the multiplicity of the eigenvalues, in
increasing order.

0 ≤ λ1 ≤ λ2 ≤ . . . ↑ +∞

Second we show that L2(M) is the direct sum of all eigenspaces. From the spectrum theorem that
orthonormal sequence {φn}∞n=0 generated the whole space, which means that for all functions f ∈
L2(M), Satisfy the following

f =
∞∑
j=1

(f, φj)φj , in L2(M),

With corresponding norm

||f ||2 =
∞∑
j=1

(f, φj)
2

2.1.3 Theorem. (Rayleigh’s Theorem).For function f ∈ C∞(M)\{0}, let λ1, λ2, · · · be the eigen-
values of ∆, and first eigenvalue λ1, we have

λ1 = inf D[f, f ]/‖f‖2

if f is eigenfunction of λ1, we get exactly λ1. Further more, if we let

(f, φ1) = · · · = (f, φk−1) = 0

for complete orthonormal basis {φn}∞n=1 of L2(M), where φn is an eigenfunction of λn we have

λk = inf D[f, f ]/‖f‖2

if f is eigenfunction of λk, we get exactly λk.
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Proof. From equation (??) if φ is an eigenfunction and f ∈ C∞(M), then

D[f, φ] = λ(f, φ)

But from the spectral Theorem we have that, any function f ∈ C∞(M), can be written as

f =

∞∑
j=1

αjφj

and where αj can be represented as αj = (f, φj). Therefore

f =

∞∑
j=k

αjφj

with the associated norm

‖f‖2 =
∞∑
j=k

α2
j

Since the symmetric bilinear form is defined as inner product of two vector fields, using this linearity we
can proceed as follows

0 ≤ D

f − ∞∑
j=k

αjφj , f =
∞∑
j=k

αjφj


= D[f, f ]− 2D

f, ∞∑
j=k

αjφj

+D

 ∞∑
j=k

αjφj ,
∞∑
j=k

αiφi


= D[f, f ]− 2

∞∑
j=k

αjD [f, φj ] +

∞∑
i,j=k

αjαiD [φj , φi]

= D[f, f ] + 2
∞∑
j=k

αj(f,∆φj)−
∞∑

i,j=k

αjαi(φj ,∆φi)

= D[f, f ]− 2
∞∑
j=k

λjαj (f, φj)︸ ︷︷ ︸
=αj

+
∞∑

i,j=k

λjαjαi (φj , φi)︸ ︷︷ ︸
=δi,j

= D[f, f ]− 2
∞∑
j=k

λjα
2
j +

∞∑
i,j=k

λjα
2
j

= D[f, f ]−
∞∑
j=k

λjα
2
j .

We deduce that

D[f, f ] ≥
∞∑
j=k

λjα
2
j
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Since

D[f, f ] = (∇f,∇f) =

∫
M

|∇f |2 dx <∞.

where
∞∑
j=k

λjα
2
j <∞. Since the eigenvalues are ordered as increasing sequence, λk is smallest eigenvalue,

hence

D[f, f ] ≥
∞∑
j=k

λjα
2
j ≥ λk

∞∑
j=k

α2
j = λk‖f‖2.

If f is eigenfunction of λk then

‖f‖2 =
∞∑
j=k

α2
j = αk = 1.

Therefore

D[f, f ] = (∇f,∇f) = −(f,∆f) = λk‖f‖2,
which implies the claim.

2.1.4 Theorem (Max-Min Theorem). . Suppose that

µ = inf D[f, f ]/‖f‖2

and define the space E(M) ⊂ H1 as the set of functions orthogonal to {v1, v2, · · · vk−1} in H1 Then

µ ≤ λk

Proof. Suppose that

f =
k∑
j=1

αjφj

is orthogonal to {v1, v2, · · · vk−1} inH1, and {φj}k=1 is orthonormal sequence, where φj an eigenfunction
of λj , this assumption gives us

k∑
j=1

αj(φj , vi) = 0 i = 1, 2, · · · , k − 1. (2.1.3)

Thus(2.2.1) is a system of k− 1 equations in k variables αj , j = 1, 2, · · · , k, then there exist at least
one solution {αj} 6= 0 of the system. Therefore

D[f, f ] = D

 k∑
j=1

αjφj ,

k∑
i=1

αiφi

 =

k∑
i,j=1

αiαjD [φj , φi]

=−
k∑

i,j=1

αiαj(φj ,∆φi) =
k∑
j=1

λjα
2
j ≤ λk

k∑
j=1

α2
j = λk‖f‖2

Which implies that

µ = inf D[f, f ]/‖f‖2 ≤ λk.
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2.2 Domain Monotonicity of the eigenvalues

Dirichlet eigenvalue problem. Suppose that we divide our domain M , into a sequence of sub-domains
{Ωi}mi=1, such that Ωi ∩ Ωj = ∅, i 6= j and consider Dirichlet eigenvalue problem on each of this sub-
domains. Arrange all the eigenvalues of Ωi as ν1 ≤ ν2 ≤, · · · , and let the eigenvalues of the whole
domain M , under Dirichlet condition are λ1 ≤ λ2 ≤, · · · . Then

λk ≤ νk ∀k

Proof. Let {ψj}kj=1 be the orthonormal sequence in L2(M) of the eigenfunctions of the Dirichlet
eigenvalue problem in M and let’s take ψj to be an eigenfunction of the eigenvalue νj in particular
sub-domain, in M , and zero outside. Therefore the function

f =
k∑
j=1

αjψj

can be chosen to be orthogonal to {φj}k−1
j=1 . If the system

k∑
j=1

αj(φj , ψi) = 0 i = 1, 2, · · · , k − 1. (2.2.1)

has a non-zero solution {αj} 6= 0, and hence form Mix-Min Theorem we have

λk ≥ D[f, f ]/‖f‖2

But

D[f, f ] = D

 k∑
j=1

αjψj ,
k∑
i=1

αiψi

 =
k∑

i,j=1

αiαjD [ψj , ψi]

= −
k∑

i,j=1

αiαj(ψj ,∆ψi) =

k∑
j=1

µjα
2
j ≤ νk

k∑
j=1

α2
j = νk‖f‖2

Therefore

λk ≤ νk ∀k

Neumann eigenvalue problem. Suppose we divide our manifold M to complete partitions {Ωi}mi=1 ,
i.e

M = Ω1 ∪ Ω2 ∪ · · · ∪ Ωm.

and satisfy the Neumann eigenvalue problem on each of this partitions. Arrange all the eigenvalues of
{Ωi}mi=1 as µ1 ≤ µ2 ≤, · · · . Then we have

µk ≤ λk ∀k
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Proof. Let {ψj}k−1
j=1 be orthonormal sequence of the eigenfunctions in H1(M), where that ψj is the

solution of the Neumann eigenvalue problem, and let’s take ψj to be an eigenfunction of the eigenvalue
µj in Ωi,and zero otherwise. Thus for any function f ∈ H1(M), it is define on all Ωi. Also by using
Max-Min Theorem, we can find function f , s.t

f =
k∑
j=1

αjφj

Orthogonal to {ψj}k−1
j=1 (φj is the eigenfunction for λj on M). Therefore

D[f, f ] = D

 k∑
j=1

αjφj ,
k∑
i=1

αiφi

 =
k∑

i,j=1

αiαjD [φj , φi]

= −
k∑

i,j=1

αiαj(φj ,∆φi) =
k∑
j=1

λjα
2
j ≤ λk

k∑
j=1

α2
j = λk‖f‖2

Now if we let f to be orthogonal to {ψj}k−1
j=1 in L2(M), then f =

k∑
j=1

αjψj and therefore

D[f, f ] =

∫
M
‖∇f‖2 dx =

m∑
i=1

∫
Ωi

‖∇f‖2 dx

But ∫
Ωi

‖∇f‖2 dx ≥ µk
∫

Ωi

|f |2 dx.

Thus

D[f, f ] ≥ µk
m∑
i=1

∫
Ωi

f2 dx = µk‖f‖2

Which implies that

µk ≤ λk.



3. Third Chapter

3.1 Dirichlet eigenvalue problem on a rectangle

Find the all real numbers λ, of non-trivial solution of equation (2.1.1), under Dirichlet boundary condi-
tions, on the rectangle

{0 ≤ x ≤ a, 0 ≤ y ≤ b}.

We can rewrite equation (2.1.1) as follows

φxx + φyy + λφ = 0 0 ≤ x ≤ a, 0 ≤ y ≤ b, (3.1.1)

φ(x, 0) = φ(x, a) = 0 0 ≤ x ≤ a,
φ(0, y) = φ(b, y) = 0 0 ≤ y ≤ b,

By using separation of variables, let

φ(x, y) = X(x) · Y (y)

now equation (3.1.1) becomes

Xxx(x) · Y (y) +X(x) · Yyy(y) + λX(x) · Y (y) = 0

we can write it as

Xxx(x) + λX(x)

X(x)
=
−Yyy(y)

Y (y)

Since the right hand side depends only one y and the left hand side depends only on x. hence both
sides are equal to some constant,

Xxx(x) + λX(x)

X(x)
=
−Yyy(y)

Y (y)
= µ.

We get two ordinary differential equations

Xxx(x) + (λ− µ)X(x) = 0 X(0) = X(a) = 0, (3.1.2)

Yyy(y) + µY (y) = 0 Y (0) = Y (b) = 0, (3.1.3)

Solutions of equation (3.1.3), are given by

Y (y) = A sin
√
µy +B cos

√
µy

Substituting the boundary conditions we get B = 0 andY (y) = sin
√
µy

µ =
m2π2

b2
for m = 1, 2, · · ·

(3.1.4)

By doing the same steps, we find the solution of equation (3.1.2), with α = λ− µ, such thatX(x) = sin
√
αx

α =
n2π2

n2
for m = 1, 2, · · ·

(3.1.5)

13
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Therefore from equations (3.1.2) and (3.1.3) the solution of equation (3.1.1) obtained by,φn,m(x, y) = X(x) · Y (y) = sin
nπ

a
x · sin mπ

b
y

λn,m =
n2π2

a2
+
m2π2

b2
for n,m = 1, 2, · · ·

(3.1.6)

Since sin
nπ

a
x·sin mπ

b
y orthonormal basis of L2(M), then using Fourier series we can write f ∈ L2(M),

as

f(x, y) =
∞∑

n,m=1

Cn,m sin
nπ

a
x · sin mπ

b
y

Therefore

||f ||2 =
∞∑

n,m=1

C2
n,m

We Generalize the example on rectangle in n-dimension

M = {0 ≤ x1 ≤ α1, 0 ≤ x2 ≤ α2, · · · , 0 ≤ xn ≤ αn}

Here equation (2.1.1) can be written as

φx1x1 + φx2x2 + · · ·+ φxnxn + λφ = 0 on M, (3.1.7)

φ(x1, 0, 0, · · · , 0) = φ(x1, α2, · · · , αn) = 0 0 ≤ x1 ≤ α1,

φ(0, x2, 0, · · · , 0) = φ(α1, x2, α3, · · · , αn) = 0 0 ≤ x2 ≤ α2,

...

φ(0, 0, · · · , xn) = φ(α1, α2, · · · , xn) = 0 0 ≤ xn ≤ αn

We trying to solve equation (3.1.7), by using septation of variables, then we let

φ(x1, · · · , x2) = X1(x1) · · · · ·Xn(xn) (3.1.8)

We obtain equation (3.1.7) as

X1x1x1(x1) ·X2(x2) · · ·Xn(xn) + · · ·+X1(x1) ·X2(x2) · · ·Xnxnxn(xn) + λX1(x1) · · · · ·Xn(xn) = 0

Divide the whole terms in above equation by X1(x1) · · · · ·Xn(xn) we get

X1x1x1(x1) + λX1(x1)

X1(x1)
+
X2x2x2(x2)

X2(x2)
+ · · ·+ Xnxnxn(xn)

Xn(xn)
= 0 (3.1.9)

Since the term i depend only on the variable xi for 1 ≤ i ≤ n. Let’s take a line with constant the
variables xi for 1 ≤ i ≤ n − 1, changing only xn. This will change only the last term, Keeping the
others terms constant. Thus the term n is equal to some constant. Namely

Xnxnxn(xn)

Xn(xn)
= µn
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Using the boundary conditions for xn, we get

µn =
k2
nπ

2

α2
n

.

With

Xn(xn) = sin
knπxn
αn

.

doing the same argument on the term i taking a line with the constant in the all directions except along
xi, using it is boundary conditions, we get

µi =
k2
i π

2

α2
i

.

With

Xi(xi) = sin
kiπxi
αi

.

Inserting the whole values, µi =
k2
i π

2

α2
i

, 2 ≤ i ≤ n back to equation(3.1.9), we get

λ =
k2

1π
2

α2
1

+
k2

2π
2

α2
2

+ · · ·+ k2
nπ

2

α2
n

.

With

X1(x1) = sin
k1πx1

α1
.

Hence equation (3.1.8) it can be obtain as
φki(x1, · · · , xn) = sin

k1πx1

α1
· sin k2πx2

α2
· · · sin knπxn

αn

λki =
k2

1π
2

α2
1

+
k2

2π
2

α2
2

+ · · ·+ k2
nπ

2

α2
n

.

1 ≤ i ≤ n

Since the φki for 1 ≤ i ≤ n are orthonormal bases of L2(M), using Fourier series we obtain

f(x1, · · · , xn) =

∞∑
ki=1

Cki sin
k1π

x
1

αn
· sin k2π

x
2

α2
· · · sin knπ

x
n

αn
, 1 ≤ i ≤ n

With associated norm

||f ||2 =

∞∑
ki=1

C2
ki
, 1 ≤ i ≤ n
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3.2 Neumann eigenvalue problem on a rectangle

Considering Neumann boundary condition, we have

φxx + φyy + λφ = 0 0 ≤ x ≤ a, 0 ≤ y ≤ b, (3.2.1)

φy(x, 0) = φy(x, a) = 0 0 ≤ x ≤ a,
φx(0, y) = φx(b, y) = 0 0 ≤ y ≤ b,

By doing the same steps in the Dirichlet boundary condition, is easy to see thatφn,m(x, y) = X(x) · Y (y) = cos
nπ

a
x · cos

mπ

b
y

λn,m =
n2π2

a2
+
m2π2

b2
for n,m = 1, 2, · · ·

(3.2.2)

Using the same way we can generalise the case of, n-dimension, to get the following solution
φki(x1, · · · , xn) = cos

k1πx1

α1
· cos

k2πx2

α2
· · · cos

knπxn
αn

λki =
k2

1π
2

α2
1

+
k2

2π
2

α2
2

+ · · ·+ k2
nπ

2

α2
n

.

1 ≤ i ≤ n

3.3 Dirichlet eigenvalue problem on a Disk

Find the all real numbers λ, of non-trivial solution of equation (2.1.1), under Dirichlet boundary condi-
tions, on the rectangle

M = {0 ≤ r < a, 0 ≤ θ ≤ 2π}.

We can rewrite equation (2.1.1) as follows

φrr +
1

r
φr +

1

r2
φθθ = −λφ 0 ≤ r < a, 0 ≤ θ ≤ 2π, (3.3.1)

φ(a, θ) = 0 0 ≤ θ ≤ 2π.

By using separation of variables, let

φ(r, θ) = R(r) · Φ(θ)

now equation (3.3.1) becomes

Φ

(
Rrr +

1

r
Rr

)
+

1

r2
RΦθθ = −RλΦ

rearranging to separate the variables, we have

r2

(
Rrr +

1

r
Rr + λR

)
R

= −Φθθ

Φ
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Since the right hand side depends only one θ and the left hand side depends only on r. hence both
sides are equal to some constant. Therefore we set the following ODEs

Rrr +
1

r
Rr + (λ− µ

r2
)R = 0 R(a) = 0, 0 ≤ r < a, (3.3.2)

Φθθ + µΦ = 0 Φ(0) = Φ(2π), 0 ≤ θ ≤ 2π, (3.3.3)

Solutions of equation (3.3.3), are given by

Φ(θ) = A sin
√
µθ +B cos

√
µθ

The boundary condition gives us
√
µ = n, n ∈ N. Thus we can write

Φn(θ) = An sinnθ +Bn cosnθ, n ∈ N

Now equation (3.3.2) becomes

Rrr +
1

r
Rr + (λ− n2

r2
)R = 0 R(a) = 0, 0 ≤ r < a (3.3.4)

using change of variables x =
√
λr, we get

dR

dr
=

dR

dx
· dx

dr
=
√
λ

dR

dx
,

d2R

dr2
= λ

d2R

dx2

Thus equation (3.3.4), becomes

x2Rxx + xRx + (x2 − n2)R = 0 R(
√
λa) = 0, 0 ≤ x <

√
λa

This is Bessel differential equation, more information see[A treatise on the theory of Bessel functions]
which has the solution Jn(x), where Jn(x) is the Bessel function of the first kind of order n is defined
by

Jn(x) =
∞∑
k=0

(−1)k

k!(n+ k)!

(x
2

)n+2k

Then the solution of equation (3.3.2), where x =
√
λr is given by R(r) = Jn(

√
λr). Therefore

φ(r, θ)n = Jn(
√
λr) ·An sinnθ +Bn cosnθ, n ∈ N

Since from Dirichlet boundary condition we have φ(a, θ) = 0, this implies that Jn(
√
λa) = 0 ∀n ∈ N,

which deduce that
√
λa is solution of the Bessel function. But Jn(x) has infinitely many positive

solutions see that in figure 3.1, and then we can order them as follows

0 < αn,1, < αn,2, · · · < αn,m < αn,m+1 < · · ·

Thus
√
λn,ma = αn,m, and therefore the eigenvalues of the Dirichlet eigenvalue problem is given by

λn,m =
(αn,m

a

)2
, n,m ∈ N

With associated eigenfunction.

φn,m(r, θ) = Jn

((αn,m
a

)
r
)
· (An,m sinnθ +Bn,m cosnθ) , n ∈ N

the orthogonality of the eigenfunctions, follows from the spectral theorem, so that for all function
h(r, θ) ∈ L2(M), we can write the Fourier series as

h(r, θ) =

∞∑
n,m=1

Jn

((αn,m
a

)
r
)
· (An,m sinnθ +Bn,m cosnθ) , n,m ∈ N
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Figure 3.1: Bessel function of the first kind Jn(x), n = 0, 1, · · · , 5

3.4 Neumann eigenvalue problem on the Disk

In the case of the Neumann boundary condition

φn,m(r, θ) = Jn (
√
µr) · (An,m sinnθ +Bn,m cosnθ) , n ∈ N

∂φn,m
∂r

(r, θ) = 0 on the boundary i,e
∂φn,m
∂r

(a, θ) = 0

Therefore

(
√
λ)J ′n (

√
µa) · (An,m sinnθ +Bn,m cosnθ) = 0

since the eigenvalue is not zero, then

J ′n (
√
µa) = 0

Also the derivative of Bessel function has infinitely many positive solutions, are ordered as

0 < α′n,1, < α′n,2, · · · < α′n,m < α′n,m+1 < · · · n > 0

0 = α′n,1, < α′n,2, · · · < α′n,m < α′n,m+1 < · · · n = 0

Thus the eigenvalues of the Neumann eigenvalue problem is given by

µn,m =

(
α′n,m
a

)2

, n,m ∈ N

With associated eigenfunction.

φn,m(r, θ) = Jn

((
α′n,m
a

)
r

)
· (An,m sinnθ +Bn,m cosnθ) , n ∈ N



4. The Second Squared Chapter

4.1 Weyl’s asymptotic formula

In equation(1), Let N(λ) be the number of the eigenvalues ≤ λ, counted with multiplicity . Then

N(λ) ∼ ωn(vol M)λ
n
2

(2π)n
as λ→ +∞

Where ωn is the volume of the unit disk in Rn, and vol M is the volume of the manifold. On the other
hand

λ
n
2
k ∼

(2π)nk

(vol M)ωn
as k → +∞

Volume of the Ball in n-dimension. Let’s define the area of the sphere (cantered in the origin), in
n-dimension with radius r, to be A(Sn−1)rn−1. And the volume of the ball (cantered in the origin), in
n-dimension with radius r, to be V (Bn)rn. This implies that

V (Bn) =

R∫
0

A(Sn−1)rn−1dr

= A(Sn−1)
Rn

n
(4.1.1)

If we have function f : Rn −→ R is function of r =

(
n∑
j
x2
j

) 1
2

,then.

∞∫
0

f(r)A(Sn−1)rndr =

∞∫
−∞

∞∫
−∞

· · ·
∞∫
−∞

f(x1, · · · , xn)dx1 · · · dxn

Taking f(r) = e−r
2
, then we have,

A(Sn−1)

∞∫
0

e−r
2
rndr =

∞∫
−∞

∞∫
−∞

· · ·
∞∫
−∞

f(x1, · · · , xn)dx1 · · · dxn

In the integral on the left hand side, by substituting u = r2, then du = 2rdr we get

A(Sn−1)

∞∫
0

e−r
2
rndr =

A(Sn−1)

2

∞∫
0

e−uu
n−1
2 dr = A(Sn−1)

Γ(n2 )

2
(4.1.2)

and the right hand side of the integral is,

∞∫
−∞

∞∫
−∞

· · ·
∞∫
−∞

f(x1, · · · , xn)dx1 · · · dxn =

 ∞∫
−∞

e−x
2
dx

n

= π
n
2 (4.1.3)

19
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From equations (4.1.2) and (4.1.3) we get

A(Sn−1) =
2π

n
2

Γ(n2 )
(4.1.4)

From (4.1.1) and (4.1.4) we get

V (Bn) =
π

n
2Rn

n
2 Γ(n2 )

=
π

n
2Rn(
n
2

)
!

(4.1.5)

Volume of the Ellipsoid in n-dimension. The equation of the ellipsoid in n-dimension is given as

n∑
i=1

x2
i

α2
i

= 1

By substituting ξi =
xi
αi

in equation (4.1.3), we get

n∏
i=1

αi

∞∫
−∞

∞∫
−∞

· · ·
∞∫
−∞

f(ξ1, · · · , ξn)dξ1 · · · dξn

=

n∏
i=1

αi

 ∞∫
−∞

e−ξ
2
dx

n

=

n∏
i=1

αiπ
n
2

Hence from equation (4.1.5), with radius R = 1 the volume of ellipsoid V (En) given by,

V (En) =
π

n
2(
n
2

)
!

n∏
i=1

αi

4.2 proof of Weyl’s Asymptotic Formula on rectangle in n-dimension

From the above example, we had our eigenvalue given by the formula

λn,m =
n2π2

a2
+
m2π2

b2
for n,m = 1, 2, · · ·

But this in two dimension where M = {0 ≤ x ≤ a, 0 ≤ y ≤ b}. We count the total number, of
eigenvalues with multiplicity λn,m ≤ λ. which mean that

n2π2

a2
+
m2π2

b2
≤ λ

Rearranging the above equation we get

n2(
a
√
λ

π

)2 +
m2(
b
√
λ
π

)2 ≤ 1. (4.2.1)
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But equation (4.2.1) is an equation of an ellipse. From the diagram of an ellipse and visualise where
the eigenvalues are in the diagram. Since the eigenvalues for all m,n = 1, 2, · · · , it implies that all
the eigenvalues are located in the first quadrant of the diagram, the total number of the eigenvalues
asymptomatically occupies quarter of the area of the ellipse. The total area of our ellipse is

π

(
b
√
λ

π
· a
√
λ

π

)
=
abλ

π

and so. the number of the eigenvalues is approximately equal to a quarter of this area , which is thus

N(λ) ∼ abλ

4π

Comparing this result in R2 with Weyl’s Formula, we set for Vol M = ab and w2 = π therefore

N(λ) ∼ abλ

4π

We Now generalise the proof to Rn. Where our rectangle is

M = {0 ≤ x1 ≤ α1, 0 ≤ x2 ≤ α2, · · · , 0 ≤ xn ≤ αn}

and it is volume given as

Vol M =
n∏
i=1

αi

The eigenvalues are given as

λki =
k2

1π
2

α2
1

+
k2

2π
2

α2
2

+ · · ·+ k2
nπ

2

α2
n

for ki = 1, 2, · · · where i = 1, 2, · · · , n

Also counting total number, of the eigenvalues with the multiplicity λki ≤ λ where i = 1, 2, · · · , n we
have

k2
1π

2

α2
1

+
k2

2π
2

α2
2

+ · · ·+ k2
nπ

2

α2
n

≤ λ for ki = 1, 2, · · · where i = 1, 2, · · · , n

And rearranging, gives us

k2
1(

α1

√
λ

π

)2 +
k2

2(
α2

√
λ

π

)2 + · · ·+ k2
n(

αn

√
λ

π

)2 ≤ 1 for ki = 1, 2, · · · where i = 1, 2, · · · , n
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But this is the equation of the an ellipsoid in n-dimension. Also since kiare positive where i = 1, 2, · · · , n.

it implies that the total number of the eigenvalues occupies the volume of
1

2n
of the total volume of

the ellipsoid. The volume of our ellipsoid is given as

V (En) =
π

n
2(
n
2

)
!

n∏
i=1

(
αi
√
λ

π

)
where i = 1, 2, · · · , n

Therefore
1

2n
of this volume is

N(λ) ∼ 1

2n

{
π

n
2(
n
2

)
!

n∏
i=1

(
αi
√
λ

π

)}
where i = 1, 2, · · · , n

rearranging the equation above we get

N(λ) ∼ π
n
2(
n
2

)
!

n∏
i=1

αi ·
λ

n
2

(2π)n
where i = 1, 2, · · · , n

=
ωn(vol M)λ

n
2

(2π)n

Therefore the proof of Weyl’s Formula on a rectangle in Rn is complete.

4.3 Nodal domain theorem

4.3.1 Definition. Let φk : M −→ R be an eigenfunction of Laplacian operator, we define the nodal
sets (lines) by the set of points in M , such that

N = {x ∈M : φk(x) = 0 k = 1, 2, · · · }.

and the nodal domain is define by M\N .

4.3.2 Example. The eigenfunction, of Dirichlet eigenvalue problem, on the interval (0, a), is given by

φk(x) =

√
2

a
sin

(
kπ

a
x

)
, k = 1, 2, · · ·

and therefore the nodal set given by

{x =
na

k
: n = 1, 2, · · · k − 1}

From the Dirichlet boundary condition, note that x = 0 and x = a are not in the nodal set.

4.3.3 Example. Consider the example on rectangle with a = b = π then we get{
φm,n(x, y) = sinnx sinmy

λm,n = n2 +m2, m, n = 1, 2, · · ·

Now we can order the eigenvalues as increasing sequence with multiplicity. Note that, there are eigenval-
ues with multiplicity more than one; for example λ1,2 = λ2,1 = 5 and λ1,3 = λ3,1 = 10, so the common
eigenfunctions of these kind of eigenvalues we can be written as a linear combination. For example,
the eigenfunction of the eigenvalue λ = 5 is A sinx sin 2y +B sin 2x sin y and the eigenfunction of the
eigenvalue λ = 10 is A sinx sin 3y + B sin 3x sin y. Therefore, we can order the eigenvalues with the
corresponding eigenfunctions as follows:
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λn φn
2 A sinx sin y

5 A sinx sin 2y +B sin 2x sin y

8 A sin 2x sin 2y

10 A sinx sin 3y +B sin 3x sin y

13 A sin 2x sin 3y +B sin 3x sin 2y
...

...

The nodal lines of the eigenfunction with the eigenvalues of the multiplicity one are given by:

N =
{

(x, y) : x =
π

n′
, y =

π

m′
, (1 ≤ n′ < n, n = kn′), (1 ≤ m′ < m, m = lm′) k, l ∈ N

}
.

but the nodal lines of the eigenfunction with the eigenvalues of the multiplicity two, are coming from
the zeros of the eigenfunctions which is linear combination of two functions. Now if one of the two
coefficients is zero, we obtain the case of one multiplicity, but if we have a case other than zero it
becomes too complicated. As examples in Figure 2 and Figure 3, we show the nodal lines and nodal
domains of the eigenvalues λ = 10 and λ = 13 respectively for different values of the coefficients.

Figure 4.1: The nodal lines of the eigenvalues λ = 10

(a) sin 3x sin y (b) sinx sin 3y − sin 3x sin y (c) sinx sin 3y − 1
3
sin 3x sin y

Figure 4.2: The nodal lines of the eigenvalues λ = 13

(a) sin 3x sin 2y (b) sin 3x sin 2y + sin 2x sin 3y (c) 1
3
sin 3x sin 2y + 3 sin 2x sin 3y
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4.4 Courant Nodal domain Theorem

4.4.1 Theorem. Let φk, k ≥ 2 be the k-th eigenfunction of the Laplacian operator,corresponding to
the k-th eigenvalue with the multiplicity, then φk has at least two(2) and at most k nodal domains.

4.4.2 Corollary. The first eigenfunction φ1 has constant sign and the corresponding eigenvalue has
multiplicity 1, and the second eigenfunction φ2 divides the domain M precisely into 2 pieces.

Proof. From the Max-Min theorem we have that

λ1 =

∫
M ‖∇φ1‖2

‖φ1‖2

Now let’s take |φ1| in the state of φ1, we get the same value for λ1 and then φ1 = |φ1|, this implies the
claim that the first eigenfunction has constant sign and its corresponding eigenvalue has multiplicity 1.
From the orthogonality of φ2 to φ1 we have that∫

M
φ1φ2dx = 0,

Since we have shown that φ1 has constant sign, φ2 has to change its sign in M and since φ2 is
a continuous function then it has zero some where in the domain M and it divides the domain M
precisely into two pieces.

4.4.3 Corollary. Let Ωk ⊂M be nodal domain of an eigenfunction φk corresponding to the eigenvalue
λk, under Dirichlet boundary condition. Then

λk(M) = λ1(Ω)

Proof. Since Ωk is the nodal domain of the eigenfunction φk, then

−∆φk =λkφk in Ωk

φk =0 on ∂Ωk

and since φk has constant sign in Ωk, this means that φk is the first eigenfunction in Ωk,so that λk(M)
is first eigenvalue in Ωk
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