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Abstract

This report aims to subsidize the seminar given on the 2nd of August
2013 on “Moser’s Theorem and Differential Forms”. In doing so, a short
summary of differential forms and other concepts of differential geometry
which are necessary to understand Moser’s Theorem will be given. Next,
Moser’s Theorem will be stated and it’s utility will be motivated. Lastly,
a proof of Moser’s Theorem will be given (which unfortunately had to be
omitted in the seminar representation due to time constraints).

1 Introduction

The main focus of this report is Moser’s Theorem (see Theorem 3.1) and
it’s proof. However, to fully appreciate Moser’s Theorem, some background of
differential geometry is required. Section 2 will give all the necessary defini-
tions and results to understand the main Theorem. It should however be noted
that, unlike the seminar presentation, this report does not intend to teach said
background-material – it is aimed at readers who are already familiar with the
basic concepts of differential geometry but may need a reminder of said con-
cepts.
For a more in depth treatment of the material discussed in section 2, readers
are referred to [4].

Next, Moser’s Theorem as well as an interpretation and the proof following
[5] are given in section 3. This proof presupposes various results from differen-
tial and algebraic geometry. For the convenience of the reader, all these results
are stated (without proof) in Appendix A.
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2 Differential Forms – An Overview

As mentioned in the Introduction, in order to fully appreciate Moser’s Theo-
rem, some background knowledge is required. This section aims to give a short
overview of the most important concepts needed for the later sections of the
report.
All the information provided in this section is sourced from [4], unless stated
otherwise.

In the following, M will denote a smooth, differentiable, (not necessarily
Riemannian), m-dimensional manifold, unless otherwise specified. As it is usu-
ally done, T (M) and T ∗(M) will denote the tangent and cotangent bundles of
M, respectively. For any P ∈ M, the fibres of T (M) (resp. T ∗(M)) will be
denoted by TP (M) (resp. T ∗P (M)), such that:

T (M) =
⊔
P∈M

TP (M) and T ∗(M) =
⊔
P∈M

T ∗P (M) (1)

where
⊔

denotes a disjoint union.

Given a particular coordinate representation, the basis elements of TP (M),
for some P ∈M, will be denoted by:

∂

∂x1
,
∂

∂x2
, . . .

∂

∂xm

while the basis elements of T ∗P (M) will be denoted by:

dx1,dx2, . . . ,dxm

Definition 2.1. If ωP ∈ T ∗P (M), for some P ∈ M, then ωP is said to be a
1-form.

From now on, the explicit dependence of ωP on P will b suppressed, i.e. ωP
will simply be denoted by ω.

We will denote (T k)∗(M) to be the kth tensor product of T ∗(M):

(T k)∗(M) = T ∗(M)⊗ T ∗(M)⊗ . . .⊗ T ∗(M)︸ ︷︷ ︸
k times

(2)

The set Λk(M) ⊆ (T k)∗(M) will then be defined as the set of all alternating
k-tensors in (T k)∗(M).

Definition 2.2. If ω ∈ Λk(M), then ω is said to be a k-form.

We would now like to combine the various spaces Λk(M) to an algebra.
To do so, we first need to define an operation on these sets that respects the
anti-symmetry property of their elements. This operation is called the wedge-
product :
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Definition 2.3. Let α ∈ Λp(M) and β ∈ Λq(M). The wedge product ∧,

∧ : Λp(M)× Λq(M) −→ Λp+q(M)

is a map whose action on (α, β) is defined as follows:

∧(α, β) := α ∧ β =
(p+ q)!

p!q!
Alt(α⊗ β)

where, for ω a p-form, (v1, v2, . . . , vp) ∈ T p(M) and Sp the symmetric group on
p elements, we have that:

(Alt(ω)) (v1, v2, . . . , vp) =
1

p!

∑
σ∈Sp

(sgn(σ))ω
(
vσ(1), vσ(2), . . . , vσ(p)

)
It should be noted that due to this definition, the wedge product is anti-

symmetric in the exchange of two of its components, for example:
Let α = dx1 ∧ . . . ∧ dxp ∈ Λp(M) and β = dxp+1 ∧ . . . ∧ dxp+q ∈ Λq(M), in
some coordinate representation of M. Then:

α∧β = dx1∧. . .∧dxi∧dxi+1∧. . .∧dxp+q = −dx1∧. . .∧dxi+1∧dxi∧. . .∧dxp+q

(3)
Due to (3), in particular, we have that

dxi ∧ dxi = 0 (4)

for every dxi ∈ Λ1(M). In general, it then follows that, for every ω ∈ Λk(M),
where k is odd,

ω ∧ ω = 0 (5)

Readers are encouraged to convince themselves of this fact.

One should observe that ω ∧ ω is not necessarily true if ω has rank 2k. An
example for this would be:(

dx1dx2 + dx3dx4
)
∧
(
dx1dx2 + dx3dx4

)
= dx1dx2dx3dx4 + dx3dx4dx1dx2

= 2dx1dx2dx3dx4 6= 0

Equation (4) furthermore implies that:

Λk(M) = {0} for all k > m (6)

where m is as before the dimension of M. The above is true because of
the following: In a particular coordinate representation, the basis 1-forms are
dx1, . . . ,dxm, and the basis m-form is dx1 ∧ . . . ∧ dxm. Thus, to build a basis
(m+ 1)-form γ, one necessarily has to do the following:

γ =
(
dx1 ∧ . . . ∧ dxi ∧ . . . ∧ dxm

)
dxi

= (−1)m−i
(
dx1 ∧ . . . ∧ dxi ∧ dxi ∧ . . . ∧ dxm

)
= (−1)m−i

(
dx1 ∧ . . . ∧ 0 ∧ . . . ∧ dxm

)
= 0

We may now define the graded algebra:
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Definition 2.4. We define Λ(M) such that:

Λ(M) =
⊔

k∈{0,...,m}

Λk(M)

where m is the dimension of the manifold M. Then Λ(M) together with the
wedge product is called the graded algebra.

Besides the wedge product, one can define other operations on the elements
of the graded algebra. Two of these operations, namely the exterior derivative1

and interior multiplication will be introduced below.

Definition 2.5. The exterior derivative d is a linear map:

d : Λ̃p(M) −→ Λ̃p+1(M)

where Λ̃p(M) is understood to be a particular section of Λp(M), and d satisfies
the following conditions:
Let α and β be a p- and q-form respectively. Then:

1. d (α+ β) = dα+ dβ

2. d (α ∧ β) = (dα) ∧ β + (−1)pα ∧ (dβ)

3. For every ω ∈ Λ(M), d (dω) = d2ω = 0

4. For every function f ,

df =

m∑
i=1

∂f

∂xi
dxi

Another important property of the exterior derivative is:2

Property 2.6. Let ω be a (p− 1)-form that, for a particular choice of coordi-
nates, can be represented as:

ω = f(x1)dx2 ∧ . . . ∧ dxp

Then:
dω = d

(
f(x1)

)
∧ dx2 ∧ . . . ∧ dxp

At this point, the following terminology will be introduced:

Definition 2.7. Let ω be a p-form. Then:

1. ω is said to be closed if:
dω = 0

1The definition for the exterior derivative is taken from [2].
2A proof for this property can be found in [4].
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2. ω is said to be exact if there exists a (p− 1)-form β such that:

ω = dβ

It should be noted that due to the second property of the exterior derivative
(cf. Definition 2.6), all exact forms are also closed.

Next, interior multiplication will be defined:

Definition 2.8. The interior multiplication iX of a vector field X, where X is
a given section of T (M), and a p-form ω is a linear map:

iX : Λp(M) −→ Λp−1(M)

such that:
iXω(·, ·, . . . , ·)︸ ︷︷ ︸
p unassigned slots

= ω(X, ·, . . . , ·)︸ ︷︷ ︸
p− 1 unassigned slots

Lastly, some more terminology needs to be introduced to fully understand
the main theorem of this seminar report:

Terminology 2.9. 1. A p-form ω is said to be of odd kind if, under a
change of variables from (x1, . . . , xp) to (y1, . . . , yp), ω behaves as follows:

ω(x1,...,xp) 7−→ Jω(y1,...,yp)

where ω(x1,...,xp) denotes ω represented in the (x1, . . . , xp)-coordinates, and
similarly for ω(y1,...,yp), and J is the Jacobian of this coordinate transfor-
mation.

2. A p-form ω is said to be non-degenerate, if it is non-vanishing every-
where on M. In particular, this implies that J 6= 0 for any coordinate
transformation on M.

Readers are advised that the terminology of odd kind is non-standard, but
since Moser makes use of this terminology in [5], it is also adapted here.
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3 Moser’s Theorem

With all the background material of section 2 in mind, we are finally able to
present Moser’s Theorem.3

Theorem 3.1. Let τt be a family of closed 2- or n- forms of odd kind which
are non-degenerate for 0 ≤ t ≤ 1 and with fixed periods, i.e.:∫

C
τt =

∫
C
τ0 (7)

for every 2- or n-dimensional cycle C on M, where a cycle is a closed (i.e.
compact and without boundary) sub-manifold of M. Then there exists an auto-
morphism φt such that

φ∗t τt = τ0 (8)

and φ0 is the identity mapping.

Before proving the above Theorem, we will look at what Moser’s Theorem
says quantitatively. Thus, we introduce some more terminology: Let M be an
m-dimensional manifold.

1. A volume form is a m-dimensional non-degenerate form. It should be
noted that a volume form is automatically closed.
As intuitively expected, a volume form is used o measure the volume of
M, see [4].

2. A symplectic form is a 2-dimensional, closed, non-degenerate form. It
should be noted that only even-dimensional manifolds allow for symplectic
forms on them, see [4].
Symplectic forms are often used in classical mechanics, see [2].

Now, we look at Moser’s Theorem quantitatively. The below interpretation
is based on [7].

Quantitative Statement:
Considers a m-dimensional manifold M. Suppose that on this manifold, there
exists a family of volume forms (resp. symplectic forms) such that (7) is ful-
filled. What Theorem 3.1 tells us is that the fact that the integrals on the
LHS and the RHS of (7) are equal is not a coincidence, but is only possible if
the forms in the aforementioned family are in fact related by a change of vari-
ables (as the map φt in the theorem is essentially a change of variables). The
remarkable implication of this is not only that there exists a standard volume
form τ0 (resp. standard symplectic form τ0) on the manifold M, but that once
this standardized form is found, it is legitimate to work with τ0 rather than any

3This Theorem is taken from [5].
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other form τt as they are related by (8). In practise, this is very useful, as in
a particular problem, the form τt might be complicated, but the standard form
τ0 might be easy to work with.

Now, Theorem 3.1 will be proven. As mentioned earlier, this proof re-
quires a familiarity with various other results, such as for example the Hodge
Decomposition Theorem. All the results necessary to understand the proof of
Theorem 3.1 are given in Appendix A.

Proof. This proof strongly follows [5].
The strategy is to determine the integral curves X of the mapping φt, instead
of determining φt directly, which we know exist by the Fundamental Theorem
of Flows (see Theorem A.1.1 in Appendix A.1). This strategy is now com-
monly referred to as Moser’s Trick. Once Xt is determined, φt can be recovered
by solving the following ODE:

d

dt
φt = Xt ◦ φt (9)

We now need to find an expression for Xt. First, we notice that “Cartan’s
Magic Formula”4 reads as follows:

d

dt
(φ∗t τt) = φ∗t [τ̇t + d (iXtτt) + iXt (dτt)] (10)

where τ̇t = d
dtτt.

By assumption of the Theorem, τt is closed. Therefore:

d

dt
(φ∗t τt) = φ∗t [τ̇t + d (iXt

τt)] (11)

Next, we set the left hand side of (11) to zero:

0 = φ∗t [τ̇t + d (iXtτt)] (12)

This is done such that the solution φt of the resulting equation satisfies (8), by
construction.

Then, by the Picard-Lindelöf Theorem5, we know that solutions to (12) ex-
ist in an interval (t− ε, t+ ε) for some small ε. We can then apply the Escape
Lemma (cf. Lemma A.2.1 in Appendix A.2) to see that these solutions
must in fact exist in the whole manifold M, as, by assumption, C is closed, so
in particular, C is compact.

We will now proceed to solve equation (12) to obtain an expression for Xt

as a function of τt.

4This formula is sourced from [5].
5The Picard-Lindelöf Theorem is a standard result from the theory of differntial equations.

Readers are referred to [3] and references therein.
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We can use the Hodge Decomposition Theorem (see Theorem A.3.5 in
Appendix A.3) to express τ̇t as a sum of an exact form, dαt, and a harmonic
form, ht:

τ̇t = dαt + ht (13)

Now, we recall that, by assumption in the Theorem, the periods over closed
cycles of the τt are fixed, hence:∫

C
τt = constant =⇒

∫
C
τ̇t =

d

dt

∫
C
τt = 0 (14)

It is important to note that, since C is compact, τt is bounded. Therefore, by
the Lebesque Dominated Convergence Theorem (see Theorem A.4.1 in Ap-
pendix A.4), we were able to exchange the derivative and the integral sign in
(14).

By a corollary of Stoke’s Theorem (see Corollary A.5.2 in Appendix
A.5), the integral over a cycle of an exact form vanishes. Hence, we find:

0 =

∫
C
τ̇t =

∫
C

dαt + ht =

∫
C

dαt +

∫
C
ht = 0 +

∫
C
ht =

∫
C
ht (15)

Since (15) is required to hold for all t, it follows that ht = 0. Thus, τ̇t is an
exact form:

τ̇t = dαt (16)

Substituting result (16) into equation (12) yields the following:

0 = φ∗t [τ̇t + d (iXtτt)] = φ∗t [dαt + d (iXtτt)] =⇒ dαt + d (iXtτt) = 0

as φt 6= 0 by assumption (as otherwise, in particular, φ0 = 0, which contradicts
the fact that φ0 is assumed to be the identity mapping). Therefore, integrating
the above once, we have obtained the following linear equation for Xt:

iXt
τt = −αt (17)

We note that this equation has in fact a unique solution for Xt, since, by
assumption, τt is non-degenerate.
To illustrate that Xt is uniquely determined by (17), the quantity iXt

τt will be
expressed in coordinate representation. We first denote Xt as follows:

Xt =

n∑
i=1

Xki(t)
∂

∂ki
(18)

We now consider the cases for τt a 2-form and τt an n-form separately.

First, if τt is a 2-form, one can represent τt in particular coordinates as
follows:

τt =

n∑
i=1

akili(t, x)dxkidxli (19)
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We observe that, by Darboux’s Theorem (see Theorem A.6.1 in Appendix
A.6), there always exist local coordinates such that (19) holds. Furthermore, by
antisymmetry of the wedge product, we require that akili = −aliki in the above.

Then, we find that:

iXt
τt =

n∑
i=1

akili(t, x)Xki(t)dxli (20)

On the other hand, for τt a n-form, τt can be represented as follows:

τt = b(t, x)dxk1 . . . dxkn (21)

In this case, the interior multiplication between Xt and τt becomes:

iXt
τt = b(t, x)

n∑
i=1

(1)
i−1 Xki(t)dxk1 . . . dx̂ki . . . dxkn (22)

where dx̂ki denotes that dxki is omitted in the ith term or of the sum.

So, for both τt a 2-form and for τt and n-form, due to the non-degeneracy
of τt, the components of αt (and thus of Xt) are uniquely determined.

Now that we have obtained an expression for Xt (via equation (17)), we can
substitute it into (9) and then integrate the resulting equation, which is possible
since integration on a compact manifold such as C is well-defined. Its solution
φt satisfies by construction equation (8) and thus proves the Theorem.
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A Assorted Theorems

This appendix serves to give various theorems, without proof, which are essential
to understanding the proof of Moser’s Theorem. Unless stated otherwise, all
results are sourced from [4], where the according proofs can be found as well.

A.1 Fundamental Theorem of Flows

Theorem A.1.1. Let X be a smooth vector field on a smooth manifold M.
Then there exists a unique maximal flow φ : D −→ M, where D denotes the
flow-domain, D ⊂ R ×M, such that φ is generated by X. φ has the following
properties:

1. For each point P ∈ M, the curve φ(P ) : D(P ) −→ M is the unique
maximal integral curve of X. The notation φ(P ) indicates that φ starts at
the point P .

2. If s ∈ D(P ), then Dφ(s,P ) is the interval D(P ) − s := {t− s : t ∈ D(P )}.

3. For each t ∈ R, the set Mt := {Q ∈ M : (t, Q) ∈ D} is open in M and
φt :Mt −→M−t is a diffeomorphism with inverse φ−t.

A.2 Escape Lemma

The Escape Lemma is a result describing the behaviour of integral curves on a
manifold:

Lemma A.2.1. LetM be a smooth manifold and let X be a smooth vector field
over M. If φ : I −→M is a maximal integral curve of X, whose domain I has
a finite least upper bound b, then for any a ∈ I, φ([a, b)) is not contained in
any compact subset of M.

A.3 Hodge Decomposition Theorem

All the definitions and results of this section are sourced from [6], unless explic-
itly specified otherwise. However, the notation used for the dual of the exterior
derivative ([6] calls this the adjoint exterior derivative) is taken from [5], as,
according to [7], [6] uses a non-standard notation.
To understand the Hodge Decomposition Theorem, some more background knowl-
edge is required:

We define the Hodge Star Operator :

Definition A.3.1. Let M be an m-dimensional Riemannian manifold with
metric g. The Hodge ∗ operator is a linear map defined as follows: For every
p ∈ N,

∗ : Λp(M) −→ Λm−p(M)
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where the action of ∗ on a basis vector dxk1 ∧ . . . ∧ dxkp ∈ Λp(M) is given by:

∗
(
dxk1 ∧ . . . ∧ dxkp

)
=

√
| g |

(m− p)!
ε
k1...kp

kp+1...km
dxkp+1 ∧ . . . ∧ dxkm

where ε
k1...kp

kp+1...km
is the m-dimensional alternating tensor and | g | is the

determinant of the metric g.

Using this operator, one can define a dual exterior derivative or codifferential
as follows:

Definition A.3.2. For and m-dimensional Riemannian manifold (M, g), the
dual exterior derivative operator δ : Λp(M) −→ Λp−1(M) is defined a follows:

δ = (−1)mp+m+1 ∗ d∗

where ∗d∗ is understood to be the composition of the various operators.

Definition A.3.3. The Laplacian Operator ∆ : Λp(M) −→ Λp(M) is defined
by:

∆ = (d + δ)
2

= dδ + δd

We are finally in a position to define a harmonic form:

Definition A.3.4. A p-form ω is said to be harmonic, if:

∆ω = 0

The Hodge Decomposition Theorem6 then reads as follows:

Theorem A.3.5. Let (M, g) be a compact, orientable Riamannian manifold
without boundary. Then every closed p-form ω can be represented in the form:

ω = dα+ h

where h is a harmonic p-form and α is a (p− 1)-form.

It should be noted that, in the above Theorem, α is not necessarily unique.
As however a unique choice of α is required for the proof of Moser’s Theorem,
we will furthermore require that α = δβ for some p-form β.7

Readers should be advised that the Hodge Decomposition Theorem is a big
and difficult Theorem, unlike the other results in this section, for which proofs
can be found in most standard textbooks. A proof of the Hodge Decomposition
Theorem is available in [8].

6This Theorem is taken from [5].
7cf. [5].
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A.4 Lebesgue Dominated Convergence Theorem

This Theorem is sourced from [1].

Theorem A.4.1. Suppose that {fn} is a sequence of measurable functions, that
fn −→ f point-wise almost everywhere as n −→ ∞, and that | fn |≤ h for all
n, where h is an integrable function. Then f is integrable, and:∫

fdµ =

∫
lim
n→∞

fndµ = lim
n→∞

∫
fndµ

where dµ is the Lebesgue measure.

In the context of Moser’s Theorem, this result applies to equation (14) since
the derivative can be expressed as a limit.

A.5 Stoke’s Theorem

Theorem A.5.1. Let M be an oriented smooth m-dimensional manifold with
boundary ∂M, where it is understood that ∂M has the orientation induced by
M, and let ω be a smooth (m− 1)-form with compact support on M. Then:∫

M
dω =

∫
∂M

ω

It should be noted that ω on the right hand side of the above equation is
interpreted as ι∗∂Mω, where ι∂M : M −→ ∂M is the restriction map from M
onto ∂M.

From Stoke’s Theorem follows a Corollary:

Corollary A.5.2. If M is as in the above Theorem, but ∂M = ∅, then the
integral of every exact form α = dβ over M is zero:∫

∂M
α = 0

A.6 Darboux’s Theorem

Darboux’s Theorem is a result about symplectic forms:

Theorem A.6.1. Let (M, ω) be a 2n-dimensional sympletic manifold, ω a
symplectic form on M. For any P ∈M, there exist smooth coordinates:

(x1, . . . , xn, y1, . . . , yn)

centered at P in which ω has the following coordinate representation:

ω =

n∑
i=1

dxi ∧ dyi
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