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Abstract

A maximal surface is a surface of zero mean curvature in Lorentz-
Minkowski space. In this project, various characteristic properties of
maximal surfaces in the 3-dimensional Minkowski space L3 will be
studied.

First, an overview of general concepts in differential geometry used
in later parts of the project is given. Then, different results regarding
maximal surfaces are stated and proven. At the end of the project, a
proof of the Calabi-Bernstein Theorem in L3, which gives important
information about entire maximal surfaces, is given.
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1 Introduction

Soap bubbles are for many people a fond child-hood memory. But besides
the joys they brought us at an earlier age, soap bubbles have interesting
mathematical properties too. In fact, it turns out that a thin soap film
naturally always forms itself into a minimal surface.1 In this project, several
properties of maximal surfaces, the counterpart of the minimal surface in
Minkowski space will be studied.

Figure 1: This picture shows Ennepper’s surface of the fourth kind as a soap
film. This surface is a well-known example of a minimal surface. This picture
was sourced from [Nyl12].

The Lorentz-Minkowski space (or simply Minkowski space) in three di-
mensions, L3, is a space with a flat metric defined on it.2 It differs from
regular Euclidean 3-space as its metric is no longer positive definite. It is
thus called a Pseudo-Riemannien space. It’s four-dimensional counterpart
describes flat space-time and is thus very useful in physics.3

1See [Opr04].
2This simply means that L3, like R3 is a flat space, not a curved space.
3For more details on flat and curved spaces, the difference between Riemannien and

Pseudo-Riemannien spaces as well as the use of four-dimensional Minkowski space L4 in
physics see [Car04].
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Besides the relevance in physics, maximal surfaces in L3 have many math-
ematically interesting properties. These properties are what this project will
be focusing on. Before they can be explored in greater detail, some back-
ground information is required. The relevant background material is dis-
cussed within the following chapter.
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2 Background Information

2.1 The Minkowski Metric

Let us consider a 3-dimensional Euclidean coordinate system, R3, with axes
x , y and t. In it, a vector can be given as follows:

~v = (vx, vy, vt)

It is a well known fact, that the inner product of two vectors, say ~v =
(vx, vy, vt) and ~w = (wx, wy, wt), is defined as follows:

~v · ~w ≡ vxwx + vywy + vtwt (1)

Using matrix multiplication, equation (1) can equivalently be given as:

~v · ~w = ~vI3 ~w
T

⇔
[
vx vy vt

] 1 0 0
0 1 0
0 0 1

wxwy
wt


where I3 denotes the identity matrix in 3D and ~wT is the transpose of ~w.

By this reasoning, one can formulate the following definition:

Definition 2.1.1. Let gE : R3 ×R3 −→ R3 be a function, such that:

gE(~v, ~w) = ~vI3 ~w

(in other words, gE sends two vectors to their inner product, (~v, ~w) 7→ ~v · ~w).
This function gE defines the Euclidean metric4 in R3.

Therefore, the metric space (R3, gE) with gE as defined above, is just the
3-dimensional Euclidean space with the usual inner product defined on it.

In Minkowski space, the metric g is defined in a similar way:

4It is easy to prove that gE is in fact a metric. This proof is omitted here, but readers
are welcome to convince themselves of this fact.
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Definition 2.1.2. Let g : R3 ×R3 −→ R3 be a function, such that:

g(~v, ~w) =
[
vx vy vt

] 1 0 0
0 1 0
0 0 −1

wxwy
wt


= vxwx + vywy − vtwt

The above is more commonly written as:

g(~v, ~w) = ~vg ~w

where:

g ≡

1 0 0
0 1 0
0 0 −1


g is known as the Minkowski metric.

The metric space (R3, g), which will be denoted as L3, is called the
Minkowski space, where the metric g as defined in Definition 2.1.2 is un-
derstood.

Thus, losely speaking, the t-direction yields a “negative contribution”.

In L3, one defines a lightcone5. This lightcone is a cone formed by the
rotation of the line l(s) defined by:

l(s) = (0, 0, 0) + s(0, 1, 1)

about the t-axis, where s is a parameter.

The following terminology is used:

• a vector v, which has the property that g(v, v) < 0, is said to be timelike

• a vector v, which has the property that g(v, v) > 0, is said to be
spacelike

• a vector v, which has the property that g(v, v) = 0, is said to be lightlike

5It is called the lightcone due to physical reasons which will not be explained here but
can be found in [Car04].
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Figure 2: This diagram depicts the lightcone and shows the various regions
in L3 relative to the lightcone. (Graphic generated in MATLAB).

Similarly, one speaks of a timelike (resp. spacelike) surface, if its tangent
plane is a timelike (resp. spacelike) subspace of Minkowski space at every
point. This terminology is visualized in Figure 2.6

In this project, primarily spacelike surfaces are considered.

2.2 Notation

In this project, unless stated otherwise, a subscript notation for derivatives
will be used, in other words, fx will denote the partial derivative of a function
f with respect to x:

fx ≡
∂f

∂x

A similar notation will be used for higher order derivatives:

fxx ≡
∂2f

∂x2
fxy ≡

∂2f

∂x∂y
≡ fyx fyy ≡

∂2f

∂y2

6This information has been sourced from [Car04].
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and so forth.

2.3 Important Theorems

In this section, the Inverse Function Theorem will be stated without a proof.7

Theorem 2.3.1. Let E be an open set with E ⊂ Rn and let f : Rn −→ Rn

be a continuously differentiable map. Furthermore, let the Jacobian of f at
a be nonzero in the neighbourhodd of a point a ∈ E. Then:

1. there exist two open sets U and V with U, V ⊂ Rn such that a ∈ U ,
f(a) ∈ V , f : U −→ V is injective, and f(U) = V

2. the inverse of f , namely g : V −→ U , which exists due to 1., defined
by:

g(f(x)) = x for every x ∈ U
is continuously differentiable on V .

The next important Theorem that will be used later on is Green’s Theo-
rem8, which reads:

Theorem 2.3.2. Consider a plane. Let C be a region within this plane and
let ∂C be its closed contour.
Let P (u, v) and Q(u, v) be smooth functions on C. Then, the following rela-
tion holds: ∫ ∫ (

∂P

∂u
+
∂Q

∂v

)
du dv =

∫
C

P dv −
∫
C

Q du

The definitions in the following, (sections 2.4 – 2.9), are adapted from
[Opr04], unless stated otherwise.

7A proof can be found in [Rud76].
8A proof of Green’s Theorem can be found in [Rud76].
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2.4 Curves

It is assumed that the reader is familiar with the concept of a curve and thus
said concept will not be explained here. In this section, some results that
will prove useful in later sections, will be stated.

Definition 2.4.1. A curve γ(u) is said to have unit speed if its derivative
is of unit length for every value of u, in other words

|γ̇(u)| = 1 for all u in the domain

where γ̇(u) ≡ dγ(u)
du

. If the above holds, the curve γ(u) is said to have a unit
speed parameterization.

The following result provides information about the existence of a unit
speed parameterization for a given curve:

Result 2.4.2. Every regular curve has a unit speed parameterization.

Proof. 9 Let γ(u) be a regular curve. Then its length-function l is:

l(u) =

∫ u

0

|γ̇(t)| dt

By the Fundamental Theorem Of Calculus, it follows that:

dl(u)

du
= |γ̇(u)| > 0 (2)

Since dl(u)
du

is strictly greater than zero, by the Inverse Function Theorem,
its inverse function u(l) exists and is differentiable. Its derivative is related

to dl(u)
du

as follows:
du(l)

dl
=

1
dl(u)
du

> 0 (3)

9This proof is based on a proof found in [Opr04].
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Let λ(l) ≡ γ(u(l)). Thus, λ(l) is clearly a reparameterization of γ(u) and
hence λ(l) and γ(u) describe the same curve.

By the chain rule, the following can be noted:

dλ

dl
=

dγ

du

du

dl∣∣∣∣ dλ

dl

∣∣∣∣ =

∣∣∣∣ dγ

du

∣∣∣∣∣∣∣∣ du

dl

∣∣∣∣
=

dl

du

du

dl
(by equation (2))

=
dl

du

1
dl
du

(by equation (3))

= 1

Hence, λ(l) has unit speed and is thus a unit speed parameterization of
γ(u).

Let us define the following quantities:

Definition 2.4.3. Let γ(u) be a regular curve. Then, one defines:

1. The unit tangent vector ~T (u) to γ(u) at a particular u is defined as
follows:

~T (u) ≡ γ̇(u)

|γ̇(u)|

2. The unit normal vector ~N(u) to γ(u) at a particular u is defined as
follows:

~N(u) ≡
~T ′(u)

κ(u)

where ~T ′(u) ≡ d~T
du

and

κ(u) ≡ |~T ′(u)|

κ(u) is said to be the curvature of γ at u.

3. The unit binormal vector ~B(u) to γ(u) at a particular u is defined
as follows:

~B(u) ≡ ~T (u)× ~N(u)
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Therefore, the vectors ~T , ~N and ~B are three mutually orthogonal unit
vectors. Thus, they form a coordinate system that ”moves along” with the
curve γ. This coordinate system is known as the Frenet Frame.

Note that the curvature κ gives a measure of how much the curve γ di-
verges from a straight line at u.

The following can be verified by direct calculation:10

Result 2.4.4. The following set of equations is known as the Frenet For-
mulae:

~T ′(u) = κ ~N(u)
~N ′(u) = − κ~T (u) + τ ~B(u)
~B′(u) = − τ ~N(u)

where the primes denote derivatives with respect to u, and

τ(u) ≡ − ~N(u) · ~B′(u)

is called the torsion of γ at u.

The torsion τ gives a measure of how much the curve γ bends out of the
plane spanned by ~T and ~N .

2.5 Characteristics of Surfaces

Consider a surface M that can (locally) be perameterized by a smooth, differ-
entiable coordinate patch11 x(u, v). On it, we define the following quantities:

10These calculations can be found in [Opr04].
11It is assumed that the reader understands the notion of a coordinate patch. If however,

this is not the case, a definition of this concept can be found in [Car76].
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Definition 2.5.1. The unit normal vector of M is defined to be:

~U ≡ xu × xv
|xu × xv|

Definition 2.5.2. It will be convenient to define the following short-hand
notation:

l = xuu · ~U E = xu · xu
m = xuv · ~U F = xu · xv
n = xvv · ~U G = xv · xv

The metric is defined to be

g̃ ≡
[
E F
F G

]
(Note that the metric g̃ is not to be confused with the Minkowski metric

g. The main difference between the two is that whilst g is constant, g̃ is
dependent on the surface and changes with the surface accordingly).

Definition 2.5.3. The Second Fundamental Form is defined to be:

II ≡
[
xuu · ~U xuv · ~U
xuv · ~U xvv · ~U

]
The Second Fundamental form gives a measure of how the normal vec-

tor of M , namely ~U , changes as one goes along M in a particular direction.
Therefore, II tells us about the curvature of M in a particular direction.12

This curvature is called the normal curvature k(~u) in a particular direction
~u on M .13At a particular point P ∈M , there exist directions ~u1 and ~u2 such
that the normal curvature attains its maximum and minimum when consid-
ering the directions ~u1 and ~u2 respectively.14

One defines the following quantities:

12A more detailed discussion on II can be found in [Car76].
13A formal defintion of normal curvature can be found in [Car76].
14This is true as the normal curvature k(~u) is a continuous function and thus attains its

maximum and minimum on a closed interval. This is made clear in [Opr04].
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Definition 2.5.4. At a particular point P ∈M , the principal curvatures
k1 and k2 of M at P are defined to be:

k1 = k(~u1) = min
~u
k(~u)

k2 = k(~u2) = max
~u

k(~u)

It turns out that k1 and k2 are the eigenvalues of II.15

We define another kind of curvature:

Definition 2.5.5. The mean curvature H of M at a point P ∈ M is
defined to be:

H =
k1 + k2

2

Using the notation introduced in this section, it can be shown that the
following formula for H holds:16

H =
Gl + En− 2Fm

2(EG− F 2)
(4)

2.6 Maximal Surfaces

At this point, one can define a maximal surface:

Definition 2.6.1. A surface M in L3 is said to be maximal, if it has zero
mean curvature, i.e if:

H = 0

everywhere on M .

The following result proviedes a characteristic trait of maximal surfaces:

15This fact can be seen in [Opr04].
16The explicit calculations can be found in [Opr04].
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Result 2.6.2. A graphical spacelike surface M represented by a single smooth
coordinate patch x(u, v) = (u, v, f(u, v)) is maximal, if and only if the fol-
lowing equation is satisfied:

fuu(1− f 2
v ) + 2fufvfuv + fvv(1− f 2

u) = 0 (5)

Equation (5) is referred to as the Maximal Surface Equation.17

2.7 Isothermal Coordinates

One can obviously see that the features of a surface, such as its curvature,
do not depend on the parameterization of the surface. Thus, one usually
chooses to work with a parameterization, that is most suitable for the de-
sired calculation. Isothermal coordinates turn out to be a very convenient
parameterization to work with:

Definition 2.7.1. Let M be a surface parameterized by a coordinate patch
x(u, v). Then the parameterization is called isothermal (with isothermal
parameters u and v), if the following two properties are satisfied:

1 .) xu · xu = xv · xv ⇐⇒ E = G

2 .) xu · xv = 0 ⇐⇒ F = 0

Next, a result regarding the existence of isothermal coordinates on a max-
imal surface will be stated without proof:18

Result 2.7.2. Let M be a maximal smooth surface in L3. Then M can be
locally parameterized by isothermal coordinates.

17The more general Maximal Surface Equation for smooth spacelike surfaces in Ln can
be found in [Che76].

18A proof of the more general result, namely that isothermal coordinates exist locally
on every smooth Lorentzian surface is given in [Lar96].
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2.8 Complex Variables and Liouville’s Theorem

The proof of the Calabi-Bernstein Theorem (Theorem 6.1) at the end of
this project relies on Liouville’s Theorem, which reads as follows:

Theorem 2.8.1. Every entire, bounded, complex valued function is a con-
stant function.

Proof. 19 Let f(z) : C −→ C be an entire and bounded complex-valued
function. Since f is bounded, there exists an N ∈ R+ such that:

|f(z)| ≤ N for all z ∈ C

As f is an entire function it is analytic everywhere. In particular, f is
analytic in a region C and along its boundary ∂C, where C is defined to be
a circle of redius R centered at some arbitrary fixed z0 ∈ C. Thus, the
first derivative of f at z0 can be expressed by means of the Cauchy Integral
Formula for Derivatives20 as follows:

f ′(z0) =
1

2πi

∫
C

f(z)

(z − z0)2
dz

where f ′(z0) ≡ df
dz

∣∣
z=z0

.

Then certainly, the following holds:

0 ≤ |f ′(z0)| =
∣∣∣∣ 1

2πi

∫
C

f(z)

(z − z0)2
dz

∣∣∣∣
≤ 1

2π

∫
C

|f(z)|
|z − z0|2

dz

≤ 1

2π

∫
C

N

R2
dz

=
1

2π

N

R2

∫
C

dz

=
1

2π

N

R2
2πR

=
N

R
19This proof is based on the proof of Liouville’s Theorem found in [Bro04].
20An informal proof of this formula can be found in [Bro04].
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As f is an entire function, the above argument holds not only on and
inside the region C, but on the entire complex plane, in other words, on and
inside C as R −→∞. Therefore:

0 ≤ |f ′(z0)| ≤ N

R

lim
R→∞

0 ≤ lim
R→∞
|f ′(z0)| ≤ lim

R→∞

N

R
0 ≤ |f ′(z0)| ≤ 0

Hence:

|f ′(z0)| = 0

=⇒ f ′(z0) = 0

Since z0 was chosed arbitrarily, f ′(z) = 0 for all z ∈ C. Therefore, f(z) is a
constant function.

2.9 Gauss Map

The Gauss map is named after the German mathematician Carl Friedrich
Gauß. The Gauss map, usually denoted by G, is a mapping from a surface
M to the unit sphere S2, which is defined as follows:

G : M −→ S2 with G(P ) = ~U(P )

where P is a point on M and ~U(P ) is the unit normal vector of M at P .

So, the Gauss map maps a point P ∈ M to its unit normal vector ~U(P ).
Since a vector is independent of its position, it might as well be moved to the
origin of the coordinate system. Since ~U(P ) has unit length for all P ∈ M ,
it thus points to a point on the unit sphere S2. The Gauss map will prove
useful in the proof of the Calabi-Bernstein Theorem (Theorem 6.1).
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3 Surfaces with Maximum Area

In R3, consider a contour ∂C. Clearly, there are infinitely many surfaces M
that have ∂C as their boundary. But it is physically reasonable to say that
there exists one surface, say M∗, such that M∗ has the least area of all the
surfaces M with boundary ∂C.21

Let us define an area functional as follows:

Definition 3.1. Let ∂C be a contour in a 3-dimensional space. Denote the
set of all surfaces M bounded by ∂C by M(∂C). Then, one can define a
functional:

A : M(∂C) −→ R

such that A(M) = area of M . A is called the area functional.

Clearly, since M∗ has the least area of all M ∈M(∂C), it is thus a critical
point of A. Therefore, A′(M) = 0.22

In Minkowski space L3, we have already seen that there is a “negative
contribution” from the t-axis. Therefore, a surface area in L3 can always
be decreased by extending the surface into the t-direction. This means that
the concept of minimum area is not well defined in L3. There is however a
possibility of maximizing the area of a surface M bounded by a contour ∂C.
Thus in L3 a surface with maximum area will be a critical point of the area
functional A.

In this section, a result regarding the correspondence of surfaces with
maximum area and maximal surfaces will be illustrated.

Theorem 3.2. Every graphical surface in L3 that has maximum area is a
maximal surface.

21This is strictly speaking not true. In fact, there exist contours that bound several least
area surfaces. It turns out that only if the total curvature of the contour is less than 4π,
the least-area surface that it bounds is unique. This Theorem has been proven by Nitsche
(see [Nit73]). For the purpose of this project, it is assumed that ∂C has total curvature
less than 4π and hence M∗ is unique.

22The derivative notation is sloppy as it does not express what the derivative is taken
with respect to. This however will become clear in the proof of Theorem 3.2.
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Proof. This proof makes use of the calculus of variations.23 The general
strategy of a proof using the calculus of variations follows:

• We consider a certain quantity, say Q, subject to a set of boundary
conditions that extremize a certain functional, say φ.

• Next, one considers a variation of Q, namely Qε ≡ Q + εP where P
is an auxiliary function and ε � 1, such that Qε satisfies the same
boundary conditions as Q.

• Since Q is assumed to extremize f , it is certainly true that:

dφ(Qε)

dε

∣∣∣∣
ε=0

=
dφ(Q)

dε
= 0 (6)

• Now, equation (6) will be reformulated using algebraic manipulations
in order to infer information about the function Q.

Consider a graphical surface M with boundary ∂C that can be described
by a single patch of the form:

x(u, v) = (u, v, f(u, v)) (7)

where f(u, v) is a function of u and v.

The partial derivatives of x are:

xu = (1, 0, fu)

xv = (0, 1, fv)

xu × xv = (−fu,−fv, 1)

|xu × xv| =
√
f 2
u + f 2

v − 1

Let the patch x as described above maximize the area A of M . A can be
described by the following surface integral:

A(M) ≡ A =

∫∫
|xu × xv| du dv =

∫∫ √
f 2
u + f 2

v − 1 du dv

23A detailed chapter on the calculus of variations (or variational calculus) can be found
in [Arf05].
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where A(M) is the area functional as described in Definition 3.1.

Consider a variation of the patch x, namely xε ≡ (u, v, f(u, v)+εh(u, v)).
Here, h(u, v) is an auxiliary function and ε � 1. For xε to describe a sur-
face Mε which lies in the domain of the area functional A, this surface needs
to be bounded by ∂C. To ensure this condition, we set h(x, y) = 0 for all
x, y ∈ ∂C, as then xε reduces to x at ∂C which, by definition, describes a
surface bounded by ∂C.

The following calculations can be obtained:

(xε)u = (1, 0, fu + εhu)

(xε)v = (0, 1, fv + εhv)

(xε)u × (xε)v = (− (fu + εhu) ,− (fv + εhv) , 1)

| (xε)u × (xε)v | =
√

(fu + εhu)
2 + (fv + εhv)

2 − 1 =

=
√
f 2
u + f 2

v − 1 + 2ε (fuhu + fvhv) + ε2 (h2
u + h2

v)

The following short hand notation will be used:

A(Mε) ≡ A(ε) (8)

Then, the area functional of a surface Mε described by xε is:

A(ε) =

∫∫
| (xε)u × (xε)v | du dv

=

∫∫ √
f 2
u + f 2

v − 1 + 2ε (fuhu + fvhv) + ε2 (h2
u + h2

v) du dv

Clearly, at ε = 0, Mε = M and hence:

dA(ε)

dε

∣∣∣∣
ε=0

= 0

Therefore, we consider the following:

dA(ε)

dε
=

d

dε

{∫∫ √
f 2
u + f 2

v − 1 + 2ε (fuhu + fvhv) + ε2 (h2
u + h2

v) du dv

}
=

∫∫
∂

∂ε

{√
f 2
u + f 2

v − 1 + 2ε (fuhu + fvhv) + ε2 (h2
u + h2

v)

}
du dv

= 2

∫∫
fuhu + fvhv + ε (h2

u + h2
v)√

f 2
u + f 2

v − 1 + 2ε (fuhu + fvhv) + ε2 (h2
u + h2

v)
du dv (9)
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where the derivative could be brought into the integral by Leibniz’ Rule of
Differentiation under the Integral (see [Fla73]).
Equation (9) implies:

dA(ε)

dε

∣∣∣∣
ε=0

= 2

∫∫
fuhu + fvhv√

(fu)2 + (fv)2 − 1
du dv = 0

Hence: ∫∫
fuhu + fvhv√

(fu)2 + (fv)2 − 1
du dv = 0 (10)

The next objective is to use Green’s Theorem (Theorem 2.3.2).This can
be accomplished as follows: Let k =

√
(fu)2 + (fv)2 − 1 and define P and Q

as follows:

P ≡ 1

k
fuh Q ≡ 1

k
fvh

Differentiating P and Q with respect tu u and v respectively, we obtain:

∂P

∂u
=

∂

∂u

(
fuh√

(fu)2 + (fv)2 − 1

)
=

=
fuuh+ fuhu√
f 2
u + f 2

v − 1
− fuh(fufuu + fvfuv)

3
√
f 2
u + f 2

v − 1
=

=
fuhu
k

+
h(k2fuu − f 2

ufuu − fufvfuv)
k3

Similarly, for ∂Q
∂v

, we obtain:

∂Q

∂v
=
fvhv
k

+
h(k2fvv − f 2

v fvv − fufvfuv)
k3

Therefore, we obtain that:∫∫ (
∂P

∂u
+
∂Q

∂v

)
du dv =

=

∫∫
fuhu + fvhv

k
du dv+

+

∫∫
h

k3

(
k2fuu − f 2

ufuu − fufvfuv + k2fvv − f 2
v fvv − fufvfuv

)
du dv =

=

∫∫
fuhu + fvhv

k
du dv+

+

∫∫
h

k3

(
fuu(k

2 − f 2
u)− 2fufvfuv + fvv(k

2 − f 2
v )
)

du dv (11)
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The first integral of equation (11) is zero, by equation (10). By Green’s
Theorem, the following can be obtained:∫∫

fuhu + fvhv
k

du dv +

∫∫
h

k3

(
fuu(k

2 − f 2
u)− 2fufvfuv + fvv(k

2 − f 2
v )
)

du dv

=

∫
∂C

fuh√
f 2
u + f 2

v − 1
dv −

∫
∂C

fvh√
f 2
u + f 2

v − 1
du = 0 (12)

The above integral, equation (12), has to be equal to zero, as we are
integrating along the ∂C and the auxiliary function h was defined to be
zero at the boundary. Combining this result with equation (10) yield the
following:∫∫

h

k3

(
fuu(k

2 − f 2
u)− 2fufvfuv + fvv(k

2 − f 2
v )
)

du dv = 0 (13)

Equation (13) must hold for all functions h(u, v). Therefore, the inte-
grand of euqation (13) must be identically equal to zero. Thus, the following
equations can be obtained:

0 =
h

k3

(
fuu(k

2 − f 2
u)− 2fufvfuv + fvv(k

2 − f 2
v )
)

= fuu(k
2 − f 2

u)− 2fufvfuv + fvv(k
2 − f 2

v )

= fuu(f
2
u + f 2

v − 1− f 2
u)− 2fufvfuv + fvv(f

2
u + f 2

v − 1− f 2
v )

= fuu(f
2
v − 1)− 2fufvfuv + fvv(f

2
u − 1)

= fuu(1− f 2
v ) + 2fufvfuv + fvv(1− f 2

u) (14)

But (14) is just the Maximal Surface Equation (see Result 2.6.2, equa-
tion (5)). Therefore, a graphical surface of maximum area satisfies the Max-
imal Surface Equation and is thus a maximal surface.
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4 Surfaces of Rotation

It is a well-known fact that a surface of rotation is generated by rotating a
curve about an axis of rotation. In this section, a characteristic result about
maximal spacelike surfaces of rotation about the t-axis will be proven:

Theorem 4.1. Every maximal spacelike surface of rotation (about the t-axis)
M in L3 is congruent to (a part of) the following:

1. (x,y) - plane

2. catenoid of the first kind

Proof. 24

1. Obviously, the (x,y)-plane is a surface of rotation, as it easily can be
obtained by for example rotating the line l(s), where s is a parameter,
defined by:

l(s) = (0, 0, 0) + s(1, 0, 0)

about the t-axis.

A plane has zero normal curvature everywhere as the unit normal vector
~U clearly does not change when traversing along a particular direction,
regardless of the direction. For the principal curvatures, this means
that k1 = 0 = k2. Therefore, the mean curvature of the (x,y)-plane is:

H =
k1 + k2

2
=

0 + 0

2
= 0

Therefore, by definition, the (x,y)-plane is a maximal surface of rota-
tion.

In the following, it is assumed that M is not a plane.

24This proof is based on the proof of the corresponding Theorem for general maximal
surfaces of rotation in L3 in [Kob83].
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2. Consider a rotation of a curve ρ(t) about the t-axis. Then M can be
represented by a single smooth coordinate patch x(t, θ) as follows:

M = x(t, θ) = (ρ(t) cos θ, ρ(t) sin θ, t) (15)

(Clearly, surfaces of rotation preserve cylindrical symmetry, which is
why cylindrical coordinates were chosen in the above). Note that
dρ
dt
> 1 is required for M to be spacelike.25

The partial derivatives of x with respect to θ and t become:

xt = (ρ̇ cos θ, ρ̇ sin θ, 1)

xθ = (−ρ sin θ, ρ cos θ, 0)

xtt = (ρ̈ cos θ, ρ̈ sin θ, 0)

xtθ = (−ρ̇ sin θ, ρ̇ cos θ, 0) = xθt

xθθ = (−ρ cos θ,−ρ sin θ, 0)

where ρ̇ ≡ dρ
dt

Now, the following quantities can be calculated:

E = xt · xt = ρ̇2 cos2 θ + ρ̇2 sin2 θ − 1 = ρ̇2 − 1

F = xt · xθ = − ρρ̇ cos θ sin θ + ρρ̇ cos θ sin θ = 0

G = xθ · xθ = ρ2 sin2 θ + ρ2 cos2 θ = ρ2

By definition, the metric becomes:

g̃ =

[
E F
F G

]
=

[
ρ̇2 − 1 0

0 ρ2

]
Next, the normal vector ~N and the unit normal vector ~U will be cal-
culated:

~N = xt × xθ = (−ρ cos θ,−ρ sin θ, ρ̇ρ)

| ~N | =

√
ρ2 cos2 θ + ρ2 sin2 θ − ρ2ρ̇2 = ρ

√
1− ρ̇2

~U =
~N

| ~N |
=

(− cos θ,− sin θ, ρ̇)√
1− ρ̇2

= α(− cos θ,− sin θ, ρ̇)

25Reader are asked to convince themselves of this fact as it will not be proven here.
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where α ≡ 1√
1−ρ̇2

.

Now, we are in a position to calculate the Second Fundamental Form
II:

II =

[
xtt · ~U xtθ · ~U
xtθ · ~U xθθ · ~U

]
= α

[
−ρ̈ 0
0 ρ

]
In the above, it is important to note that II is with respect to the
metric g̃. Therefore, one needs to trace II with respect to g̃ rather
than with respect to g:

g̃−1II = α

[ 1
ρ̇2−1

0

0 1
ρ2

] [
−ρ̈ 0
0 ρ

]
= α

[
−ρ̈
ρ̇2−1

0

0 1
ρ

]
= α

[
k1 0
0 k2

]
≡ II∗

Since we desire M to be maximal, the mean curvature H has to be
equal to zero, by the definition of maximal surfaces. This leads to the
following differential equation:

H =
1

2
tr(II∗) =

α

2

(
−ρ̈

ρ̇2 − 1
+

1

ρ

)
= 0

=⇒ −ρ̈ρ− 1 + ρ̇2 = 0

=⇒ ρ̈ρ− ρ̇2 = −1 (16)

where we keep in mind that ρ̇ > 1. Hence, also ρ̇2 > 1. It follows that
ρ̇2 − 1 > 0. This is why α could be cancelled out in the above.

Equation (16) is a second order, non-homogeneous differential equation.
Its general solution ρG is of the following form:26

ρG = ρH + ρP

where ρH denotes the general solution of the homogeneous version of
equation (16) and ρP represents a particular solution to the nonhomo-
geneous equation (16)

First, lets find ρH . The homogeneous version of equation (16) reads:

ρ̈ρ− ρ̇2 = 0 (17)

26This can be seen in more detail in [Pol06].
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Note that ρ = 0 for all t in the domain is a solution to the above
equation (the surface corresponding to this solution is in fact the (x, y)-
plane). In the following, it will be assumed that there exists a t in the
domain for which ρ 6= 0 in order to find non-trivial solutions to equation
(17).

The following change of variables is introduced: Let z(ρ) = ρ̇
ρ
. Then,

we obtain:

ρ̇ = zρ

ρ̈ =
dz

dρ
ρ̇ρ+ zρ̇

= ρ̇ [z′ρ+ z]

where z′ ≡ dz
dρ

Substituting the above into equation (17), the following can be ob-
tained:

ρ̈ρ− ρ̇2 = 0 =⇒ ρ̈− ρ̇

ρ
ρ̇ = 0

⇐⇒ ρ̇ [z′ρ+ z]− zρ̇ = 0

=⇒ z′ρ̇ρ = 0

Since ρ 6= 0 by assumption, it follows that:

z′ρ̇ = 0

⇐⇒ d

dt
(z(ρ(t))) = 0

⇐⇒ z = C1 (where C1 is a constant in R)

⇐⇒ ρ̇

ρ
= C1

⇐⇒ ρ̇ = C1ρ (18)

Equation (18) is a seperable ordinary differential equation and can be
solved as follows:

ρ̇ = C1ρ
dρ

dt
= C1ρ

1

ρ

dρ

dt
= C1∫

1

ρ
dρ =

∫ t

0

C1 ds (by the Chain Rule)

ln ρ = C1t+ C2 (where C2 is a constant in R)

=⇒ ρ(t) = C3e
C1t (where C3 ≡ eC2 is a constant in R)
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Therefore,
ρH(t) = C3e

C1t (19)

where C1 and C3 are arbitrary constants in R.27

Next, we focus on finding ρP . This requires us to find a particular
solution to equation (16).

Using the Method of Undetermined Coefficients28, a natural Ansatz
would be a trigonometric function. Recalling that ρ̇2−1 > 0 is required,
we consider the following Ansatz : Let ρ(t) = sinh(t). We obtain:

ρ = sinh(t)

ρ̇ = cosh(t)

ρ̇2 = cosh2(t)

ρ̈ = − sinh(t)

Substituting the above calculations into equation (16) then gives:

− 1 = ρ̈ρ− ρ̇2

= − sinh(t) · sinh(t)− cosh2(t)

= −
(
sinh2(t) + cosh2(t)

)
= −(1) X

Therefore, ρP = sinh(t) is a particular solution of equation (16).
But now, one has to note that:

sinh(t) =
et − e−t

2

Therefore, ρP is not linearly independent of ρH , which was determined
by equation (19). But since equation (16) is a second order ordinary
differential equation, its solutions solemnly needs to be a linear combi-
nation of two linearly independent solutions. One can easily show that
et and e−t are two linearly independent functions of t29 and as we have

27Note that additional information about the problem is required in order to obtain
values for C1 and C3.

28This method is explained in detail in [Pol06].
29This will not be proven in this project, but readers are asked to convince themselves

of this fact.
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Figure 3: In the above one can see a catenoid of the first kind, which is
described by equation (20). It is clear that it is a spacelike surface, as it is
positioned outside the lightcone. For this particular catenoied, the parameter
values A = 1 and B = 1.3 were used. (Graphic generated in MATLAB).

seen above, their linear combination satisfies equation (16).
In order to keep things general, one still has to include two constants
of integration which can be incorporated into ρP as follows: Let:

ρP =
1

A
sinh(At+B)

where A and B are arbitrary constants in R.30

Therefore, ρP is a linear combination of two linearly independent func-
tions with two integration constants. This means that ρP = ρG. Thus,
the general solution of equation (16) is:

ρH =
1

A
sinh(At+B)

Substituting this solution back into the patch x(t, θ) (equation (15)),
one is left with the following surface:

M = x(t, θ) = (
1

A
sinh(At+B) cos θ,

1

A
sinh(At+B) sin θ, t) (20)

30The form of these constants was chosen following the example of [Kob83].
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Equation (20) describes a catenoid of the first kind (which can be seen
in Figure 3), as required.
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5 Ruled Surfaces

Definition 5.1. A ruled surface31 M is a surface that can be represented by
a coordinate patch of the following form:

x(u, v) = γ(u) + vν(u) (21)

where γ(u) is a curve, ν(u) is a vector and u and v are parameters contained
in the intervals Iu and Iv respectively.

A ruled surface can be imagined as follows: One considers a curve γ(u),
which is also called the directrix, and a vector ν(u). At each point on the
curve γ(u), i.e. for each u ∈ Iu, let L(u, v) be the line passing through γ(u)
with direction ν(u) and length v|ν(u)|. These lines are also referred to as
rulings. Then the suface M is the union of all the lines L(u, v):

M =
⋃
u∈Iu

L(u, v) (22)

From now on, the “dot-notation” for derivatives with respect to u will be
used throughout this section, for example, let γ̇(u) ≡ dγ(u)

du
.

The next result shows useful ways of parameterizing ruled surfaces:

Result 5.2. Every ruled surface M can be parameterized as follows:

x(u, v) = γ(u) + vν(u)

such that:

1. ν(u) · ν(u) = 1

2. γ̇(u) · γ̇(u) = 1

3. γ̇(u) · ν(u) = 0

Proof. 32

31A detailed discussion on ruled surfaces can be found in [Car76], which is where the
following information has been sourced from.

32This proof is based on [Car76].
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1. This fact should be clear, so only a motivation (not a proof) will be
provided here: from equation (22), the ruled surface is a union of lines
L(u, v) as described above. These lines have length v|ν(u)|. If one now
parameterizes the surface by means of a vector ν̃(u) instead of ν(u),
where ν̃(u) · ν̃(u) = |ν̃(u)| = 1, then one can define another parameter,
say ṽ such that ṽ = v|ν(u)|. Then, the ruled surface can be equally
well described by the following two patches:

M = x(u, v) = γ(u) + vν(u) = y(u, v) ≡ γ(u) + ṽν̃(u)

where |ν̃(u)| = 1, as required.

2. This fact follows from Result 2.4.2.

3. Let M be a ruled surface described by a coordinate patch as in equation
(21). Let ζ(u) be a curve defined as follows:

ζ(u) = γ(u) + r(u)ν(u) (23)

where r(u) is a real-valued function and γ(u) and ν(u) are parameter-
ized such that ν(u) · ν(u) = 1 and γ̇(u) · γ̇(u) = 1 (which is possible
due to 1. and 2.). Let ζ(u) be such that ζ̇(u) · ν(u) = 0.
The unitlength of ν(u) implies the following:

Proposition 5.3. Let ν(u) be a curve for a parameter u ∈ Iu with
ν(u) · ν(u) = 1. Then ν(u) · ν̇(u) = 0

Proof. 33 This follows from the product rule:
Since ν(u) · ν(u) = 1, we have that:

1 = ν(u) · ν(u)

0 =
d

du
[ν(u) · ν(u)]

= ν(u) · ν̇(u) + ν̇(u) · ν(u)

= 2ν(u) · ν̇(u)

Therefore, ν(u) · ν̇(u) = 0

33The proof of this Proposition is based on [Opr04].
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By differentiating equation (23), the following is obtained:

ζ̇(u) = γ̇(u) + ṙ(u)ν(u) + r(u)ν̇(u)

Forming the inner product of ζ̇(u) with ν(u) yields:

0 = ζ̇(u) · ν(u) (by definition of ζ(u))

= γ̇(u) · ν(u) + ṙ(u) [ν(u) · ν(u)] + r(u) [ν̇(u) · ν(u)]

= γ̇(u) · ν(u) + ṙ(u) [ν(u) · ν(u)] (by Proposition 5.3)

The above equation can be solved for r(u) to obtain the following result:

r(u) = −
∫
γ̇(u) · ν(u)

ν(u) · ν(u)
du (24)

Next, define a parameter w as follows: Let w = v − r(u), where r(u)
is defined as in equation (24). Furthermore, define a coordinate patch
y(u,w) by:

y(u,w) ≡ ζ(u) + wν(u)

Substituting in for ζ(u) and w yields:

y(u,w) = ζ(u) + wν(u)

= [γ(u) + r(u)ν(u)] + [v − r(u)] ν(u)

= γ(u) + vν(u) + [r(u)− r(u)] ν(u)

= γ(u) + vν(u)

= x(u, v)

Thus, the surface M can also be represented by a coordinate patch
y(u,w) ≡ ζ(u) + wν(u) with ζ̇(u) · ν(u) = 0, as required.

Theorem 5.4. Every maximal ruled surface in L3 is congruent to (a part
of) one of the following

1. (x,y)-plane

2. heliocoid of the second kind

3. conjugate of Enneper’s surface of the second kind
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Proof. 34 By definition, a spacelike ruled surface M can be represented by
the following coordinate patch:

x(u, v) = γ(u) + vν(u)

where γ(u) is the directrix and the ν(u) are the rulings.35

From Result 5.2, a ruled surface can always be parameterized such that
the following is true:

ν(u) · ν(u) = 1 = γ̇(u) · γ̇(u) (25)

and

γ̇(u) · ν(u) = 0 (26)

From now on, the explicit dependence on u will be surpressed and γ shall
denote γ(u) (equivalently for γ̇ and ν).

It follows from equation (26) that ν is the normal vector field to γ. Thus,
for a particular u, ν is the unit normal vector to the curve γ at that
u. This means that γ and ν are mutually orthogonal to each other. So, only
γ needs to be found to determine M (as ν will automatically be established
due to orthogonality to γ).

Next, let us calculate l, m, n and E, F , G:

xu = γ̇ + vν̇

xv = ν

xuu = γ̈ + vν̈

xuv = ν̇

xvv = 0

Thus, we have that:

~U =
γ̇ × ν + vν̇ × ν
|γ̇ × ν + vν̇ × ν|

34This proof is based, in part, on the proof in [Kob83] and on the proof of the corre-
sponding result in R3 (Catalan’s Theorem) as found in [Opr04].

35For this terminology, refer to [Opr04].
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And:

E = 1 + 2vγ̇ · ν̇ + v2ν̇2

F = 0

G = 1

l =
v2{ν̈ · (ν̇ × ν)}+ v{ν̈ · (γ̇ × ν) + γ̈ · (ν̇ × ν)}+ γ̈ · (γ̇ × ν)

|γ̇ × ν + vν̇ × ν|
m = undetermined here

n = 0

Using the above calculations, the formula for the mean curvature H,
equation (4), reduces to the following:

H =
l

2E

As M is taken to be a maximal surface, it follows that:

H =
l

2E
= 0 =⇒ l = 0

Therefore, we have that:

v2{ν̈ · (ν̇ × ν)}+ v{ν̈ · (γ̇ × ν) + γ̈ · (ν̇ × ν)}+ γ̈ · (γ̇ × ν) = 0 (27)

Equation (27) is a polynomial of degree 2 in v. As a consequence of the
Fundamental Theorem of Algebra36, it follows that equation (27) equals zero
if and only if each of the coefficients equals zero. Therefore, one is left with
the following set ot equations:

γ̈ · (γ̇ × ν) = 0 (28a)

ν̈ · (γ̇ × ν) + γ̈ · (ν̇ × ν) = 0 (28b)

ν̈ · (ν̇ × ν) = 0 (28c)

Let’s recall the Frenet Formulae (Result 2.4.4):

γ̈ = κν

ν̇ = − κγ̇ + τβ

β̇ = − τν

where β is the binormal vector of γ for a partucular u. Again the explicit
dependence of β, the curvature κ and the torsion τ on u is understood.

Now, One can arrive to the following conclutions:

36The Fundamental Theorem of Algebra and an outline of its Proof are given in [Art11].
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• Equation (28a) implies that γ̈ lies in the plane spanned by γ̇ and ν
(this plane will be denoted by Span{γ̇, ν}). From the Frenet Formulae,
it follows that γ̈ is parallel to ν and by assumption, ν is perpendicular
to γ̇, therefore, γ̈ is perpendicular to γ̇.

• Now, consider equation (28b). It is clear that γ̈ is parallel to ν whilst
clearly ν × ν̇ is perpendicular to ν Therefore, γ̈ · (ν × ν̇) = 0. Hence
equation (28b) reduces to:

ν̈ · (γ̇ × ν) = 0

This implies that ν̈ ∈ Span{γ̇, ν} .

• From equation (28c), it is clear that ν̈ ∈ 〈ν̇, ν〉

As ν̈ ∈ Span{γ̇, ν} and ν̈ ∈ Span{ν̇, ν}, it follows that ν̈ ∈ Span{γ̇, ν} ∩
Span{ν̇, ν}. From this, one has to consider the following two cases:

Case 1: ν̈ is not parallel to ν for all u in the domain
Since ν̈ ∈ Span{γ̇, ν} ∩ Span{ν̇, ν} but ν̈ is not parallel to ν for all u in the
domain, it follows that γ̇ = 1

a
ν̇ for some a ∈ R. Hence, ν̈ ∈ Span{γ̇ + bν̇, ν}

for some b ∈ R. And for ~U , one obtains:

~U =
(γ̇ × ν)(1 + va)

|γ̇ × ν||1 + va|
= ±γ̇ × ν

where |γ̇ × ν| = 1 as |ν| = 1 and |γ̇| = 1 and 1+va
|1+va| = ±1.

It follows that ~U is a unit normal vector to the plane Span{γ̇ + bν̇, ν}. Dif-
ferentiating the above yields:

d~U

du
= ± [γ̈ × ν + γ̇ × ν̇]

= ±
[
κ(ν × ν) +

1

a
(ν̇ × ν̇)

]
= ±

[
κ(~0) +

1

a
(~0)

]
= ~0

Since d~U
du

= ~0, it follows that ~U is a constant vector over the entire surface.
Therefore, M is congruent to (a part of) a plane.

34



Case 2: ν̈ is parallel to ν for all u in the domain
In this case, ν̈ and ν are linearly dependent and one can write ν̈ = cν for
some constant c. This and the fact that, by assumption, γ̇ · ν = 0, implies
that:

γ̇ · ν̈ = 0 (29)

Next, the curvature of the curve γ, κγ, and its torsion, τγ, are considered:

• For the curvature κγ, the following can be noted:

κγ = κγν · ν (as ν · ν = 1 by assumption)

= γ̈ · ν (by the Frenet Formulae)

= −γ̇ · ν̇

where the last equality holds due to the following:

0 = γ̇ · ν

=⇒ 0 =
d

du
(γ̇ · ν)

= γ̈ · ν + γ̇ · ν̇
=⇒ γ̈ · ν = −γ̇ · ν̇

Differentiating κγ with respect to u yields the following:

dκγ
du

=
d

du
(−γ̇ · ν̇)

= −γ̈ · ν̇ − γ̇ · ν̈
= −κγ(ν · ν̇)− 0

= 0

where γ̇ · ν̈ = 0 by equation (29) and ν · ν̇ = 0 by Proposition 5.3.

The above thus implies that κγ is a constant.

• Using the Frenet Formulae, the following expression for the torsion τγ
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is obtained:

τγ = −ν · β̇
Also:

β = γ̇ × ν
=⇒ β̇ = γ̈ × ν + γ̇ × ν̇

Therefore:

τγ = −(γ̈ × ν) · ν + (γ̇ × ν̇) · ν
= −0− (γ̇ × ν̇) · ν
= −(γ̇ × ν) · ν̇ (30)

where the last equality holds due to the general rule that, for every
vectors a, b and c ∈ L3, we have that:

(a× b) · c = (a× c) · b

which can be verified by direct calculation.

Differentiating equation (30) yields the following:

dτγ
du

= − (γ̈ × ν) · ν̇︸ ︷︷ ︸
E1

− (γ̇ × ν̇) · ν̇︸ ︷︷ ︸
E2

− (γ̇ × ν) · ν̈︸ ︷︷ ︸
E3

(31)

Now, each component of equation (31) is considered seperately:

E1: (γ̈ × ν) · ν̇ = (κγν × ν) · ν̇
= (κγ~0) · ν̇
= ~0

E2: (γ̇ × ν̇) · ν̇ = ~0 (as clearly (γ̇ × ν̇)⊥ν̇)

E3: (γ̇ × ν) · ν̈ = ~0 (as ν̈ ∈ Span{γ̇, ν} (see page 34),

hence (γ̇ × ν)⊥ν̈.)

This means that dτγ
du

= 0, therefore τγ is constant.

Now, the following cases have to be considered:37

37As can be seen in [Kob83].
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Case 1: |τγ| = |κγ| = 0
Clearly, a ruled surface whose directrix fulfills this criteria is a plane (which
is an option that has been covered earlier).

Case 2: |τγ| = |κγ| 6= 0
This case yields a special kind of heliocoid, namely the conjugate of Ennepers
surface of the second kind.

Case 3: |τγ| > |κγ| > 0
Here, M is a heliocoid of the second kind.

Case 4: 0 < |τγ| < |κγ|
This surface is not spacelike (in fact it is light-like) and thus will not be
considered here.
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6 Calabi-Bernstein Theorem in L3

In 1914, Bernstein discovered that the only entire solution to the minimal
surface equation in Rn for n = 3 is a plane. Later on, it was shown that this
result holds for every n 5 7.
In 1968, Calabi found that the maximal surface equation has a Bernstein-type
property for Ln for n 5 4 (see [Cal70]). Therefore, the Bernstein-Theorem in
Minkowski space is now commonly refered to as the Calabi-Bernstein Theo-
rem. In 1976, it was shown by Cheng and Yau that the Bernstein property
holds in Ln for all n (see [Che76]), which is quite surprising as there are
non-trivial solutions to the corresponding problem in Rn for n > 7.38

In this project, a prove of the Calabi Bernsetein Theorem in L3 for graph-
ical maximal surfaces will be proved.

Theorem 6.1. Let M be an entire graphical spacelike surface in L3 such
that M is maximal. Then M is a plane.

Proof. 39 Let M be a graphical surface. Then, by definition, M can be
represented by one coordinate patch x as follows:

M = x(x, y) = (x, y, f(x, y))

for some functionf whose graph is M .

From Result 2.7.1 we know that every maximal surface M can be locally
represented by isothermal coordinates. Since we are considering a graphi-
cal surface, the isothermal coordinates from Result 2.7.1 can be extended
globally over the entire surface such that M is defined by a single isothermal
patch40x(u, v), where u and v are the isothermal parameters. Then the map
T defined by:

T (x, y) ≡ (u, v)

38Cf. [Che76].
39This Proof is based on an outline of the Proof of the corresponding result for minimal

surfaces in R3 in [Opr04].
40This is true as the proof in [Lar96] relies on the fact that a smooth (Lorentzian)

surface can locally approximated by a graph. Since M is a graphical surface, this fact
holds globally for M .
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Figure 4: This diagram depicts how a point P on the unit sphere S2 gets
mapped to a poin S(P ) on the complec plane C by the Stereographic
Projection map S : S2 {N} −→ C. (Graphic generated in MATLAB).

which exists by Result 2.7.1, has a smooth inverse T−1 : (u, v) −
domain −→ (x, y)−plane, with (u, v) 7−→ (x, y), which is defined everywhere
(by the Inverse Function Theorem, Theorem 2.3.1). Hence, T is a diffeo-
morphism41 between the (u, v) − domain and the (x, y) − plane. Thus, one
can think of the (u, v)−domain as a plane. Let us identify the (u, v)−domain
with the complex plane, i.e. let (u, v) − domain = C. Therefore, one can
consider a map F : C −→M , (u, v) 7→ (u, v, f(u, v)).

We have that M is a graphical surface and, by definition of a graph, f is
well-defined. Due to that, and since M is spacelike, all the normal vectors ~U
are mapped to the upper hemisphere of the sphere S2 by the Gauss map G
(see section 2.9). Equivalently, G maps all −~U into the lower hemisphere of
S2.

Now, consider the stereographic projection S : S2 {N} −→ C, where N

is the northpole of S2. Since, as was stated above, G(−~U) lies in the lower

hemisphere of S2, we have that G(−~U) 6= N for all −~U of M . Therefore, the

composite S ◦G is defined for its entire domain D ≡ {−~U of M}. Also note
that S ◦G is bounded on its domain D, as N��∈D. In fact, the range of S ◦G
is the unit disc S1 ≡ {z ∈ C : |z| 5 1}, as can be seen Figure 4.

Consider the composite function H ≡ S ◦ G ◦ F . Clearly, H : C −→ C.
Also, since S is bounded, so isH. Furthermore, since each of the functions F ,
G and S are entire, so is their composite H. Therefore, H is a bounded and

41The definition of a diffeomorphism can be found in [Opr04].
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entire complex function. It follows by Liouville’s Theorem (Theorem 2.8.1)
that H is a constant function. Clearly, F and S are not in general constant
functions. So, G has to be constant. Then, the following equivalence chain
holds:

G is constant⇐⇒ ~U = c , for some real constant c

⇐⇒ ∇f is a constant vector

⇐⇒ f is linear

Hence, since f is linear, M is a plane, as required.
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7 Conclusion

In this project, general concepts of differential geometry leading up to the
definition of a maximal surface in Minkowski 3-space L3 were introduced.
Then, the Maximal Surface Equation (equation (5)) was provided.

After this, the following interesting results about maximal surfaces were
proven:

• Firslty, it was shown that a surface in L3 bounded by a closed contour
and maximizing the corresponding area functional is necessarily always
maximal.

• It was proven that a maximal spacelike surface of rotation is always
congruent to either the (x, y)-plane or a catenoid.

• Furthermore, it was shown that a maximal spacelike ruled surface is
congruent to either the (x, y)-plane, a heliocoid of the second kind or
the conjugate of Ennepper’s surface of the second kind.

• Lastly, a Bernstein-type result, namely the Calabi-Bernstein Theorem
in L3 was proven. It says that the only entire graphical spacelike surface
in L3 that satisfies the Maximal Surface Equation is a plane.
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