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Abstract
An End-to-End Gluing Construction for Surfaces of Constant Mean Curvature
by Jesse Ratzkin

Chair of Supervisory Committee:

Professor Daniel Pollack
Mathematics

In this dissertation we present a method for constructing new surfaces of constant mean
curvature in Euclidean space by gluing known surfaces of constant mean curvature together
end-to-end, provided the summands satisfy some technical conditions. We also show that
there exist surfaces of constant mean curvature which satisfy the conditions for gluing and
use this construction to explore the topology of the moduli space of surfaces of constant

mean curvature.
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Chapter 1

INTRODUCTION

The mean curvature of surfaces embedded in R3 has been studied since the late 1700’s
(see, for example [Lag60]). Embeddings with mean curvature 1 (referred to as CMC surfaces
below) are particularly interesting, as they are critical points for the functional Area -
Volume. Current research regarding CMC surfaces centers on the following two questions:
how can one construct examples of these surfaces, and how well can one describe the set of
such surfaces with fixed topology? At the heart of both these questions lies the attempt to
understand solutions to the mean curvature equation, which is a nonlinear partial differential
equation, on a fixed surface. If one writes the surface as the graph of a function u (which

one can always do locally), then the mean curvature equation becomes

L (Vi) 1 L)
2 W\ Ve
which is a well-studied quasilinear elliptic PDE in divergence form.

Below we will study properly embedded, noncompact CMC surfaces of finite topological
type. The goal of this dissertation is to describe a method to construct many new examples
of such CMC surfaces.

The first example of a noncompact, complete, embedded CMC surface is the right cir-
cular cylinder of radius % One can also consider a string of mutually tangent unit spheres
such that the points of contact between consecutive spheres all lie on the same line, which
collectively form a singular surface. In 1841 C. Delaunay [Del41] classified all the rota-
tionally symmetric CMC surfaces, including the two examples above. These surfaces are
periodic and determined up to rigid motion by their necksize €, which is the minimum radius
of a cross-section perpendicular to the axis of symmetry. A necksize of % corresponds to a

cylinder and as ¢ — 0 the surfaces tend to the string of unit spheres mentioned above.



Kapouleas constructed the next examples of noncompact, complete, embedded, CMC
surfaces in [Kap90] via a gluing construction. Since then, several other new examples of
complete, noncompact, embedded CMC surfaces have appeared, including the gluing con-
structions of Mazzeo and Pacard [MPO01] and Mazzeo, Pacard, and Pollack [MPP]. Each
of these gluing constructions uses tools from modern analysis, particularly partial differ-
ential equations. Kapouleas uses singular perturbation theory while Mazzeo, Pacard, and
Pollack solve boundary value problems for equation (1.1) and match Cauchy data. In each
construction one must carefully account for the behavior of solutions to equation (1.1) on
noncompact domains.

The main result of this dissertation is the construction of new CMC embeddings by
gluing two CMC embeddings together end-to-end in a sense described below. We start
with two noncompact, proper embeddings X; : ¥; — R? and X5 : ¥y — R3 where ¥,
(respectively Y5) is topologically a closed surface of genus ¢g; with k7 punctures (respectively
of genus go with k9 punctures). The properness condition forces dist(X;(p), (0,0,0)) —
oo as p approaches any of the punctures in ¥;. By a result of Korevaar, Kusner, and
Solomon [KKS89], each end E; of X; or X, (image of a small neighborhood of a puncture)
is asymptotic to a Delaunay embedding D;. Pick two ends Ey C Xy and Es C Xy such
that the F; and FE, are asymptotic to congruent Delaunay surfaces. Next align X; and
X5 so that Fy and F, are asymptotic to opposite ends of the same Delaunay surface D,
so in particular F; and FE, are graphs over opposite ends of the same cylinder. One can
then patch X; and X, together using a cut-off function along this cylinder to obtain an
embedding X : ¥ — R3?. Topologically, 3 is a closed surface of genus ¢ = g1 + ¢g» with
k = ki 4 ky — 2 punctures. The mean curvature of of X is 1 away from the gluing region
and is globally close to 1, and so X is an approximate solution to equation (1.1), which
we will describe more explicitly in Section 3. We have two parameters in this construction:
R, which we can think of as the distance along the ends E; and Es at which we glue, and
¢, which specifies a rotation of Xs about the axis of D. The translation parameter R is
discrete, as we can only translate by periods of the Delaunay surface D. To indicate the
dependence on these parameters we will denote the embedding as X R,¢- However, much

of the analysis is independent of one (or both) of these parameters, and so we will often



suppress this dependence.

The goal now is to perturb X R,¢ using normal perturbations and geometric deformations
to obtain an embedding Xz 4 : X — R3 which has mean curvature 1. This is equivalent
to solving a nonlinear partial differential equation on 3 in the following way. Given an
exponentially decaying function v and a geometric deformation parameter u we obtain
from XR,d; another embedding XR,d;(U, v) by applying the geometric deformation associated
to u to the normal perturbation of XR,(p by v. We parameterize this space of geometric
deformations by translations, rotations, and variations of the necksize parameters and use
this parameterization to obtain a norm on the space of geometric deformations. We denote

the mean curvature of this new embedding as H(u,v). The equation we wish to solve is
1= H(u,v) = H(0,0) + Ly, (u+0) + Oy, (u,0).

Here we have expanded the mean curvature H(u,v) in a Taylor series about (0,0). Lg, s
is the linearized mean curvature operator and Qx . . contains all the quadratic and higher

order terms. If we write H(0,0) = 1 — ¢ then the above equation becomes

Lgp,(utv)=9¢—0Qx, (u,0). (1.2)

The linearized equation is
[,;(R@(u—i—v) = 1. (1.3)
In Chapter 4 we show that if X; and X5 satisfy certain conditions one can always find a

tempered solution to equation (1.3). The conditions can be summarized as follows:

e we want both X; and X, to be nondegenerate (their linearized mean curvature oper-

ators should have no exponentially decaying solutions) and

e we want X; to admit a deformation through CMC surfaces which changes the asymp-

totic necksize of E; to first order.

We also show that the Green’s operator we construct is uniformly (in R) bounded in an
appropriate norm. In Section 5 we solve equation (1.2) using a contraction mapping. This

yields the following theorem.



Theorem 1. Let X; and Xo be noncompact, proper, CMC embeddings with finite topology
which are nondegenerate. Suppose one can chose ends E1 C Xy and Ey C X9 which are
asymptotic to congruent Delaunay surfaces and suppose further that X1 admits a deforma-
tion through CMC surfaces which changes the asymptotic necksize of Ey to first order. Let
XR’¢ be the approximate solution of Section 3. Then there exists Ry > 0 and n > 0 such
that for R > Ry one can find a geometric deformation parameter u with \u| < n and an
exponentially decaying function v such that the embedding XR,(p(u,v) has constant mean

curvature equal to one. Moreover, this CMC embedding is nondegenerate.
Finally, in Section 6 we use this construction to prove the following.

Corollary. For k > 4 the moduli space of My, of k-ended, genus-zero CMC surfaces has

connected components which are not simply connected.

We also show that every nondegenerate genus-zero three-ended CMC surface satisfies the
gluing hypotheses for all ends and that the gluing hypotheses are stable under perturbation.
One particular example of this gluing construction is a construction we will call doubling.

In this case, we take X9 to be congruent to X; and patch the chosen end to a copy of itself.



Chapter 2

NOTATION

Below, we will always use the symbols g and A to denote the first and second fundamental
forms (respectively) of an embedding X : ¥ — R3. More explicitly, if we have coordinates
(5,0) on X, then we write g = FEds? 4+ 2Fdsdf + Gdf? and A = Lds? + 2Mdsdf + Ndb>.
With these coordinates, we will also orient the surface with the normal v = %. We
will denote the mean curvature by H = %trg A and the Gaussian curvature by K = det A.
If we have another surface 3, we will denote its metric as g, and so on. Also, we will often
use subscripts to denote derivatives.

We will always consider noncompact, proper embeddings X : ¥ — R? of surfaces of
finite topology. The function y will always be a cut-off function, either centered about 0 on
a line or radially symmetric with its support a suitably chosen ball. Given a rotationally
symmetric surface, we will denote its axis by @ where {a, f_;, ¢} form an oriented orthonormal
basis for Euclidean three-space.

In general, we will be able to decompose all embedded surfaces we encounter into a
compact piece K and some number of ends, each of which is a graph over some half-infinite
cylinder. We will parameterize the jth end E; with coordinates (¢;,6;) € (0,00) x S'. Also,

we will have a graph over a long, but finite, cylinder in our approximate solution XR,(p,

which we will usually parameterize with coordinates (¢,60) € (—R, R) x S™.



Chapter 3

THE APPROXIMATE SOLUTION

The first step is to construct an approximate solution. We start with two complete,
embedded, noncompact CMC surfaces X; : 3; — R? with finite topology. The ends of
the surfaces are the unbounded connected components of X;(3;) N (R3\B,,) where rq is
taken large enough so that the number of such components remains constant if rg increases.
Roughly speaking, we can decompose the surface X;(3;) into a union of a compact piece
and k; noncompact ends. By a theorem of Korevaar, Kusner, and Solomon [KKS89] each
end of X;(X;) is asymptotic to a Delaunay surface D = D, of Delaunay parameter 7. We
will explain this convergence below. We will assume that we can choose ends E; of X;(%;)
which are asymptotic to congruent Delaunay surfaces.

The embedded Delaunay surfaces are CMC surfaces which are rotationally symmetric
about some axis. They have a profile curve which is the graph of some positive function
pp(t). Thus D can be parameterized as D(t,0) = td + pp(t)w(0) where {a, 5,6'} is an
oriented orthonormal basis for R? and w(f) = cos 0b + sin . By examining the equation
pp must satisfy, one can show that pp is periodic. The necks of the Delaunay surface are
small neighborhoods of the circles {tyd@ + pp(to)w(f)} where pp attains a minimum at £,
and the necksize is the minimum value of pp. It is convenient to parameterize the Delaunay
surfaces with the parameter 7 = 2¢ — €2 and to denote the associated Delaunay surface as D .
Appendix B.1 contains a longer explanation of these surfaces. The result of [KKS89] states
that there is an r > 0 such that the unbounded connected components of X;(¥;) N (R*\B,)
can each be written as graphs over a cylinder (r,00) x S'. Moreover, if we parameterize

such an end FE; as

(t,0) — ta+ pg,(t,0)w(d) : (r,00) = R3,

then there exists an embedded Delaunay surface D(t,0) = ta + pp(t)w(f) such that the



following estimate holds:

lon(®) — i, (t,0) 12,00 = O 17"0)

for some 0 < a < 1, all £y > r+ 1, and some 7,(7) > 0 which depends on « and the necksize
of D. The norm ||+ ||2,4.1, is the standard Holder norm on (g —1,¢y+1) x S*. The coefficient
v2(7) is called the second indicial root associated to D,. The indicial roots arise naturally in
the study of Fredholm properties of the linearized mean curvature operator of a Delaunay
surface and determine asymptotic expansions of solutions to the homogeneous linearized
mean curvature equation. They are positive, depend continuously on 7, and correspond
both to poles of an associated operator (see Appendix F) and to exponential growth rates
of solutions to certain ODEs (see the next chapter). The indicial roots of a Delaunay surface
are covered more thoroughly in [MP01] and [MPPR].

Without loss of generality, we can suppose D has the x axis as its axis of symmetry and
that pp has a minimum occurring at « = 0. This amounts to a translation and rotation of
X;. Moreover, by another translation of X; we can take the ball B, in the above definition
of the ends to be centered at (£(R+7),0,0) (—R—r for i = 1 and R+r for i = 2) where R
is a large positive parameter (see the figures below). We can write E; as a graph over the
cylinder (—R, 00) xS! and Fy as a graph over the cylinder (—oo, R) xS!. Under this situation
lpE: (5,0) = po(s = R)|[2.00 = Oe”DE) and ||pg, (s,0) — pp(s +7)||2.0,0 = O(e 2(DE),
Notice that the two surfaces X; and X, are close in the C*® norm (in fact, the C' norm
as well) only if is R is an integer multiple of the period of the Delaunay surface D. We also
remark that the embedding X; : ¥; — R? depends on R. We will suppress this dependence,
as two such embeddings of ¥; described above can only differ by a translation along the z

axis.

r-axis




By

g

AR+17.0,0)

I-aXI1s

X5(X9)

Note that in the region —R < z < R each of Ey, Fy, and D are graphs over the cylinder
(-R,R) x S.

Given a surface parameterized as a graph over a cylinder
(t,60) — (t, p(t,0) cos 0, p(t, 0) sin ),

one can compute that the mean curvature is given by

—P*OFp — 95p) + p*(1+ (9p)*) + p((910) (Bp) (910sp) — Dp) +2(0ep)*
(0% + p?(01p)? — 4(0,p)?(39p)%)/ P? + (06p)? + P (B:p)?

Let x = x(¢) > 0 be a nonincreasing cutoff function where

H:

1 for t< -1
x(t) =
0 for t>1.

We construct the approximate solution X : ¥ — R? as follows. The surface ¥ is
topologically a closed Riemann surface of genus g = g1 + g2 and k = k1 + ko — 2 punctures.
We will number the ends of X as Ej... Ey, +k,, reserving the labeling of E; and E for the
ends of X] and X3 we truncate in the gluing construction. We can write part of X as a
graph over the cylinder (—R, R) x S'. In the region corresponding to —R < t < —1 let X
be given by

(t,0) — (t, pp, (t,0)cosb, pg, (t,60)sinb).

In the region 1 < ¢ < R let X be given by
(£,0) = (s (1, 0) cos 6, pi, (1,0) sin ).
In the region —1 <t < 1 parameterize X by

(t.0) — (t, PX (t,0) cos 0, PX (t,0)sin6)



where

px (t,0) = x(t)pr, (t,0) + (1 — x(t))pr, (¢, 0).
This gives a smooth surface with two boundary components written as a graph over a
bounded cylinder. Because X and X; are given as graphs of the same function over the
cylinder (—R, —1) xS!, we can extend X past the boundary component {~ R} xS! by letting
it agree with X;. We can similarly extend X past the boundary component {R} x S! to
agree with X, (see the figure below). Then X is a smooth embedding of 3, and it is CMC

in the regions corresponding to ¢ < —1 and ¢ > 1.

X

In the region —1 < t < 1 X is a graph over the Delaunay surface D of the function

px —pp- The function pg is a convex combination of pp, and pg, and ||pg;||c2.a((—1,1)x51) =

O(e 72(ME), Thus

Hi = Hp+Lplpx —pp)+O0((px — pp)?)

= 1+ 0(ILplllox = ppllczaq11xsy) + O 220 = 14+ 0(eDF)

where L is the linearized mean curvature operator about the Delaunay surface D (see the

next chapter).We will write this as
Hg=1-4%

where 1 is supported in the region —1 < ¢ < 1 and [|9)||cza = O(e~2(D%). We can adjust
this construction by changing the translation parameter R by a multiple of the period of
D. In particular, we can make R as large as we please. Thus we can make this error 1) as
small as we wish to start the construction.

In addition to the parameter R, we also have an angular parameter ¢. One can think

of this parameter as determining the angle of X5(39) relative to X;(31), as measured from



10

some chosen starting position. We can change ¢ by rotating Xo(39) about the axis of D. In
constructing the approximate solution X, we did not use this parameter at all. But later we
may reconstruct X for a different value of ¢ than the value we initially chose. To indicate
the choice of parameters R and ¢, we will denote this approximate solution as XR,(p. As
mentioned in the introduction, we will often fix one or both of these parameters, and in
these instances we will suppress the subscripts.

In the doubling case, take X1 = 9. Align X;(X;) so that the chosen end E; has the x
axis as the axis of symmetry for its model Delaunay surface D and so that D has a neck
at £ = 0. Then let X9(39) be the embedding one obtains by rotating X;(3;) about the z
axis by an angle of .

In addition to this construction, one could also build in “misalignment errors”. For
example, instead of aligning the surfaces X; and X, exactly, one could rotate Xy so that
the axis of By differs from the axis of F; by an angle a which is O(e~72(")%). The resulting
approximate solution would still have mean curvature 1 outside a small cylindrical region,
and globally its mean curvature would still be 1 4+ O(e"2(7#). Thus one can perform the
same analysis as we do below, but starting with this bent approximate solution, obtaining
a CMC surface from the bent configuration as well. We can also induce other misalignment
errors, such as translating Xs in a direction perpendicular to the axis of Fy by a small
amount, or starting with an asymptotic necksize of Ey which is not equal to (but close to)
the asymptotic necksize of Fy. We remark that this approximate solution is unbalanced, in
that the weight vectors associated to its ends do not sum to zero (see [Kus91] or appendix
C.2). However, the geometric parameters we use to deform the surface in the nonlinear part
of this construction change these weight vectors, so the contraction mapping we use in the

final step produces a balanced surface automatically.
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Chapter 4

MAPPING PROPERTIES OF THE LINEARIZED OPERATOR

In Appendix E we show that the linearization of the left hand side of equation (1.1) is
Lx = 3(Ax + ||Ax]|[*), where Ay is the Laplace-Beltrami operator and Ay is the second
fundamental form. The operator Lx is called the Jacobi operator of the embedding X. In
this section we will study the mapping properties of £ Ko where X R,¢ 1S the approximate
solution constructed in the last section. In particular, we are interested in finding tempered
solutions u to the equation L;(R@u = 1) when 1 decays exponentially along the ends of

Xpo

4.1 The Jacobi operator for a Delaunay surface

First consider the case where X = D, is a Delaunay embedding with necksize ¢ and 7 =
2¢ — €2. In this case, the Jacobi operator is

1
Lp

H = W(@? + 0% + 1% cosh 20), (4.1)

where a”—l—% sinh 20 = 0 (see section 4.1 of [MPO01]). This parameterization of the Delaunay
surface differs from the one given in the previous chapter by the change of coordinates

2

t = k(s) and p(t) = 7e’() where k' = %(620 +1). We can understand solutions to Lpu = 0

and the spectral properties of Ly in terms of solutions to the ODEs
(0% + 7% cosh o — j)u?® = 0. (4.2)
Indeed, if u7*(s) solve equation (4.2) with initial conditions

wWH(0)=1 9uT(0)=0 wu’ (0)=0 0u’ (0)=1, (4.3)
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and we let
L . .
7 COS jo 3>0
Xi =9 7= j=0
% sinjf 7 <0,
and define

u(s,0) = Z x; () (a”Tu? T (s) + aP " ul " (s))

then Lpu = 0 provided a* are chosen so that the series converges. We call the Jacobi
fields u =3 ;4 x;j (@’ tul + a?~uh ") the low eigenmode solutions.

One can identify these low eigenmode Jacobi fields with explicit geometric deformations
of D. To demonstrate this phenomenon, we will examine the one-parameter family of De-
launay surfaces obtained by translating a given surface along its axis. We parameterize the

Delaunay surface as D(t,0) = (p(t) cos 8, p(t) sin6,t). In the (¢,6) coordinates, the normal

1
1+p?

Dy (t,0) = D(t,0) + (0,0,n7) = D('.0") + u(t',0")v(t',0') as a normal variation of D(t,6).

vector v is given by v(t,0) = (—cosf,—sin#, p;). We wish to write a translation

We are left with three equations

— ! r_ 1 1 pl i
p(t)cos® = p(t') cosh 1erg(t,)u(t ,0") cos 0
: _ AN r_ 1 I o o !
p(t)sinf = p(t')sinf 1+p'§(t’)u(t ,0')sinf (4.4)
— gy pe()u(t6)
by = 4 2

Squaring the first two equations of (4.4) and adding them together we get

u?(t',0") _ 2p(t)u(t', 0"

2 2y

Notice that from this equation we can take u to be a function of ¢ alone. Multiplying

through by 1 + pZ(#') and rearranging yields

u? (t') = 2p(8")\/1+ pF ()u(t’) + (0°(t') = p* (1)) (1 + p{ (') = 0.

The quadratic formula then implies
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From the third equation of (4.4),

t—t = 2
V1+ i)

Thus

2 t/ t,

p(t) = plt') + (1 — Ypu(t) + Ot — #)? = p(t') + LUy 4 0 — 1.

1+ p;(t)

Using this expression for p(t) yields
/
u(ty = 1) o gy

V14 pi(t)

and thus the Jacobi field which generates this translational deformation of D is the function

u=ult =P _ Os. (4.5)

Vit

Notice that u%*(s) = o4(s) solves equation (4.2) for j = 0:
Ugs + 72u cosh 20 = Ogss + 7205 cosh 20 = 0.

This computation shows that the infinitesimal generator of the one-parameter family of
Delaunay surfaces obtained by translating a given surface along its axis is yqu®*. The
infinitesimal generators of the one-parameter families of Delaunay surfaces obtained by
translating a given surface perpendicular to its axis are xy4;u*"T. The infinitesimal gener-
ators of the one-parameter families of Delaunay surfaces obtained by rotating the axis of a

+1,= . Finally, the infinitesimal generator of the one-parameter family

given surface are y41u
of Delaunay surfaces obtained by varying the necksize of a given surface is you .

Notice that all the low eigenmodes Jacobi fields are either bounded and periodic or grow
linearly. In fact, these low eigenmodes are the only Jacobi fields which are exponentially
bounded (see Lemma 2 below). A precise definition of the indicial roots of D = D, would
be that the jth indicial root y;(7) is the coefficients of exponential growth of homogeneous
solutions to equation (4.2). From this formulation one sees that vy = yo = 0 and v; > 0
for |j| > 2. In fact, the potential in equation (4.2) is strictly negative for |j| > 2. The

name arises from the fact that one can recover the indicial roots from the eigenvalues of

the matrix which translates the solution by a period of the equation. As equation (4.2)
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is periodic with period S, there is a matrix 7 such that any homogeneous solution w to
equation (4.2) satisfies
w(s + S5) T, w(s)
Osw(s + S) Osw(s)

and one can show that the indicial roots are the real parts of %log Aj where A; is an
eigenvalue of T;. These growth properties motivate the use of the following function spaces.
Recall that given an embedding X : ¥ — R? with & asymptotically Delaunay ends we have
a decomposition X (X) = K U (UYE;((0,00) x S')) where

Ej(t;,0;) = t;@;(pp, (t;) + p;(t;.0;))(cos 0;b; + sin 0;¢;)
and K = X(X)\(UFE;).

Definition 1. Given a noncompact proper embedding X : ¥ — R3 as above and a function

u: X(X) = R with u € C;(;?(X(E)) we define the weighted Holder space C(?’a to be
{”“”c;jﬂ = tsuli Hefétju(Ej(tj»9]’))Hck,a([tgq,tﬁl}xsu + H“Hck,a(m < oo}
IS
J

Functions in C{I;’a(X ) can grow at most like €’ on each end E;. For the approximate
solution we will need to use a more refined weighting function, defined below. Recall that
Xp has a decomposition Xp 4(2) = K U (US'™ E;((0,00) x S")) U Crg((—R,R) x S")

where the ends E; are parameterized as above,
Crplt,0) = 1(1,0,0) + (po () + x(D)pis, (1.0) + (1 — X(£))pia (1,0)) (0, cos 6. sin )

where —R < t < R and x is a cut-off function, and K = XR’¢\(U§1+I€2E]‘((O,OO) x SHu
Cro((—R,R) x S1).

Definition 2. Let XR’¢ be the approximate solution constructed above and let

u: Xpe(E) = R with u € C;O’Z(X(Z)). Then define the weighted Holder space Ff’a to be
cosh’ ¢

RU(CR,¢(75, Ol oo ([to—1,t0+1]xS1)

ull pra = sup |
F5® lto| <R—1 cosh?®

+ sup le=*% w(Bj(tg, 05)lcre - 1,6 +1)xs1) + lullora ) < oo}
t9>
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Note that the space of functions F;’Q(X37¢) is the same as C?’Q(XR,(Z,), where the middle
cylinder Cg 4 is unweighted, but the norms are different. The effect of this weighting
function on the norms of functions in this space will become important later when we want

to find a choice of Green’s operator for L . which is uniformly bounded in R.

Definition 3. A noncompact, properly embedded surface X : ¥ — R? with asymptotically

Delaunay ends is called nondegenerate if the operator
Ly i CH72(X) —» CM(X)
is injective for all § > 0.
Following Proposition 20 of [MP01], we have the following Lemma.

Lemma 2. Let D(s,0) : (0,00) x S' — R3 be one half of an embedded Delaunay surface
with necksize € and with 7 = 2¢ — €2 and for 7 > 1 let u’(s) be a solution of equation (4.2)

which is square integrable, normalized so that u/(0) = 1. Then

ju (5)] < e V2T

Proof: First consider the two point boundary value problem

(—0? — 72 cosh 20 + j%)us, =0

. —

us (0) =1, Use(s0) =0

for sg > 0. Because

2 < 7%cosh20 <2 — 72

(see Proposition 11 of [MPO01]), the zero order term of this ODE satisfies
—72cosh20 452 > % -2+ 72> 0.

Thus one can apply the Maximum Principle to solutions of this ODE. Letting

6[]: \/.7‘272_'_7—27
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we have

(—0% — 72 cosh 20 + j2)e Wi = (—’?]2 — 72cosh20 + j2)e i®
= (—j24+2— 72— 72cosh20 + j)e *

= (272 72%cosh20)e 7® > 0.

Moreover, e %% bounds us, above at the end points 0 and sg. Therefore, us,(s) < e s
on the entire interval [0, sy]. Also, by the Minimum Principle —u,,(s) > —e %% So the
family {us,}, for sg > 0, is uniformly bounded. By standard ODE theory, the solution
ug, depends continuously on the parameter sg. By the Arzela-Ascoli theorem, the limit
u?(s) = limg, o0 ug, exists and satisfies the bound |uf(s)| < e %%, [ |

The above lemma gives a lower bound for «;(7) when j > 2, but it is not sharp. In fact,
Proposition 1 in [MPPR] shows that lim,_,qv;(7) = j.

A general solution in C’%’?((O,oo) x SY) (for any 0 < 6 < 2(7)) to Lpu = 0 can be

written as

u(s,0) = Z cjx;j(0)u (s)

[e.e]
j=2
where x;(6) = ﬁ sinj0 and «/ is the solution in Lemma 2. Then

o

2 201,512
”“||L2((0,oo)><81) = chH“]HLQ(O,OO)'
i=2

The boundary data for v is

u(0,60) = Z cjx;(0)

Jj=2

and so the L? norm of the boundary data is
o0
(0, 0)II72 = > _ -
71=2

By Proposition 21 of [MP01] the Poisson operator for the equation £pu = 0 is a bounded
linear map from L?(S') to L%((0,00) x S'). So there is a positive constant m which depends
only on the Delaunay parameter 7 such that

o0 o
2 2 2
m® Y llujllrz.00 = D6
j=2 :

Jj=2
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In particular, if we normalize |[u[|2((0,00)xs1) = 1 then

oo
2 9
ch—m

7j=2
where m depends only on the necksize of the Delaunay surface D. Thus |¢;| < m for each
j and so |u(s,#)| < me 72(7)% where m depends only on 7 and 7, (7) is the second indicial

root mentioned above. Summarizing this argument we have the following lemma.

Lemma 3. Let u : (0,00) x S — R be in the kernel of operator (4.1) for the Delaunay
parameter T and let ||ul|;2 = 1. Then there exist positive constants m and vyo(7) which

depend only on T such that |u(s,0)| < me 72(7)s,

4.2 The Jacobi operator on k-ended CMC surfaces

Now consider a more general k-ended, properly embedded surface with asymptotically De-

launay ends X : ¥ — R3. Over the jth end, one can write the Jacobi operator as
Lx = Lp+e 2MLR

where (t;,0;) are cylindrical coordinates for the end and R is a second order operator with
smooth bounded coefficients. The deformations of the Delaunay surfaces corresponding to
the low eigenmode solutions found above yield asymptotic Jacobi fields on X (X). Below we
will make this precise.

As X has asymptotically Delaunay ends, we can write X () = K U (UYE;) where K is
a compact set and each Ej is a graph of some exponentially decaying function p;(t;,6;) (for

t; > 0) over a Delaunay surface D;. Now pick some cut-off function x such that

0 t<0
x(t) =
1 t>1

and for |i| <1 define
it FEEp—
w; (tj,0;) = X(tj)u; (® 1(tj, 0;))-
Here @ is the diffeomorphism between E; and D; defined by the graphing function and u;i

is the 4, & eigenmode Jacobi field on the Delaunay surface D; with initial conditions given
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by (4.3). This defines w;-’i on the end E; and we extend it by zero on the rest of the surface.

We will refer to w;i as the asymptotic Jacobi field arising from the ith eigenmode on D;.
Definition 4. Let X : ¥ — R? be a noncompact k-ended genus g proper embedding with
asymptotically Delaunay ends. The deficiency space Wx is the span of all the asymptotic
Jacobi fields arising from low eigenmode deformations of the underlying Delaunay end;
Wx = span{w;-’i | 1 <j<k;ji=—1,0,1}. The bounded null space Bx is the linear span

of all Jacobi fields which do not grow exponentially. In other words,
Bx = {u € Cy*(X) | Lxu =0}

where 0 < 0 < infjya(1j). The spectral theory for Lx shows that any Jacobi fields which
grow exzponentially on the end E; must grow with an exponential rate of at least y2(7j), so

it suffices to find this kernel for one value of 6.

Notice Wx is a vector space of dimension 6k with a geometrically natural basis given by
{w;’i} where |i| < 1. We will use this basis to induce the Euclidean norm on Wx. These
two spaces are related as follows (see the Linear Decomposition Lemmas of [KMP96] and

[MPU96]):

Theorem 4. (Kusner, Mazzeo, Pollack) Let X : ¥ — R? be a proper embedding of a
noncompact surface with finite topology and asymptotically Delaunay ends. For 0 < § <
infiy(rj), let u € C’(?H’a(X) and f € Cf’;(X) such that Lxu = f. Then u = w + ¢ where
w e Wx and ¢ € C’ﬁ;Q(X).

Strictly speaking, this theorem is only stated for CMC surfaces and for weighted Sobolev
spaces. However, the proof only requires that £x is the linearized mean curvature operator
and that the ends of the surface in question are asymptotic to Delaunay surfaces (see
Appendix F). Therefore, the conclusion of this and related theorems (in particular, their
results regarding the weights for which the Jacobi operator is Fredholm) in [KMP96] and
[MPU96] remain true for all the surfaces with which we will work.

Suppose X : ¥ — R? is a nondegenerate embedding with asymptotically Delaunay ends

Ei ... Ey, each with Delaunay parameter 7;. Then for 0 < § < inf; y2(7;)

Ly : C*(X) — O (X)
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is injective. By duality and elliptic regularity,
Lx:Cy*(X) = Cy*(X)

is surjective. So if f € ng" C C’{?’a, then there is a function u € C(?’O‘ such that Lxu = f.
Then by the Linear Decomposition theorem v € Wx & CE’?. Thus we see that in the

nondegenerate case

Lx Wx CE’? — CE’?

is surjective with kernel Bx. We will use the Euclidean norm |ju + UHWXEBCE’?(X) =

\/||u||12/VX + ||v||203? x) on the direct sum. This paragraph summarizes why nondegener-
acy is such an important property.

The above argument shows there is a well defined map 11 : Bx — Wy given by projec-
tion. If u,v € Bx and II(u) = II(v) = w € Wy then Lx(u—v) =0and u—wv € CE{Q’G(X).
If X is also nondegenerate, then u = v. So in the nondegenerate case this map Bx — Wx
is injective. In this case, we will often identify Bx with its image in Wx. For the general
immersion (which may be degenerate) the element II(u) = w € Wy determines u € By
only up to terms which decay exponentially.

In fact, Wx and Bx carry more structure. To see this, first recall that given two
solutions u; and us to a linear second order ODE " + pu’ + qu = 0, the Wronskian
Wr(ur, ug) = ujuhy—ugu] satisfies the equation (Wr)'+Wr-p = 0. Notice that equation (4.2)
is a linear second order ODE with no first order terms. So the Wronskian Wr(u>*, u®~) =
ubt(s)dgut (s) — ub~(s5)9subT(s) is 1 by the initial conditions (4.3).

Let W; be the part of W arising from the j eigenmodes of the model Delaunay surfaces

for the ends of . Write u,v € Wy as

k
u= g ((1¢1L?’+ + biu?’f)
1

and

k
0 0,—
v = Z(aiui’+ + Biu,; )
1

where u?’i is the element of Wx arising from the 0, %+ eigenmode of the model Delaunay
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surface (with Delaunay parameter 7;) for the ith end. As in [MPU96] we define

Qu,v) = lim (Lyu)v —u(Lxv) = lim (Au)v — u(Av)
T—>00 ZDBT (U) T—>00 ZDBT (U)

where B, (0) is a large ball as in the definition of W. Upon integrating by parts, we find

Qu,v) = lim @U*u@
r— JasnB, (0)) OV ov
k 1 2
_ BBy 0,4+ ,0,—y = —2(Ti)r
Tim. [21:[(@252 i) Wr(u;”" ) o /0 do] + O(e )]

k

= Z(azﬂi — bia;).

1

Thus € is the standard symplectic structure on R?*. Similarly, W; and W_; also carry the
standard symplectic structure on R?* and so Wy carries the standard symplectic structure
on R From the definition of 2, By C Wy is an isotropic subspace. By a relative index
theorem (see [KMPY96]), dim Bx = 3k = 1 dim W and thus Bx C Wy is Lagrangian.
Given an end F = Ej, let Wi = span{w;’i;i = —1,0,1,; fixed}. These are asymptotic
Jacobi fields which are zero on all ends except E. Functions u € Bx such that II(u) € Wy
are Jacobi fields of X which decay exponentially on all but one end of X (X) and grow at
most linearly on the remaining end E. As remarked earlier, we can identify By with a
subspace of Wx in the case that X is nondegenerate. In this case, we will again abuse
notation and say that the functions u described above lie in Bx N Wg. Such a function u
corresponds to a deformation of X (X) which fixes the asymptotics of all ends except F and

changes the asymptotics of E. The existence of such a u is limited by the following Lemma.

Lemma 5. If u € Bx and [I(u) € Wy for some end E of a noncompact, proper embedding
X : ¥ = R with asymptotically Delaunay ends, then u can only correspond to an asymptotic

translation along the axis of E.

Proof: Suppose u corresponded to a change in the necksize of the asymptotic Delaunay
surface for the end E. Let w be the Jacobi field which arises from translating the embedding
X along the axis of E. Such a Jacobi field always exists, as it arises from a global rigid

motion of the surface. Then Q(u,w) # 0, which contradicts the fact that By is a Lagrangian
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subspace of Wx. Similarly, one can eliminate the translations off the axis of E (using global

rotations) and the rotations of the axis of F (using global translations). B

4.3 Nondegeneracy of the Jacobi operator on the approximate solution

In this gluing construction, we want the approximate solution XR,(p to be nondegenerate,
at least when the summands X; and X, are. Unfortunately, we cannot show this is always
the case and must make the additional assumption that X; allows a deformation through

CMC surfaces which changes the asymptotic necksize of F; to first order.

Remark 1. We remark that the existence of a deformation of X1 through CMC surfaces
which changes the asymptotic necksize of Ey to first order implies that Bx, "Wg, = {0}. To
see this, recall that by Lemma 5 any nonzero Jacobi field u in Wg, would have to correspond
to an asymptotic translation of Eq along its azis. Let v be the infinitesimal generator of the
deformation of Xy which changes the asymptotic necksize of Ey. Then Q(u,v) # 0, which

contradicts the fact that Bx, is Lagrangian.

First, let us recall the construction of Chapter 3. We start with two complete CMC
embeddings X; : ¥; — R? of noncompact surfaces. The surfaces 3; have genus ¢; and g
and have ki and ko punctures respectively. We choose ends E; of X;(X;) such that E; and
FE, are asymptotic to congruent Delaunay surfaces with Delaunay parameter 71 = 7o = 7.
Align the two surfaces so that the ends F; are asymptotic to opposite ends of a Delaunay
embedding D. Now patch the embeddings together at a neck of D using a cut-off function
to get an embedding XR,Q& : ¥ — R3. Here X is topologically a closed surface of genus g; +¢o
with k1 + k9 — 2 punctures. We will label the ends of XR’¢ as B3, ... Eg, 4k,, reserving the
labels F; and FEs for the ends we truncate in the gluing construction. The ends of XR,(p
are all congruent to ends of either X; or Xy. We will label the ends congruent to ends of
X as Es, ..., Ep +1. The embedding depends on a discrete parameter R, which one can
think of as a distance along the end at which we place the gluing region, and the rotation
parameter ¢, which we can think of as the relative angle between the two summands X;(3)
and X»(X2). Xp 4 has mean curvature 1 outside a compact set and the deviation from 1 of

the mean curvature of X is pointwise O (e~ 72(7)E),
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We need the condition stated above (that X; admits a deformation which changes the
asymptotic necksize of Fito first order) to guard against the following behavior. If we do
not make this assumption, then it is possible for both X; and X5 to admit Jacobi fields
which correspond only to translations of E; (respectively Fs) along its axis (see Remark
1). If both X; and Xy have Jacobi fields which correspond to asymptotic translations along
the axis of the end we are gluing and decay exponentially on all other ends, then we can
patch these two Jacobi fields together to construct an approximate Jacobi field up with

”“RHFE’;(XRM = 1. By construction, ,CXR@(UR) = O(e %) pointwise. So Lx, , has an
exponentially small eigenvalue, which leads one to suspect that £ Xro might be degenerate.
Moreover, in this case any Green’s operator for E}’(}W cannot be uniformly bounded in R.
It is natural to ask whether any embedding X admits a deformation which preserves its
mean curvature up to first order and changes the asymptotic necksize of a given end F
to first order. If we denote by & the variable in Wy which corresponds to changing the
necksize of F, then the failure of such a deformation to exist is equivalent to the condition
that Bx lies in the hyperplane {{ = 0}. Thus we expect that the condition we will assume
for the summands is generically satisfied among nondegenerate CMC surfaces. In fact, all
known nondegenerate CMC surfaces satisfy this condition for all ends. However, we should

remark that we know very few examples of nondegenerate CMC surfaces. See Chapter 6

for examples of surfaces which satisfy the gluing hypotheses for all choices of ends.

Proposition 6. Suppose both X1 and X5 are nondegenerate and that X1 admits a deforma-
tion through CMC surfaces which changes the asymptotic necksize of Fy to first order. Fix
0 < 0 <inf;ys(7;). Then there is an Ry > 0 such that for R > Ry one can find a Green’s op-
erator Gz, FE’{;" — FE’;‘ © Wk, ,» uniformly bounded in R, such that Lz, oGg =~ =Id.

In particular, in this case the approximate solution Xpg 4 is nondegenerate.

The idea behind the proof of this Proposition was originally communicated to me by F.

Pacard.

Remark 2. The weighting of the middle cylinder (—R, R) x S' is necessary to obtain a

uniform bound on the Green’s operator. To see this, consider the problem
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on the segment (— R, R) with u(£R) = 0. The first eigenvalue of this problem is %. Indeed,

one can check that u(t) = cos(3%) is an eigenfunction associated to this eigenvalue. Thus

the norm of the inverse of this operator (in an unweighted function space) grows like R?.

Proof: Suppose X; admits a deformation through CMC surfaces which changes the
asymptotic necksize of E; to first order; notice we are not making the corresponding as-
sumption about X9. Given a function f € FE’;(X r,¢) we wish to solve the equation
,CXR’QS(U) = f. The method employed in this proof is to first truncate f using a cut-off
function y and solve the equations Lx,(Uy) = xf and Lx,(Us) = (1 — x)f with appropri-
ate decay. Then we will glue these two functions together and show that the result is an
exponentially small (in R) perturbation of the desired solution GXns (f)-

Let x be a smooth monotone nonincreasing function such that

First let ug + vy € Wx, @ CE’?(XQ) be a solution to Lx,(ugy +v2) = (1 — x)f, which exists
because X, is nondegenerate. Moreover, (recall we are using the Euclidean norm on the

direct sum Wy, @ C%’;(XQ))

el + el ) < 2l =07 o, (46)

Also, on the end Fs, uo has an asymptotic expansion

Uy ~ z:o/"jtui’jE (4.7)
i+
where u** are the normalized low-eigenmode Jacobi fields on the model Delaunay surface

D for E5. Notice that /> (a"*)% < eo|(1 — X)fHCﬂ*(‘;‘(XQ)'

Next let u; +v; € Wx, @ C%?(Xl) be a solution to Lx, (u; + v1) = xf, which exists

because X, is nondegenerate. We also have the bound

el +11lag ) < ellxflleog (438)

This time, we can choose u; so that one F;

i (t,0)] < e e~ (T)(f+D) (4.9)

Xflleos )
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for £ > —R. This is because there exist global Jacobi fields on X; which are asymptotic
on E; to any of u** for i = 0, +1, by assumption that X; admits a deformation through
CMC surfaces which changes the necksize of E; to first order. The infinitesimal generator
of this deformation yields a global Jacobi field on X; asymptotic to u%~. The global Jacobi
fields asymptotic to u** and to u®1 arise from global translations and rotations of X;.
In short, we can find a global Jacobi field on X; with prescribed asymptotics on Fj.

Now let @ be a global Jacobi field on X; such that on X, & ~ — Zai’iui’i. This is
possible because E; and Esy are asymptotic to the same Delaunay surface. Let 71 and 79 be

cut-off functions so that

1 t<R-2
m(t) =
0 t>R-—1
and
1 t>—-R+2
na(t) =
0 t<—-R+1.

Define the operator G : FE’;(XR) - Wy, ® FE’;(XR) by

G(f) = m(ur +v1 + D) + na(ug + ve).

Notice now that in the region corresponding to —R <t < R — 2, we have the estimate that

0
cosht

ua(t.0) + 000,00 = O Z5) 11055, (4.10

because we have chosen @ precisely to cancel out the parts of us which do not decay. We

wish to prove the following two estimates:

. HgN(f)HWXREBFE}?(XR) < C”'fHFE’(ga(XR)
. ||£}—(R o C;(f) — f”FE};"(XR) < E||f||FE,§l(XR)e*5R for some § > 0.

The second estimate shows that we can write the composition L, o G as Id + Rr, where

the operator norm of Rp is O(e*SR), and is thus invertible with uniformly bounded inverse

once R is sufficiently large, which will complete the proof of the proposition.
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First we estimate ||G(f) In the region Cr which is parameterized by

||WXREBFE’(;¥(XR)'
(t,0) € [-R, R] x S!, we have the bound

~ cosht \°
GO < a0 0.0) + 1 (.6)] + (e 0) + v2(t.0) + 802, 0)] = O Z L) 7o)

by combining the estimates (4.6), (4.8), (4.9) and (4.10). The desired bound on
Hg(f)HWxRGBFE’f(XR) in X;(X1)\E, follows from (4.8), while the similarly desired bound in
X2 (X2)\ By follows from (4.6), which completes the proof of the desired estimate.
Finally we wish to estimate HLXR(é(f)) - f”FO*"‘(XR)”' Notice that by construction
-5

Lx.(G(f)) # f only in the regions R —2 <t < R—1and —R+1<t<-R+2. Inthe
region R —2 < R—1,

L5, (GO = F(£.0)] = [Lx,(m(ur+o1 +P))(26)
L5 [(Imui(,0)] + [moi (£, 0)]) + [|Lx, — Lx,[|[®(2,0)]

H‘CXRHO(HfHFE,(Saei26R) + ‘@(t’g)‘o(e,(gR)

IN

= [l g0 (Ole ™)+ O(Re 1))

where 4 is any positive number less than ~v2(7). One can obtain the desired estimate in the

region —R + 1 <t < —R + 2 similarly. |
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Chapter 5

NONLINEAR ANALYSIS AND SOLVING THE GLUING PROBLEM

In previous sections of this dissertation we have constructed an approximate solution
XR,Q& with mean curvature 1 — ¢ (where v is compactly supported and pointwise small)
and shown that we can solve the linearized mean curvature equation (1.3) provided the
summands X; and Xy satisfy some conditions. It remains to solve the nonlinear equation

(1.2), which we will restate here:

EXR@(U +v) =9 — Qs

Recall that given (u,v) € Wspo® FE’(;"(X37¢) we obtained this equation by measuring the
mean curvature of embeddings XR,¢(u, v) which is the deformation associated to u of the
normal variation of X 4 by v. If we can solve equation (1.2) then the embedding X p ¢ (u,v)
has mean curvature 1. In Section 5.1 we first make these geometric deformations precise

and in Section 5.2 we solve equation (1.2) by using a contraction mapping.

5.1 Deformations of the Approximate Solution

In this subsection, we will deform the approximate solution XR,(p using elements in its
deficiency space W}gmb. For the remainder of this section, we will suppress the subscripts
R and ¢ for the approximate solution, as we will be working with a fixed distance R and a
fixed angle ¢. Roughly speaking, each element v € W corresponds to some combination of
rotations, translations, and deformations of necksizes applied to the model Delaunay surfaces
for the ends of X. We then deform X to obtain a deformed approximate solution X (u) in
two steps. We first change the necksizes on the model Delaunay surfaces as prescribed by u
and use these new Delaunay surfaces as asymptotic models for the ends of X (u). Then we
apply the rotations and translations to these new Delaunay surfaces as prescribed u, which

rotates and translates the ends of X (u). Below we will make these deformations precise.
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First recall the construction of the deficiency space Wx for a CMC embedding X : ¥ —
R3. As this construction relies only on the asymptotic structure of an immersion, we can
carry it out for our approximate solution X : ¥ — R3. We constructed the approximate
solution by patching together two CMC embeddings X; and X3. In this construction, we
translate the embedding X so that the asymptotic estimate of [KKS89] holds outside a ball

of radius r centered at (—R — r,0,0). Let x be a smooth monotone function such that

0 t<0
x(t) =
1 t>1.
As per [KKS89], we can write the connected components of X; as ends Ey,..., Ex, where

each Ej; is given as a graph over a cylinder as follows:
(t;,05) = tja5 + (oo, (t;) + p;(t;, 05))w; (6;).

Here Dj is the model Delaunay surface for the end E; with profile curve pp; and axis d;,

{@;,b;,c;} is an oriented orthonormal basis, w; = cos #b; + sin 6c;, and

||pj||Cz’a((tj71,tj+1)><§1) = O(effﬂj)

for t; > 1. Let X be the embedding which agrees with X except on the ends, which we

replace with the graph over the cylinder given by
(t5,6;) = t3d; + (pp; (t5) + (1 = x(t;))p;(t;, 05))w; (6).

Let @ be the diffeomorphism which sends #;d;+(pp, (t;)+p;(t;,0;))w;(0;) to tja;+(pp, (t;)+
(1 —x(£))p;(t;,0;))w;(0;). We define the part of W arising from the summand X; as the

linear span of

wi™ (s,0) = x(t;)uy* (27 (¢, 65))

where u;i was the 4, £ eigenmode on the Delaunay surface D;, for 2 < j < k and —1 <
i < 1. This function is only defined on the end E;, but we can extend it to be zero on
the rest of the surface. Recall we are using the end E; for gluing and want to preserve its
asymptotic structure, so we do not deform that end. The asymptotic Jacobi fields from

this end therefore do not contribute to the deficiency space W. The construction of the
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deficiency space depends on the choice of cut-off function y, but changing x only changes
the functions in W on a compact set. We define the part of the deficiency space arising
from the summand Xy similarly.

Now we are ready to define the deformations X (u) of the approximate solution X. Recall

it

;- arise from explicit deformations which one can apply to the

; . . +1,— . .
Delaunay surface D;. The u;’+’s arise from translations, the u; ’s arise from rotating the

axis of Dj, and the ug’f’s arise from changing the necksize of D;. Let u = a;’iw;-’i where

that the low eigenmodes u

it . i+ . 04 - -

a;’ are small coefficients and w; are as above. Let T} be translation by ozj’+ in the a;
. . 1 . — . .

direction, ozj’+ in the b; direction, and «

—1,4+

’ in the ¢; direction. Let R;‘ be the rotation

which rotates the axis a; through the angle 0431-’7 towards the b} axis and through the angle

a;l’f toward the ¢; axis. Now apply these rigid motions to D; and change the necksize
u
] )

6';‘,5;‘,5;‘} = R;-‘({(_ij,l_)'j,(%}) + T} and wjf = 5}* cos ) + ¢ sinf. If 042’7 = 0 then D; and DY

to € + 042’7. This results in a new Delaunay surface DY, with a new orthonormal frame

are congruent. We now define the deformed surface X (u) by replacing the end E; with
" 0, -
(t5,05) = tix(t)@; + (t; — g ) (1= x(£))@ + x () (pp, () + pj(ts, 0;))wi(6;)+

(1= X(t)) (s (5 — %) + ps(t; — a2, 0,))w(6)).
In the transition region between X and X (u), both surfaces can be written as graphs over a
cylinder. So in this region we can use equation (3.1), which gives the mean curvature of both
surfaces in term of their graphing functions. Recall that we already have a perturbation
term 1) such that Hg = 1 — 1. Using equation (3.1), we can write a Taylor expansion of
the mean curvature of X (u) in terms of the difference of the graphing functions to conclude

the Lemma immediately below. We will call the additional perturbation term QZJ(U)

+.

;7 € Wx with [of < n,

Lemma 7. There exists n > 0 such that for u = Zaji’iw
the mean curvature of the deformed embedding X (u) is given by 1 — 1 — 1)(u), where
H’(Z;(U)|‘Co,a((tj71’tj+1)><gl) = O(e 24) for t; > 1. Moreover, {(u) = O(|a]), but not o(|al),

pointwise.

In the case that none of the asymptotic necksizes change (i.e. a?’f = 0 for all ) the

error term 1]) will be compactly supported. In general, because the ends of X and X (u) are
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written as graphs of the same function over different Delaunay surfaces, this error will not
be compactly supported. The estimate that ||zﬁ(u)||Co,a((tj,17tj+1)xgl) = O(e 2%) follows
from the fact that an end of X (u) is still written as the graph of p; over some Delaunay

surface D} and p; satisfies the estimate |[p;[lc2a (@, 1,44 1)x81) = O(e724).

5.2 Solving the Nonlinear Equation

Recall that our goal is to solve the nonlinear equation

EXR@(U +v) =1 — Q%

where (u,v) € Wspo @ FE’;(XR’(;)) and 1 is the initial perturbation from 1 in the mean
curvature of the approximate solution Xpg 4. Given u € WXR,¢ and v € FE’;(XR,(p) we
defined a new embedding Xp 4(u,v) first taking the normal perturbation of Xp, by v
and then adjust it with the geometric deformation determined by u, as in the last section.
We perform these operations in this order so that v is always in the fixed function space
FE’{;J‘(XR@). The term QXR’(ﬁ(u,v) is defined to be the quadratic and higher order terms
in the Taylor series for H(u,v) developed about (0,0). To solve equation (1.2), we will

examine the operator
ICXR,d) (u7 U) = gXR,qS ('l/) - QXR,d) (u7 U))

Notice that this is a well-defined operator, because QXR¢(U,U) does lie in the domain of

gXR,d) by the estimate in Lemma 7.

Proposition 8. There is an n > 0 and an Ry > 0 such that for R > Ry the mapping K is

a contraction on the ball of radius 1 in Wx, =& FE’;(XR#)).

Proof: First we estimate [|K(u,v) By the uniform bound on Gy,

”W)geang*(X)'
2
I 0) | < el o ) + N0, e )

Recall that we started with [¢)(t,0)| = O(e () 50 1l goe 5y = O(e=(2(M)=DE) which

we can take to be o(n?). Thus if ||(u,v)| = O(n), then ||K(u,v)|| = O(n?), from which is
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follows that I maps a ball of radius 5 to itself for sufficiently small 5. Moreover,

1K (ur,v1) = Klug,v2)|| - < ¢l Qg (ur,v1) — Qx (U2, v2) o 5,
< 5”(“1,1)1) - (UQJ)Q)HIQ/VX@FE?(X)
< emax([l(ui, vi)lyy g ez o))l (s v1) = (w2, v2)lly g p2e (5
<

§||(ul,v1) = (u2,02) g p2e )

1

for n < 5z. The second inequality follows from the fact that

Qx,,(0,00=0 VQg, (0,0)=0.

The existence part of Theorem 1 follows immediately from the proposition above and

the Contraction Mapping Principle.

5.3 Nondegeneracy of the Solution

It remains to see that the solution Xg 4 is nondegenerate. Below we will suppress the
dependence on the relative angle ¢, as none of the analysis depends on it. This proof of

nondegeneracy is very similar to the proof of nondegeneracy in [MPP].

It will be convenient to define the following decomposition of Xg. Let X1 r = {p =

(p1:p2,p3) € Xp [ p1 < —R}, Xop = {p = (p1,p2,p3) € Xp | p1 > R} and Xz = {p =
(p1,p2,p3) € Xr | — R < p1 < R}. Notice that X; z and X; p differ only by a translation,
so we can (and will) identify these surfaces. We will further decompose X; p and X, r as

Xi,r=K1 U (Uf:,;lE]) and Xo p = Ko U (Uf:,;fiQE]) where K; and K> are fixed compact

sets in Xy and X, (respectively) and E; are the ends of X; and Xo.

Suppose this were not the case. Then there would exist a sequence of R; — oo and

nontrivial Jacobi fields u; of Xpg,. We may normalize u; so that HuiHFo,o( = 1. This
-5

Xr,)

means sup,c x, Pi(p)|ui(p)] = 1 where the supremum is realized at p;. Here p; is the
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weighting function

et (tj,0;) € (0,00) x S' ~ E;

&
pi(p) = %}3,; (t,0) € (—Ri, R;) x S* ~ X3 R,
1 else

where § > 0 is strictly less than inf; y2(7), including j = 1,2 (i.e. including the Delaunay
parameter for the ends we are gluing). We will have to consider different cases which
correspond to the different possible places where p;(p)|u;(p)| can achieve its maximum.
Notice we always have |u;(p)] < p;(p)~! with equality at p;.

The structure of this proof is the following. We have normalized u; so that p;|u;| attains
its maximum at some point p;, and at this point p; we know the value of |u;|. The weighting
function is chosen to try to force the point p; to occur in the compact sets Ky and Ks. If p;
occurs elsewhere we can obtain an easy contradiction from the nondegeneracy of the original
summands X and Xy and the model Delaunay surface D for the ends we are gluing together.
When p; occurs in K| we will obtain a Jacobi field on X; which decays exponentially on
all ends but Ey, which contradicts the assumption that X; admits a deformation which
changes the necksize of F; to first order. We obtain a similar Jacobi field on X5 is p; occurs
in Ky. In this case we will use a transmission argument (the two ends we are gluing together
must transmit asymptotic information about Jacobi fields to each other) to obtain a similar
Jacobi field on Xj.

First consider the case where p; = (t;,6;) € X3 r, with |t;| bounded and let
wi(t,0) = (cosh™ R;)u;(t,6)

on (=R, R) x S'. The function w; still solves Lx, wi=0on (—R,R)x S! and satisfies the
bound |w;(t,0)| < cosh ™% ¢, with equality at (¢;,6;). Thus a subsequence exists such that
w; converges to a Jacobi field w for the model Delaunay surface D (with (;,6;) — (,6))
where |@(t,6)] < cosh™® ¢ with equality at (£,6). In particular, @ is not identically zero.
However, this contradicts the fact that Delaunay Jacobi fields cannot decay on both ends.

Next consider the case where p; = (t;,6;) € X3 g, with none of |t;|, [t; + R;|, and |t; — R;|

bounded. We will take the case where t; < 0, as the case where ¢; > 0 is similar. Now define
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wj by

ho ¢,
wit,0) = ——Lu(t +t,,6),

cosh’ R;
defined on (—R;,|t;|) x S'. We have rescaled this function so that |w;(0,6;)| = 1. Moreover,
cosh? ti
cosh? (t + ;)
(eti + efti)(‘)‘
(eltti + et—1i)0

(eti + efti)é

"wi (t7 0)‘

<

— (2e*t*ti)6

— 27(56575(1 + e2ti)(5
< 2100t

Choose a subsequence such that §; — 6 and w; — w. Then we obtain a Jacobi field w
on the Delaunay surface D such that |w(0,0)] = 1 and w decays on one end and grows
exponentially at a rate of less than ~(7) on the other. Such a Jacobi field cannot exist on
D.

Next consider the case where p; = (tjﬂ-,Gj,i) € Ej and t;; — oco. We take a slideback
sequence

wi(t;,0;) = pi(tji, 0;i)ui(t + 15, 0)
and argue as in the previous case.

Next consider the case where p; € K; where K is a fixed compact set in X; containing
K. Notice p; is uniformly bounded away from 0 on K;. Take a subsequence such that
pi — p and restrict u; to Xy r, U {(t,0) € X3, |t < —1}. Then on this surface u;
converges uniformly on compact sets to a Jacobi field u on X;. If we parameterize the end
E; of X1 by (s,0) = (t + R;,0), then the bound |u;| < p; ' can be written as

< cosh’ R;
~  cosh’(s — R))
(eRi + e*Ri)(S
(eszi + e—s+Ri)5

< 275(1_'_6721%1-)5665‘

jui(s, 0)]

Thus |a(s,0)| < ce®® for some constant ¢ on the end E; ~ {(s,0) € (0,00) x S'}. Be-

cause § < 79, u can only grow linearly on Fq, and so u € By, N Wg,. Also, |u(p)| =
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lim; 00 pi(p;) ' > 0. However, By, N Wg, = {0} because X; admits a deformation which
changes the asymptotic necksize of E; (see Lemma 5 and Remark 1).

Finally consider the case where p; € Ky where Kj is a fixed compact set in X5 containing
K,. For this case, we will need to define the following function space on the cylinder

[—R, R] x S! and prove a preliminary lemma.

Definition 5. Let Kg’a([—R, R] x SY) be the set of functions u € CZ;?([—R, R] x S for

which the norm

)
B cosht
g = 5w (o) oo vseon

1s finite.

Lemma 9. For each Delaunay parameter T there is an Rg > 0 such that for R > Ry and
for any 0 < § < v5(7) there exists an operator G KE’?([—R, R] xSY) — K%’?([—R, R] x SY)

which is uniformly bounded and such that u = Q(f) solves the problem

Lpu=f on [~R,R]xS!
u(£R,-) € span{cos#f,sinf,1}.

Proof: Let x be a cut-off function such that

1 t<—-1
X:
0 t>1.

First let U; be a solution to

ﬁD(Ul):Xf for t> —R
Ui(—R,:) € span{cosf,sinf, 1},

which exists because the Delaunay surface D is nondegenerate. Moreover, we have the

bound

|U(t,0)] < cHXfHCE’?((fR,oo)xgl)eiw(T)(RH)-

Similarly, let Us solve Lp(Us) = (1—x)f on (—oo, R) xS with Uy (R, -) € span{cos@,sin@, 1}
and

o (T)(R—1).

U2(#, ) < ell (1 = X) fll oo ((—oo,ryxsm)®
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Let n1 and 79 be cut-off functions such that

1 t<R-—2
m =
0 t>R-1
and
1 ¢t>—-R+2
2 =
0 t<—R+1.

Define the operator G : Kﬂ’g"([—R, Rl xS'") — KE’?([—R, R] x S') by

G(f) =mU; +n2Us.

The lemma the follows from the bounds

. ||G(f)||KE*§‘([—R,R}><Sl) < c”f”Kg’?([fR,R]XSl)
o |ILn(G(F)) - f”KE’{‘S’([fR,R}XSl) < 6||f||KE’;’([fR,R}Xgl)e’:YR for some positive §

once one takes R to be sufficiently large by a perturbation argument as in the proof of

proposition 6. The bound on G(f) follows from the bounds on

\Ui(t,0)] < cHXf”CE’?((*R,oo)xsl) i=1
2\

CH(l - X)f”CE’?((foo,R)xSl) 1= 2.

The quantity £p(n Uy +n2Us) — f is nonzero only in the regions corresponding to R — 2 <
t<R—-—1land —-R+1<t<—-R+2 For R—-2<t<R-1,

L0 0G(1) — 11 = [Lo(mUD)| < E|Ln|[U1] < cllf ] gooe R,

One can obtain the same bound for —R+ 1 <t < —R + 2 by a similar argument. |

Now we return to the proof that the solution surface is nondegenerate. Recall that our
last remaining case is when p; € Ky as described above. Take subsequence so that p; — p
and fix an Ry to be determined later. As in the previous case, u; converges uniformly on
compact sets to a Jacobi field @ on X, when restricted to Xy g, U {(t,0) € X3 g, | t > 1}.

This Jacobi field u decays exponentially on all ends of X5 except Ey. Therefore, by Lemma
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5, 4 must correspond to an asymptotic translation of Fy along its axis. So there is some
« > 0 such that
a(t,0) = au® (R — t,0) + O(e™%)

for ¢ > 0 and some § < v2(7). We may as well rescale so that & = 1. In any compact set

K C {(t,0) € X3 g, | t > 1} we have
wilt,0) = u% (t,0) + O(e " FD 4 Jlu; — l| co10))-

Thus (because of the uniform convergence of ;) there is some iy which depends on Ry such
that for ¢ > i
i = R, o 1,0 ry 1)) = O 7).

Similarly, we can restrict u; to X; g, U{(¢,0) € X3 g, |t < —1} and obtain another con-
vergent subsequence on X;. By the argument in the previous case, this limit must be zero,
and so for 7 > 14,

willez((— kit Ro—1,~ Rit Ro+1)xS1) = O(e M),
Now let ®%~ be the Jacobi field on the model Delaunay surface D which corresponds to
changing the necksize of D. The main point is that we can use the function ®%~ to transmit
the eigenmode information of u; from ne end of the cylinder X3 g, to the other. We can
do this because because the cylinder is C*“ close to the Delaunay surface D, u; is close to
the Jacobi field ®%% for D and these two Jacobi fields are dual variables in the symplectic
structure of the deficiency space.

We wish to evaluate
[ ot - L@
[~ Ri+Ro,R; —Rp]xS!

Upon integrating by parts, we find that this integral is

. 0,— A 0,—
/ - | (Qigo 0P (5.1)
ot O 7 oy O o
out op0>— 5
— @0,77 0,+ ‘75R0
/{RiRO}Xgl( a1 g ) O

/ O(e M)
{7Ri+R0}><S1

1+ O(R[]eigRO),
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where we have used in the last estimate the facts that w;(—R; + Ro,-) = O(e*SRO) for
i > ig and that u;(R; — Ry,-) = u " (Ry,-) + O(e*SRO) for i > 49. On the other hand,

we can estimate this integral directly. First note that X3 g, is a graph over the model

¥2(7)
Delaunay surface D, where the graphing function is O((C‘;‘S’ihé) ’ ), which implies that

) R R
|Lp(ui)(t,0)] = O((cggihﬂt’i) ) where § is any positive number such that 0 < ~v(7), in

particular for some & € (6,2(7)). Thus

cosh(R; — Ry) b0 CRe(5—s
H‘CD(ui)HKE’?([fRi+R0,Ri+Rg}><Sl) = ((Tth) ) = O(e o ))

Now define @; : [~ R; + Ro, R — Rg] x S' — R by

u; = G(Lp(ui))

where G is the operator in Lemma 9. By the uniform boundedness of G,

7 _ —Ro(6—6
loti = | 20 g, i o1ty = O o)),
So
| / Lp(u)®>  — Lp(®% )uyl
[—Ri+Ro,R;—Rg] xS!
< / 1Lp(u;)@" " — Lp(@" )uy|
[~ Ri+Ro,R;— Ro] xS1
= / Lp(u; — 1))
[~ Ri+Ro,Ri— Ro] xS!
< / | Lp|l|w; — ;)
Ri+Ro,R; RO} xS1
ht 0
< et / Ro”)(L)
1£o] Ri+Ro cosh(R; — Ry)

== O(R()P R05 5))

which contradicts equation (5.2). This completes the proof that the solution surface Xp 4

is nondegenerate.
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Chapter 6

EXAMPLES AND APPLICATIONS

As is [KMP96] we define the moduli space of CMC surfaces below.

Definition 6. Fiz a topological surface ¥ of genus g > 0 and k > 1 ends. Define My, 4 to be
the space of all proper, noncompact CMC embeddings (with the ends labeled) X : % — R3,
where embeddings are identified if they differ by a rigid motion which preserves the labeling
on the ends or by a reparameterization of X. Endow My, 4 with the Hausdorff topology on

compact sets. We will make the abbreviation My o = M.

Theorem 10. If the embeddings X; with chosen ends E; are nondegenerate and admit de-
formation through CMC surfaces which change the asymptotic necksize of E;to first order,
and X;(t) is a curve of such embeddings in moduli space, then for t small the choice of em-
beddings X;(t) also admit deformations through CMC surfaces which change the asymptotic

necksize of E;(t) to first order.

Proof: Geometrically, the reason this theorem holds is that the set of nondegenerate
embeddings which do no admit such deformation lie in a closed set. Suppose that at ¢t =0
X1 admits a deformation through CMC surfaces which changes the asymptotic necksize
of Ey. Then Bx,(0) does not lie in the hyperplane {¢{; = 0}. Because Bx,(t) varies
continuously with ¢ (it is the kernel of a continuously varying operator with constant rank
3k1), Bx,(t) must remain transverse to {{; = 0} for small ¢. [ |

We have yet to show that there exist CMC surfaces which satisfy the gluing criterion.
It turns out that many surfaces in M3 satisfy the gluing criterion for all ends. To see this,
we must first sketch the recent classification theorem of Kusner, Grosse-Brauckmann, and
Sullivan [KGBS]. They show that M3 is homeomorphic to the space of triples of distinct
points in S2. The classifying map is given as follows. By a result in [KKS89], each 3-ended

CMC surfaces has a plane of reflection symmetry, which we can take to be the zy-plane.
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Cut the surface in half along this plane of symmetry. By a construction in [Law70], this
yields a conjugate minimal surface in S®. This minimal surface has three boundary curves,
each of which is a great circle. By the construction of the conjugate minimal surface, the
boundary great circles are all Hopf circles for the same Hopf fibration. Therefore, the image
of the three boundary curves under this fibration is a triple of distinct points in S2.

For our purposes, the salient feature of the classifying map is that the edge-lengths of
the resulting triangle are 27 times the asymptotic necksizes of the surface. Let X € M3 and
suppose it corresponds under the classifying map to the three points pi, ps, and ps. Then
we can change the three side lengths in turn by moving ps along the geodesic joining p; and
p9, moving p3 along the geodesic joining ps and psz, and by moving ps along the geodesic
joining p; and p3. Thus X admits deformations through CMC surfaces which change the

asymptotic necksizes of each of its ends in turn, which proves the following theorem.

Theorem 11. Let X € Mg with an end E C X. Then there exists a deformation of X
through CMC surfaces which changes the asymptotic necksize of E to first order. Thus any
choice of (X1, X9, E1, E9) where X; € M3 are nondegenerate and Ey and Ey are asymptotic

to congruent Delaunay surfaces satisfy the hypotheses for the end-to-end gluing construction.

Remark 3. In fact, the proof of this theorem shows the following more general fact: given
two three-ended, genus-zero CMC embeddings as above, there is an Rg > 0 such that for
R > Ry the approximate solution XR’¢ of Section 3 is nondegenerate for all relative angles

¢. Therefore one can glue these surfaces together end-to-end for any relative angle.

Let X1 : S2\{p1,p2,p3} — R Be a nondegenerate CMC embedding with no cylindrical
ends. Such embeddings exist by the gluing construction of Mazzeo and Pacard [MP01] and
the nondegeneracy result of Montiel and Ros [MR91]. By Theorem 11 and Remark 3, one
can apply the doubling construction to Xy for any choice of ends and any choice of relative
angle ¢. Because the approximate solutions depend continuously on ¢, so do the operators
E}’(}W and QXR@. Hence the solution embedding X (¢) = Xg 4 depends continuously on ¢.
In this construction of X (¢), one must choose a parameter R = R(¢) where R(¢) is large

enough so that Proposition 6 applies. Because ¢ € S! and S! is compact, one can choose
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an Ry such that Ry > R(¢) for all ¢ and then work only with this choice of Ry. Varying ¢

through all values in S! yields a continuous closed loop of embeddings X (¢) in M.

Note that each X(¢) is has the conformal type of a four punctured sphere. Let 7 :
My — Conf(S?\{p1, p2, p3,ps}) be the natural projection, where Conf() is the space of
conformal structures on 3, defined by Conf(3) = 7 (X)/PMod(X). Here Teichmiiller space
T(X) is the space of complete metrics on ¥ with constant curvature —1 and the pure
mapping class group PMod(X) is the group of isotopy classes of diffeomorphisms of ¥ which
preserve its punctures (or boundary components, setwise). An element [f] € PMod(X)
acts on g € T(X) by pulling g back to f*g. Note that for an arbitrary diffeomorphism f
preserving the punctures of ¥, the metric f*g may not have constant curvature —1, but (by
the Uniformization theorem) f is isotopic to some f such that f*g has constant curvature
—1. Thus the action of PMod(X) on 7(X) is well defined. Because 7 (X) is simply connected
(contractible, in fact), 71 (Conf(X)) = PMod(X).

Now examine the induced map

X(qﬁ) =7moX(¢): S' - Conf(SQ\{pl,pg,pg,p4}).

The loop X in Conf(S2\{p1, p2, p3,p4}) is a Dehn twist in PMod(S2\{p1,p2,p3,ps}) about
a loop 7 in S®\{p1,p2,p3,ps} which encloses two of the punctures. We can take v C
S2\{p1, p2,p3,p4} to be the slice {x = 0} in the original construction of the approximate
solution X (0). Such Dehn twists generate PMod(S?\{p1, p2,p3,p4}), and so the loop X is
homotopically nontrivial in Conf(S?\{p1, p2, p3,pa}). To see that the Dehn twist about ~ is
a nontrivial element in PMod(S?\{p1, p2, p3,p4}), observe that it does not act trivially on
the isotopy class of 1 (see the figure below). See, e.g., [Iva] or [Bus92] for more details on

this point.
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In the case where X is a four punctured sphere, we can identify the quotient Conf(%) =
T(X)/PMod (%) explicitly. Given the choice of punctures {pi,p2,ps,ps}, there is a unique
Mobius transformation @ which sends p; to 0, po to 1, and p3 to oc. The conformal
type of S2\{p1,p2,p3,p4} is then determined by ®(p4), and so Conf(S?\{p1,p2, p3,p4}) is
naturally equivalent to S?\{0, 1, 00}. Moreover, our loop X(qﬁ) describes a loop about one
of the punctures {0, 1, 00} and is thus homotopically nontrivial. The loop in question wraps
around one of the punctures because it corresponds to the relative positioning of the ends
of X(¢) and by construction the ends of X (¢) twist around each other when one varies ¢
about a full circle.

If X(¢) were a homotopically trivial loop in My, then it would push forward via 7 to a
homotopically trivial loop X in Conf(S?\{p1, p2, p3. p4}), contradicting the above argument.

More generally, suppose X1 : X1 — R? is a nondegenerate (k — 1) ended CMC surface
whose ends are asymptotic to Delaunay surfaces with small necks. Again, such surfaces
exist by the gluing theorem of [MPO01]. One can pick an end E; of X;(X3) and find a
nondegenerate three-ended CMC surface (again with all asymptotic necksizes small) Xs :
S2\{p1, p2, p3} — R® with an end E, which is asymptotic to a congruent Delaunay surface.
By Theorem 11 and Remark 3 this choice of CMC embeddings and ends is transverse at
infinity for all relative angles ¢, and so the argument above produces a nontrivial loop in

M, by varying the angle ¢. Thus we have shown the following theorem.

Theorem 12. The moduli spaces My for k > 4 all have connected components which are

not simply connected.
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This theorem also follows from recent work of Mazzeo, Pacard, and Pollack in [MPPR].
Here they combine and modify the gluing constructions of [MP01] and [MPP] to produce
many new complete surfaces of constant mean curvature. In particular, there are two ways
in which the constructions of [MPPR] may be used to produce homotopically nontrivial
loops in the respective moduli spaces. First they establish a version of the connected sum
theorem of [MPP] which allows them to glue together two complete nondegenerate CMC
surfaces, in particular two Delaunay surfaces. This may be done with any choice of relative
angle between the surfaces, and again yields a non-contractible loop in the moduli space.
The idea for the second type of construction of nontrivial loops is due to Pacard and clearly
seems to be the most versatile. Here they glue a half-Delaunay surface (with small necksize)
onto a nondegenerate (k — 1) ended CMC surface to obtain a family of nondegenerate k-
ended CMC surfaces. Since this may be done at any point they obtain one parameter
families of surfaces by varying the point at which the gluing is done. In particular, this

allows them to construct many distinct homotopy classes of non-contractible loops in M.
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Appendix A

VARIOUS FORMULATIONS OF THE CMC CONDITION

One can formulate the condition that an immersion is of constant mean curvature in

various ways. Each is useful to understand some part of the general theory of CMC surfaces.

A.1 The Local Formulation: Principal Curvatures

We start with the local formulation in terms of coordinates (s,6) on ¥. Then

= Ena _ [ (X, %) (X,.%) |
| F e | (xexy) (x|

Ao L M _ (Xss,v) (Xgp,v)
M N (ng,lj> (Xaﬂay>
and
1 1LG+ NE —2FM
H=—tr,A=—
2 AT 9T REG F?

Near any point, we can write ¥ as a graph over its tangent plane. Then the immersion X

takes the form

X(s,0) = (5,0, f(s,0)).
If X takes this form, the metric is given by

BRSNS
-
| fofo 1412 ]

and the second fundamental form is given by

1 fss sz

I+ 2+ 17 | fso foo

A:
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In particular, the mean curvature is given by

_ S(LH D) + FanL+ ) =20 fofo.

H 3
200+ f2+f2)>

Setting H = 1 and rearranging yields

0= Fos(1+ f2) + foo(1 + £2) = 2fsafsfo — 201 + f2 + f3) 7. (A1)

Several remarks on equation (A.1) will prove useful. First, this is a quasilinear second order
PDE in f. It is strongly elliptic. In fact, the linearization of the second order part the right

hand side of equation (A.1) is given by the matrix

L+ f§ —fsfo
_fsf0 1+fs2

And so the principal symbol of equation (A.1) is given by

1+ 2 —f,
{/\ u} ol =N +p>+ (Ao —nf)? >0

—fsfo 1+ f2 Iz
with equality only when A = 0 = p. This implies, among other things, that CMC surfaces
are analytic (elliptic regularity) and the function f obeys the strong maximum principle
(e.g . f can have no positive interior maxima; see, for example [PW84] or [GT77]).
One can also attach a geometric interpretation to these coordinate computations. In the
following paragraph, we will work only at the origin in the (s,60) coordinates and we will

assume that

This amounts to setting the (s,f) plane to be the tangent plane to 3 at the point corre-
sponding to (0,0). Then

Q(0,0): 10 andA(0,0): fss fsg
01 fso foo

Recalling the minimax method to find eigenvalues using the Raleigh quotient, we see that
the eigenvectors of A point in the direction of steepest descent and ascent for the function

f. Call these eigenvectors 9] and 75. Order them so that their respective eigenvalues k; and
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ko satisfy k1 < ko. Notice that setting k1 + ko = 2 and ky < ko implies ks > 1 > 0. If we let
h(t) = f(t¥y) the we see t = 0 is a local minimum for A. In fact, the graph of h is concave up
and the circle lying above the graph which best fits the graph will have radius M+@ = kl—?
Similar remarks hold for k1, although one must be careful of signs when treating this case.
Thus we see that the eigenvalues ki and k9 correspond to radii of the largest and smallest
circles (taking signs into account) fitting curves in ¥ one finds by intersecting ¥ with a plane
normal to X at the origin. These eigenvalues k; and kg are called the principal curvatures
of ¥ and the eigendirections span ¢; and span ¥y are called the principal direction. A point
on Y is called umbilic if k&1 = k9. The preceding discussion shows that the mean curvature

of a surface at a point p is the average of the curvature of curves in ¥ through p in all

directions, giving credence to the name “mean curvature”.

A.2 The Variational Formulation

The variational set-up described below is the same as in [Li93]. This formulation of the
CMC condition is classical. One can find a modern treatment of it in volume IV of [Spi75]
(towards the end of Chapter 9) and [Kus91].

On can also formulate the condition that X is a CMC immersion in variational terms.

First consider a one parameter family of immersions X; : ¥ — R3 with Xy = X. Then the

first variation of area %‘t:o Area(Xy (X)) = %‘t:[] Js. X/ (dV) is given by
d d
—|  Area(X; (X)) :/<— X, Hv).
dt|,_, y dt],_g

Now consider the following situation. Let X be a CMC immersion of ¥ as above and let
U C R? be a bounded open set with OU = Q U S where S is an open subset of X (3) and
0Q = 0S = 7 is a smooth closed curve in X(X). Let V be a vector field supported in
U\Q and denote its flow by ¢;. This vector field yields a one parameter family of surfaces
St = ¢+(S) and a one parameter family of solids U; = ¢(U). Pick a real constant H and
let h denote the mean curvature of X. Then the formula for the first variation of volume
yields

4 (Area(Sy) — H Vol(Uy)) = (h — H) Area(S5).
dt|,_,



46

Thus we see that surfaces with mean curvature identically H are critical points of the

functional Area —H Vol.

A.3 The Hopf Differential, the Sinh-Gordon Equation, and Harmonicity of the

Gauss Map

Much of this formulation can be found in [Wo094].
For this section we will work in conformal coordinates on Y. In other words, we will
let (s,6) be coordinates on X such that £ = G = 2¢?* and F = 0. Then z = s+ i is a

complex coordinate on Y. Define the vector fields
1 ) 1 .
9, = 5(85 —idy) and J; = 5(85 +1i0p).

Notice that

Consider the immersion X restricted to a simply connected region €2 on the surface. The
condition that z = s+ i is a conformal coordinate with conformal factor 2e?* is equivalent

to

(X,,X,)=0 (X,, X;) = e*.

In addition, we also have

(v, X,) =0 (v, Xz) = 0.
Taking derivatives of these equations yields
(Xooy X2) =0 (X2, X,) =0 (X, X5) = 20,67
and
(v, Xoz) + (12 X2) =0 (v, Xaz) + (v, X2) = 0.

If we let (v, X,,) = @ and note (v, X,;) = 1(v,AX) = Le* H, then the above equations
imply
1 1
X, =2w,X,+Quv X,;= §€2wHI/ v, = ngXZ — Qe X;. (A.2)



47

As a side note, Q is the coefficient of a quadratic differential form Qdz?. The function Q
itself is only locally defined, but Qdz? is a globally defined quadratic differential form. This
quadratic form is called the Hopf differential.

We can rewrite equations (A.2) as

X, 2w, 0 Q X, X,
X; | =] o 0 lemH | | X, | =U| X, (A.3)
v, —%H —Qe % 0 v v

Similarly,
X, 0 0 3e*H X, X,
X, | = 0 2,  Q X | =V|X: |- (A.4)
v | —Qe féH 0 v v

z

Setting 0; of equation (A.3) equal to 0, of equation (A.4) yields
Us—V.+[U,V]=0. (A.5)
One can compute that Uz — V, + [U, V] is given by

2w,z — ‘Q|2€72w + %H262w 0 Qs — %e2sz
0 e+ QP M Q.+ b,
7%H2 +eQ, %HZ — e Q, 0

Setting this quantity to zero yields the following two equations:

1
Aw + §H262“’ —2(QPe* =0 (A.6)
and
1
Qg - 56’2sz = 0. (A7)

Recalling that H is real-valued (and so H; = (H,)), we see that the latter equation implies

H is constant if and only if @ is holomorphic. From this Hopf (see [Hop56]) proved

Theorem 13. (Hopf’s Theorem): Let X be a compact simply connected immersed CMC

surface. Then X is a round sphere.
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First note that we can rewrite () as

L—N
Q=—5— iM.

From this formulation we conclude that zeroes of the Hopf differential are umbilic points. By
uniformization, if ¥ is a compact simply connected surface then ¥ is conformally equivalent
to a sphere. From the fact that 3 is CMC we conclude that Qdz? is a holomorphic differential
on the sphere. This forces Qdz?> = 0 on all of ¥, and so all points of ¥ are umbilic. From
this fact it is easy to show that ¥ must be a round sphere.

If X is a mean curvature one immersion of a torus, then one can extend the function @)
from a small patch €2 about the origin to be a doubly periodic function on the entire plane
C. In particular, () is a bounded holomorphic function on C and hence must be constant.

1

After multiplying by an appropriate number in the domain, we can choose Q = 5. With

Q= % and H = 1, equation (A.6) now becomes
Aw + sinh2w = 0, (A.8)

which is known as the Sinh-Gordon equation. Notice that the rescaling to set ) = % is a
rescaling in the parameter space and the rescaling to set H = 1 is a rescaling in the target
space. In particular, these rescalings can be done independently.

Further computation shows

1 _ 1 _
Vyz = _[§H2Xz + Qze X5 + (ZH262“’ + |Q\26 2“’)1/].

Thus X is a CMC immersion if and only if v, is a multiple of v. Recalling that v : Q — S2,
we see that Av = \v is precisely the condition that v is a harmonic map into S%. Thus X

is a CMC immersion if and only if the Gauss map v is harmonic.
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Appendix B

EXAMPLES OF CMC SURFACES

As mentioned above, the unit sphere and the cylinder of radius % are both CMC. The
Delaunay surfaces provide the next example of embedded CMC surfaces. One can think of

these surfaces as interpolating between spheres and cylinders.

B.1 Delaunay Surfaces
We seek an embedding of the form
D(t,0) = (p(t) cos 0, p(t)sinh,t) : R x S' —» R

with mean curvature 1. An embedding of this form is rotationally symmetric about the z
axis. The condition that D is an embedding implies p > 0. The CMC condition implies

that p satisfies the equation

1 3
Ptt—;(l‘i‘P?)‘FQ(l‘i‘P?)Q = 0. (B.1)

One particular solution is p = % This solution corresponds to the cylinder. Normalize p

so that p assumes a local minimum of € at ¢ = 0 (this amounts to a translation in the ¢
variable). One can then show that p is periodic and in fact € is a global minimum for p.
Critical points for p alternate between minima and maxima. The minimum value (e) for
p is called the necksize of the embedding. One can show that as € — 0 the embedding D

tends to a string of unit spheres {z? + y? + (2 — 2n)* = 1} for n € Z.

e=20

\KXZX:YZE

N

— 1
€=35 0<€<§



50

We will change variables, first to make D into a conformal embedding. To this end, we

must replace ¢ with k(s) where k satisfies the equation

p(k(s)) = K'(s) (¢ (k(s)) + 1).

Now let 7 = 2¢ — €2 and define o(s) by p(k(s)) = 7¢’®). One can show that 7 is a first
integral of equation (B.1), see section C.2. Then one can show

Oss + %QSinh%* =0 % = %Q(e% +1).
In fact, finding solutions to the above equations is equivalent to finding an embedded De-
launay surface.

Geometrically, one can think of the Delaunay surfaces as interpolating between the
cylinder and the string of spheres. First place an ellipse tangent to the z axis in the x — z
plane so that one of the foci is on the z axis and is positioned to that it is as close to the
z axis as possible. Now roll the ellipse along the z axis. One can show that the focal point
which started on the z axis traces out the profile curve of a Delaunay surface (see [Eel87]).
Varying the eccentricity of the ellipse corresponds to varying the necksize of the surface.
The cylinder corresponds to rolling a circle of radius % (the center is the only focal point
and stays at constant height %) The string of spheres corresponds to rolling a line segment

of length 1 (this is the degenerate case where the eccentricity goes to oo and the focal points

go to the endpoints of the line segment).

B.2 CMC Tori

One might think to look for CMC immersions of compact surfaces. In the 1950’s Hopf proved
that any simply connected CMC immersion of a compact surface has to be a round sphere
(see Hopf’s theorem above, or [Hop56]). Around the same time, Alexandrov proved that
any embedded compact CMC surface must be the round sphere (see Theorem 15 below).
If one were looking for compact CMC immersions, then given these two results one might
next look for CMC tori. Below we will regard a torus as R? /? where ? is a lattice.

To find CMC tori, we look for doubly periodic immersions R> — R*. We can reduce

this problem as follows. First, note that any immersion of a surface is determined up to
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rigid motions by its metric and its second fundamental form. Also notice that locally, the
metric is determined by its conformal factor and that equations (A.3) and (A.4) determine
the second fundamental form. Therefore, the conformal exponent w will locally determine
the immersion. Finally, notice that if ¥ is a torus then w must in fact be a doubly periodic
function on R?. Thus the task of finding a CMC torus is the same as finding a doubly
periodic solution to the Sinh-Gordon equation (equation (A.8)). In 1986, Wente proved
[Wen86] that such doubly periodic solutions exist.

In 1987, Aubresch ([Aub87]) found many CMC tori by requiring that one line of curva-
ture be planar. The condition that A has distinct eigenvalues allows us to simultaneously
diagonalize A and g, so away from umbilic points we can choose coordinate lines which are

also lines of curvature. The condition that the 6 coordinate line in planar is equivalent to
wgp cosh w — wswyg sinhw = 0.

We combine this equation with equation (A.8) to get an overdetermined system of equations.

Under the change of variables W = cosh w this system becomes

(W2 —1)AW —W|IVW2+WW2-1)2 = 0
(W?2 —1)Wy —2WW Wy = 0.

Theorem 14. (Aubresch): The real analytic solutions of the above system are given by

_ Js+ 3o
1+ f2 4+ g2

where f(s) and g(0) are elliptic functions. Moreover, one can recover f and g by

W, = —f(s)(W?-1)
Wy = —g(O)(W?—1).

However, one still has to find conditions so that W is doubly periodic (these are called
closing conditions). This is a rationality condition on the initial conditions ¢ and d of f
and g. Thus the CMC tori with one planar line of curvature are parameterized by the two
parameters ¢ and d. Aubresch then finds closing conditions on ¢ and d (assuring that the

solution W is in fact doubly periodic).
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In 1989 Pinkhall and Sterling classified all CMC tori in [PS89]. Their idea is to write
solutions to equation (A.8) as the flows of two commuting vector fields. Then one can
integrate to get solutions and show that there exist only finitely many independent integrals.
They then embed the ODE system in the Jacobian variety of the torus and find the closing

conditions.

B.3 Kapouleas’ Surfaces

In [Kap90] Kapouleas produced many examples of noncompact embedded CMC surfaces.
As a first step, he creates a central graph, consisting of vertices, edges, rays, and weights for
each vertex. He requires that the edges of these graphs have lengths that are even integers
and that the graphs are balanced around each vertex (see section C.2). About each vertex
he places a sphere of radius one. He places half a Delaunay surface about each ray, with
necksize determined by the weight at the starting vertex of the ray. About the edges of
length greater than 2, he places a piece of a Delaunay surface to connect the two spheres
centered at the vertices which are the endpoints of the edge in question. Again, the necksize
of this joining piece of Delaunay surface is determined by the weights of the vertices (which
must be the same by balancing).

Next Kapouleas pieces all the surfaces together to form a smooth approximate solution.
He pastes the spheres and pieces of Delaunay surfaces together with appropriately chosen
cut-off functions. However, all the parts do not quite fit together without some sort of
perturbation. For instance, the period of a Delaunay surface with small necksize is almost,
but not quite, 2. So the Delaunay piece joining the two spheres mentioned above does not
quite fit. To remedy this problem, Kapouleas first slightly perturbs the graph, and then
slightly perturbs the necksizes of the Delaunay surfaces. After this step, he has a surface
which has mean curvature one everywhere except for small bands near each neck of the
Delaunay pieces. In these bands about the Delaunay necks the mean curvature is close to
one.

Then Kapouleas solves the linearized problem (locally) on each bulge between the De-

launay necks. However, in these regions he must avoid the spherical harmonics which arise
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from eigenfunctions of the operator A + 2 on S?. Thus he solves the linearized problem
orthogonal to a finite dimensional “substitute kernel” on each bulge. A further difficulty in
piecing together a global solution to the linearized operator from all these local solutions
is that the global solution must be orthogonal to each of the substitute kernels mentioned
above. This means that one must find a solution to the linearized problem which is orthog-
onal of to an infinite dimensional subspace. Finally, he must solve the nonlinear problem.
To do this, Kapouleas shows one can find appropriate solutions for the linear problem after
perturbing the graph mentioned above, and then uses a Leray-Schauder fixed point argu-
ment to show that a solution to the nonlinear problem for one of the perturbed graphs must

exist.
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Appendix C

GENERAL PROPERTIES OF ALMOST EMBEDDED CMC
SURFACES

As stated above, we are concerned here with embedded CMC surfaces. However, many

of the theorems still hold for a wider class of immersions, called almost embeddings.

Definition 7. An immersion X : ¥ — R? is called an almost embedding (or an Alezandrov
embedding) if one can write 3 as the boundary of a solid handle-body Q2 and X extends to

be an immersion of €.

One can think of this property as distinguishing an “outside” and an “inside” for the
surface (the inside corresponding to the interior of the solid handle-body). Roughly speak-
ing, the condition that a surface is almost embedded is the weakest condition one can place

on the surface such that one can apply the Alexandrov reflection argument below.

C.1 Alexandrov Reflection

Alexandrov reflection is really an application of the maximum principle. To see how it
works, we will first apply it to a compact CMC surface.

Let X : ¥ — R? be a CMC embedding of a compact surface. Fix a large negative T
so that the X lies completely above the plane 7 = {z = T'} (one can do this because ¥ is
compact). Let m; = 7w + (0,0,%) be the translate of = by ¢ in the z direction. Let ¥; be the
part of 3 which lies below 7; and let i?t be the reflection of 3; through the plane 7;. For
t small, both ¥; and ¥; will be empty. If ¢y is the first time of contact of 7w, with 3, then
(locally) one can write ¥ as a graph over m,. Thus for ¢ = ¢y + J, with 6 > 0 small, the
reflected surface 3; will lie completely inside . In other words, for those values of ¢ slightly
larger that %y, the reflected surface 3, lies in the bounded component of R3\Y. We pause

to note that this is where we need X to be embedded.
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Note that for ¢ sufficiently large, ¥ will lie completely below m; (again, by the compact-
ness of %), and so ¥; cannot be contained in the bounded component of R*\¥ for all ¢.
Let #; be the infimum of ¢ > t3 such that f]t is not contained in the bounded component
of R¥\Y and let  be the reflection of ¥ through the plane m;,. Then in fact ¥ and ¥ are
tangent at some point p.

If the tangency at p is not a vertical tangency, write 3 and Y as graphs of u and wuy
(respectively) over the plane m;,. Let the tangency point p have coordinates (z,y) in this
plane. Then u(z,y) = ui(z,y) and Vu(z,y) = Vui(z,y). Also, u and u; both satisfy the
same strongly elliptic equation (equation (A.1)). By the maximum principle, v = u;, and
therefore 3 locally agrees with 3. Both surfaces are analytic and connected, so ¥ = .

If the tangency is at p is a vertical tangency, one needs to apply the Hopf boundary
lemma (see Theorem 10 of Chapter 2 of [PW84]). In either case, we see that ¥ has a plane
of symmetry parallel to the z — y plane. However, the z — y plane had no special relation
to the original surface ¥, and so we conclude that ¥ has a plane of symmetry in every

direction. Alexandrov used this to conclude

Theorem 15. (Alexandrov’s Theorem): Let X — R3 be a compact embedded CMC surface.

Then Y 1s the round sphere.

In the case where 3 is noncompact, a similar construction (found in [KKS89]) still works.
Let 7 C R? be a plane with unit normal v. Let L be the line parameterized by L(t) = tv.
For t € R and p € 7 define

7rt:7r+t1) Ht:Usztﬂ—s Lp:L-I-p
For any set G C R? let
Gy =GnNIL Gi={p+@t—rv|pemp+(t+rve G

Let ¥ be an almost embedded surface, with ¥ = 0€). First we restrict to a piece of X by
taking an open set W C Q and letting S = W N X. Note that neither W nor S need be
connected nor bounded. Suppose p+tv € W for sufficiently large ¢. Let t; be the supremum
of ¢ such that P +tv € W. Then P, = p + t1v is the point of first contact of L, with W.
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If this first contact is transverse, let ¢5 be the supremum of ¢ < #; such that p +tv € W.
Then P, = p + tov is the point where L, first leaves W. Otherwise, let P, = P,. If P and
P, are both in S, then (as in [KKS89]) we define

t1 + 1o

ai(p) = 5

Notice that ay is not defined for all p € =.

Lemma 16. (Korevaar, Kusner, Solomon): Fiz a plane © and its normal v. If, with W C 2
and S C X as above, ay has a local interior mazimum value z at p € w then the plane 7, is

a plane of symmetry for 3.

Proof: First notice that P;(p) reflects to P»(p) through m,, by construction. Pick a

nearby ¢g. Then by maximality ¢;(q) + t2(q) < 2z, and so

z— (ti(q) — 2) > t2(q).

This means the reflection of P;(q) through m, lies above P»(q). This implies a neighborhood
of Py(p) in S, lies inside W. If Py(p) # P»(p),Then S and S, are tangent at P»(p) with
nonvertical tangent. If Pj(p) = Py(p), then S and S, are tangent with vertical tangent.
In either case, argue as above using the maximum principle to see that m, is a plane of
symmetry for X. |

The ends of ¥ are the unbounded connected components of ¥\B, for sufficiently large
r. Consider an end of ¥ contained in a solid cylinder C;:R(P) ={p+tallp—P| <
R;(p — P,a) = 0;t > 0}. We take W = QnN CZR(P) and S = OW N X. Meeks proved in
[Mee88] that any end of a complete embedded CMC surface is contained in such a solid
half-cylinder. Choose a plane 7 and normal v as above with a — v. Let x(p) = (p,a) and
define

afz) = pmax a1 (p)-

Then one can use this Alexandrov function and similar arguments as in the above Lemma

to show:

Theorem 17. (Korevaar, Kusner, Solomon): If 3 is a properly embedded CMC surface

contained in a solid cylinder, then ¥ has a rotational axis of symmetry parallel to the axis
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of the cylinder. Also, if ¥ has finitely many ends and is contained in a half-space 11y for
some plane w, then X has a plane of symmetry parallel to w and is thus contained in a solid

slab.

C.2 The Balancing Formula

CMC surfaces must also obey a balancing condition. This means that the ends of the surface
> must be arranged to balance each other. To see this, we start with the following general

proposition found in [Kus91].

Theorem 18. (Kusner): Let M be a 3 dimensional Riemannian manifold with Hy(M)
and Ho(M) trivial. Let G be the isometry group of M and let g be its Lie algebra. For
some constant H, let 33 be a surface in M with mean curvature H. Then there is a natural
cohomology class p € H'(X) ® g* defined as follows: let ? be a 1-cycle in ¥ with A C M
such that OA = 7. Let v be the oriented normal to A and n the oriented conormal to 7.

LetY € g. Then

Wy = [y - [ @),

The content of this theorem is that the formula above depends only on Y and the
homology class of ?. Let ? be another 1-cycle homologous to ? in X. Because H(M)=0
there are surfaces A and A in M with A = ? and A = 7. Also, ? —7 forms the boundary
of some surface S C X. Then A — A + § forms a 2-cycle in M. Because Hy(M) = 0, there
is an open set U C M such that U = A — A+ S. Now take Y € g. Note ¢; = ¥ is
a one-parameter family of isometries. In fact, the Killing field associated to ¢, is just the

left-invariant vector field associated to Y. Therefore,

d

0= —
dt

[Area(d(¢:(U))) — HVol(¢:(U))]

t=0

Applying Stokes” Theorem, the right hand side becomes

./F<n’Y>./ﬁ<n’Y>H_/A<V’Y>+H/A<V’Y>v

Amn—ﬂAmn=émm—Hémw

which shows
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Now consider the case M = R? and take Y = e, eg, e3, the constant translational vector
fields in the directions of the coordinate axes. Let W C Q as above and W = SU(Q), where
S = 0W N 3. Then the above theorem implies

/ nH/VzO.
a8 Q

One useful choice of W is to take W = QN B, for some large R. Let S =W NY. As
mentioned above, Meeks proved in [Mee88] that any end of ¥ must be contained in a solid
cylinder. So we can take R large enough so that 05 is k disjoint simple closed curves, where

>} has k ends. Then we define the weight vector of an end as follows.

Definition 8. For an end E which is contained in a solid half-cylinder C'(;':T(P), define the

Ly S B

where m = a~, arranged so that m intersects E transversally, v is the normal to w, and n is

weight of the end E as

the conormal to 1 N E.

By the balancing formula, the weights of all the ends of ¥ must sum to the zero vector.

Consider the case of a Delaunay end. We can take a = (0,0,1) and
E(t,0) = (p(t) cos b, p(t) sin, 1),

and 7 any plane 7 = {z = zp}. By symmetry, w(E) must point along the z axis. Moreover,
(a,v) =1 and (a,n) = (1 + p?)fé. Using length(r N E) = 27p and Area(nr N W) = mp?, we

get

2
w = (—L— — 76%)(0,0,1).

Vi+o]

One can check that

d . 2mp PPy 1 3
Pl = ————lpu — ;(1 +07) +2(14p7)2] =0,

= _x

W1+ pi (1+p7)2
and so the coefficient of the above weight vector is a first integral of equation (B.1). In fact,
if we normalize so that p(0) = € is a minimum, then evaluating this constant at ¢ = 0 shows

\/12:)_—,;3 —p?> =2 —€? = 7. Thus 7 = 2¢ — €2 determines the weight of a Delaunay end of

necksize e.
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Appendix D
SOME USEFUL COMPUTATIONS INVOLVING G, A, AND v
The following computations involving g, A, and v will prove useful later. The general

setting is that we have an immersed surface X : ¥ — R? with coordinates s and . The

metric is given by g = Eds? + 2Fdsdf + Gdf? where E = |0, X ||?, etc.

First note

(2X.0,X) = LB, (D.1)

and
1

(0FX,0pX) = 5Go- (D.2)

Also,
<X897XS> — Eﬂ - <X57X59>

and so

1
<X567X5> = EEH-

This implies
1
(X5, Xg) = Fs — (X5, Xg9) = Fs — EEQ.

Similarly,

1
<X307 XG) = EGS

and

1
(Xog, Xs) = Fp — 5 G-
In conformal coordinates (¢ = E(ds? 4+ d#?)) these reduce to
1
(Xss, Xg) = —iEg = (X9, Xs) (D.3)

and

1
(X0, Xs) = *§Es = — (X9, Xo). (D.4)
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Also, we can write

1 1 L M
Vs = E(asXa vs)0s X + 5<80X7 vs)Op X = _EaSX — =0 X.

G
Similarly,
M N
= 9,X — —9yX.
7 7 05 ek
So
, L* M? _FLM
Il = = + = + 220
B G EG
and

w2 = M? N N? L oFMN
TR T a EG
Notice that in conformal coordinates, these reduce to

1
Iwsll? = (L2 + M?)

and
1
2 2 2
= —(M* + N*).
vl E( )

We can put all of this together to read

1
X, o L[ x X,
Xg | =| 2 & M Xy | =U| Xy
v ) — % — % 0 v v
and
X, Lo Gs M X, X,
Xp | = | B2G @ N X, | =V | x,
v — % — % 0 v v

0
In conformal coordinates, U and V reduce to

1 B, —1Ey LE
U=+%| 3B 3B ME
L -M 0
and
By 1B, ME
Vz% —3E, 3By NE |.
-M N 0

(D.5)

(D.6)



61

Appendix E
THE LINEARIZED OPERATOR
To explicitly compute £ we first need to write out A ¢ in coordinates. To compute the

Laplacian, first let A = EG — F?, B = E,G + EG,; — 2FF,, and C = EyG + EGy — 2F F.
Then

1 L
Ay = \/maig”\/detgaj
1 G F F E
= — |0y—=0;5 — 0s——=0y — Op—=04 + Op—=0,
\/Z[ VA va'l A "VA (’]
1 - 01 1 1GB 1FC
= (G 2F8589+E89]+A[Gsas 5 05— Fods + 5 —0s
1 1FB 1 EC
+Z |:—F58g + —783 + Egag — —783:|

Notice that in conformal coordinates (g = E(ds? + d#?)) this expression reduces to

Ay = — (02 +9p). (E.1)

1
oL
If we replace w by tw, then the formal Taylor expansion above becomes a Taylor expan-

sion in t. Thus we see that

Lxw) = & H{tw) 3

Thus our next task is to compute this derivative. Kapouleas computes the linearization in
appendix C of [Kap90] using a slightly different method. Both computations are straightfor-
ward but somewhat involved. Below we will sometimes use a dot to indicate differentiation
with respect to t. Recall that all the unbarred quantities depend on . We will suppress

this dependence. We have

7o 1EN +GL — 2FM
) EG — F?
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So

[y

H _ _ . _ . . __ _
dd—t = ——(EG—-F?)?(EG+ EG —2FF)(EN +GL —2FM)
0

—_ N

+-(EG — F)"(EN 4+ GL — 2FM + EN + GL — 2FM).

\)

We can significantly simplify the task of finding £ ¢ is we work in conformal coordinates

for X. So now assume that g = F(ds? + df?). Then the above expression for % simplifies
to
dH 1o e .
— | = —§E (E(E+G))(E(L+N))+§E (EN+EL—-2FM + E(L+ N))
0
1 D S S
= Sl (E+ OV + L) + (BN + GL = 2PN + B(L + N))]
1 .. L. .
= 5lB(N + L)~ BL -GN —2FM) (E.2)

To identify this beast, we will need some preliminary computations. First,

d d _ _
7 E = 7 (X + twsv + twrg, Xg + twgv + twryg)
0 0
= it (E + 2tw(X5, vs) + tQUJ? + t2w2||Ds||2)
0
= —2wlL. (E.3)
Similarly,
d _
pn F=-2wM (E.4)
0
and
d _
7| G=—2uN. (E.5)
0

Now we can compute the part of ‘fi—lj which has derivatives of components of the metric.

Plugging equations (E.3), (E.4), and (E.5) into (E.2) yields

1 _ _ _
~ 57 (F20)(L? + N? +2M%) = || Ag |w. (E.6)

It remains to compute
1

ﬁ(L+N).
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We have that L = %‘0 (0:X,v) = (%‘U

need to know ‘fi—’z. First write v = (EG — FQ)*%asX x 0Xy. So

02X, v) + (02X, ‘é—'g o)+ To do this computation we

‘fl_’; o= —%(EG — F?) 2 (EG + EG — 2FF)9,X x 03X +% % 085X x Op X
— Y LG4 NE— 200X x X+~ L] a.x x apx
E3 E dt|,
= 2wHv+ i i 0s X x 0pX.
E dt|,

Using equations (D.5) and (D.6), this last term is

d d

—| 0sX X X =

dt, " dt |,
= (8X><1/g+ys><89X)+w51/><39X+w98X><u

(05X + twizg + twgr) X (0p X + twiyg + twe)

= D[0,X x (MO,X + NyX) + (LO,X + MdyX) x 35X
—wg0s X — wyOp X

= —w(N+Lv— ws0sX — wpdyX.

Adding these together, we get

d _ 1 - _ _
d_: =2wHv — E(w(L + N)v + ws0s X + wp0pX). (E.7)
0

By equations (E.7), (D.1), (D.3), and (D.7)

dL 1 _ _
= (s + 2wyl + wirss, V) + (02X, 2wHD — E(U)(L + N)v+ws0s X + wpX))

@,

L - 1 E, 1 E
= U)ss*E(L2+M2)+2U)HL*%(L-ﬁ-N)*EU)SfS-FEU)ng.

Similarly, by equations (E.7), (D.2), (D.4), and (D.8)

= (wgov + 2wyl + Wiy, V)

ral

o 1 - 1 o1 .
+{0FX , 2wHD — E(w(L + N)v + S0, X + SwydpX)

wN _ 1 _ 1 _
= wyy — E(W + N?) + 2wHN — F( + N) + gwsly — JwyEy.
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Adding these together, we get

- 1 B, 1 Ey 1 E; 1 E
L+N = wss-l-wggfiwsfs iwgfa—l—awsfsfawgfaf%

+2wH(L + N) — %(132 +2LN + N?)

S

w — _ _ R —
= wss + wog — E(2L2 +2M? 4+ 2N? + 2LN) + =(L 4+ N)?

&

w - — —
= Wgs + Woyg — E(L2+2M2+N2)'

Adding together equations (E.6) and (E.8) and using equation (E.1) yields

dH

Liw = —
dt |,

1 _ _ _
= [Ax|Pw + 5 (wis +wgo) - 2%@2 +2M? + N?)

1
= (A + A5,

(L% + 2M* + N?)
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Appendix F

FREDHOLM PROPERTIES AND GROWTH RATES

In this chapter we prove some general mapping properties of Lx on weighted Holder
spaces where X : ¥ — R? is an embedding with asymptotically Delaunay ends. The two
main results will be the characterization of when L is Fredholm (i.e. for which weights) and
the Linear Decomposition theorem. The analysis in this chapter is essentially contained in
[MPU96]. Below we will use CZ{%(M) to denote the Holder space of functions with Dirichlet

boundary data. (We will omit the weighting if M is compact with boundary.)

Lemma 19. Let X = K U (U'ij) be a properly embedded, noncompact surface with ends

written as graphs over cylinders. Suppose

Lx : CEP(K) - CEY(K)
1s Fredholm and

Lx : C{I;’JZSQ’Q(E]') — C(I{g(E])
1s Fredholm for all 5. Then

Lx : C¥™%(X) = CP™(X)
1s Fredholm.

The proof of this lemma follows that of Proposition 11 in [MPP], and we refer the reader
to the latter proof for more details.
Proof: Let x be a smooth compactly supported function with y(z) =1 for |z| < r and

x(z) =0 for |x| > r + 1. By assumption, there are Greens operators
Gr : Op” (K) = Cp*(K)
and

G; : Chp(By) — Cyp*(By)

3
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for the restrictions of £x. Now define

k

G(f) = G (xf) + D Gi((1 = x)F).
J
To check that G£ —1d is a compact operator, take a sequence u; € C§+2’G(X) with |lu;|| =1
and let w; = (GL — Id)u;. Note that w; is supported in the compact set B, \B,. By local

elliptic regularity for the operator GL — Id,

HUJZ-HC:;H,Q(B) <c Ui||C§+2,a(B) =c

for any bounded set set B, and so by Arzela-Ascoli a subsequence w; converges uniformly

on compact sets. However, w; is supported in the fixed compact set B, 1 \B,, so

||wz — ’ijC(I;Jrz,a(X) — 0.

Because Lx is elliptic and K is compact,
Lx: CHP»*(K) = Cp™(K)

is always Fredholm. One can construct a Greens operator microlocally by inverting the
symbol. The operator
k42, k,
Lx:Csp " (Bj) = C5p(B))

is Fredholm if and only if the operator Lp for the model Delaunay surface is Fredholm (the
difference between the two is exponentially decaying). Notice Lp is a periodic operator.
To simplify notation, we will assume below that the period is 1. To find out when Lp is
Fredholm, we introduce the Fourier-Laplace transform. Let u € C?’O‘([O, o) x SY) and let

¢ € C. Then

o0

Fu)(C,,0) = a(C,1,0) =Y e “Fu(t + k,0).

— 00

The sum above converges uniformly and absolutely for S¢ < —4, and so

@ € Holo({S¢ < —6}; C%2([0,00) x S1)).
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One can invert F: if ( =y +iv and t =1+ where [ € Z and 0 < < 1, then

1 2m ) B
F w)(t,0) = (t,0) = o / By (1 + v, F, 0)dps.
0

Notice that v = S is a parameter in the inversion formula above. Changing v amounts
to changing the weighting of #. One can check that 4 € C™%([0,00) x SY), but @ &
CFe ([0,00) x S!) for any € > 0. The reason for introducing the Fourier-Laplace trans-

form build a one-parameter family of operators out of Lp where the parameter changes the

weight. To this end, define

Lp(C)(u) =e ' FoLlpoF L(etu).
Lp(¢) : CF22([0,00) x S1) — C*(]0, 00) x S') and it depends holomorphically on (.
Proposition 20. The operator
Lp =0} + 05 +77cosh20 : C5 12°([0,00) x S') = Cyp([0,00) x S)
is Fredholm if and only if

6¢? :{"'7_737_72707727737"'}
where 0 <y < yj41 — 0.

In fact, these ;’s are the indicial roots of the Delaunay surface D. One can see that
they correspond to rates of growth from the contour-shifting argument that yields the Linear
Decomposition Theorem (see below).

Proof: As above, consider

Lp(C)(u) =e ' FoLpoF 1 (eu).
By the analytic Fredholm theorem, Lp is either Fredholm for all values of ¢ but a discrete
set, or it is never Fredholm. Because Lp is formally self adjoint, it suffices to show that

Lp(¢) is injective for some value of ¢. Suppose L£p(¢)(u) = 0. Then Lp(F ' (e'tu)) = 0.
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By definition,
1 2

F e tu)(t,0) = — ei(“H”)lei(”H”)fu(f, 0)dpu
2 0

—vt,, (f 2
— € U’(ta 9) / eiutd'u
27{' 0

—vt 7?9 .
— € QZEta )(627rzt71).

Notice that F~!(e*u)(t,0) is zero whenever ¢ is an integer. For the particular choice
of ( = % + %, the above computation shows that the solution u would either have to be
identically zero or u € Cﬁf’a but u & Cﬁi%’: for any € > 0. We have already shown that this
behavior is impossible f01r2 solutions to thze equation Lpu = 0. Therefore £ () is injective
and hence (because it is formally self adjoint) an isomorphism for all but a discrete set of
¢. Note that £p(¢) : Ck+2@ 5 €k g not Fredholm if and only if £, : C¥F%* - ¢k,
where v = $(, is not Fredholm.

Let ? be the poles of the Greens operator of £ (¢) (¢ € 7 if and only if £(¢) : C%H’a —
C%’O‘ is not Fredholm). It remains to see that {v | 3¢ = —v,¢ € 7} does not have any
accumulation points. A priori, it is possible that a sequence (,, € ? could look like Cn =
n+ L. However, £p(¢) = Lp({ + 27) and the operators £p(¢) and L£p(( + 2mi) are
unitarily equivalent (the unitary isomorphism which transforms one operator to the other
is multiplication by e?™*). Thus ? is invariant under translations by 2km + 2lmi, where
k and [ are any integers. If 7 = {v | I( = —v,( € ‘?} had an accumulation point, then
by translation invariance ? would have infinitely many points, and hence an accumulation
point, in [—m, 7] X [=7,7]. This would contradict the fact that ? has no accumulation
points. Thus ? cannot have an accumulation point. Moreover, £p(¢) is Fredholm if and
only if ED(*C) is. In fact the two operators are conjugate under multiplication by e=2¢¢,
This shows v € 7 if and only if —y € 7, and completes the proof. |

Our next task is to try to understand the behavior of the kernel of Lp : C’g’a — C’g""
for 0 < & < 1. Let Gp(¢) be the Greens operator of £p(¢) chosen above. Then Gp is
meromorphic in C with poles at ¢ € 7. Functions in the kernel of ED(C) for ¢ € 7 can then

be recovered from the residue of Gp at (. In particular, we are interested in the “tempered”

solutions (those with subexponential growth), which arise from the residue of Gp at ¢ = 0.
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These functions, collectively labeled By above, correspond to solutions to £ (u) = 0 where
u € C’;’a but u ¢ Cz’? for all § > 0. Recall £Lp is nondegenerate. Let f € CE’{?‘ C C{?’a.
Then, because Lp : C(?’O‘ — C{?’a is surjective, we can find u € C{?’a such that Lpu = f.

In fact

u(s,0) = F HGOF(S)(s,6,0)

1 2m .
- "G (1 — i0) (F(f))dp

27{' 0
9 1 2nm o
= [ G ia) ()
™ —2nm

It turns out that if &' > 0 then u € Cg,’a as well. Let 7, be oriented contours which trace
the perimeter of the rectangle 2nr(n — 1) < u < 27n, —§ < v < —¢' in a counterclockwise

direction. Then by Cauchy’s theorem,

- / G i8)(F(f)) s — / e G — i) (F () + O,

1
“omn n
Taking n large, this shows u actually lies in C§,+2. However, this computation does not
work if 6’ < 0, because in this case Gp has a pole in each 7,. If we now take &' = —4, we

get a new solution u = v + w where

1 2 L
v+ w=— "tOGH(F(f))dp.
271' Jo

The difference is given by

w o= Y [ EGorFc

2w T

2n+1

= 2 LS Resam (GO F ()

2n

_ 2: LS RescoeG (O F(f)

= %Resczoegg(of(f)

In the second to last equality we used the fact that residue of this pole is the same for

each contour. The above computation yields the Linear Decomposition theorem stated
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above, and in fact yields a more general asymptotic expansion for solutions to the equation
Lpu = f by further contour shifting. Notice all these computations only use the asymptotic
behavior of Ly, and so all the linear analysis results we have for CMC embeddings X also

apply to the approximate solutions XR,d; we constructed.



[Aub87]

[Bus92]

[Deld1]

[Eel87]

[GBY3]

[GT77]

[Hop56]

[IMP]

[Iva]

[Kap90]

[KGBS]

71

BIBLIOGRAPHY

U. Aubresch. Constant mean curvature tori in terms of elliptic functions. J.

Reine. Angew. Math., 374:169-192, 1987.

P. Buser. Geometry and Spectra of Compact Riemann Surfaces. Birkhauser, 1992.

C. Delaunay. Sur la surface de revolution dont la courbure moynne est constant.

J. Math. Pures Appl., 6:309 320, 1841.

J. Eells. The surfaces of delaunay. Math. Intelligencer, 9:53-57, 1987.

K. Grosse-Braukman. New examples of cmc surfaces in euclidean three-space.

Math. Z., 214:527 565, 1993.

D. Gilbarg and N. S. Trudinger. Elliptic Partial Differential Equations of Second
Order. Springer-Verlag, 1977.

H. Hopf. Differential Geometry in the Large. Springer-Verlag, 1956.

J. Isenberg, R. Mazzeo, and D. Pollack. Gluing and wormholes for the einstein

constraint equation. in preparation.

N. Ivanov. Mapping class groups. preprint.

N. Kapouleas. Complete constant mean curvature surfaces in euclidean three-

space. Ann. of Math., 131:239-330, 1990.

R. Kusner, K. Grosse-Braukman, and J. Sullivan. Triunduloids: Embedded con-

stant mean curvature surfaces with three ends and genus zero. preprint.



72

[KKS89]

[KMP96]

[Kus91]

[Lag60]

[Law70]

[Li93]

[Mee88]

[Mel93]

IMPO1]

[MPP]

[MPPR]

N. Korevaar, R. Kusner, and B. Solomon. The structure of complete embedded

surfaces with constant mean curvature. J. Differential Geom., 30:465-503, 1989.

R. Kusner, R. Mazzeo, and D. Pollack. The moduli space of complete embedded

constant mean curvature surfaces. Geom. Funct. Anal., 6:120-137, 1996.

R. Kusner. Bubbles, conservation laws, and balanced diagrams. In P. Concus,
R. Finn, and D. A. Hoffman, editors, Geometric Analysis and Computer Graphics,
pages 103 108. Springer-Verlag, 1991.

J. L. Lagrange. Essai d’une nouvelle méthode pour determiner les maxima et les
minima des formules intégrales indéfinies. Miscellanea Taurinensia, 2:173-195,

1760.

H. B. Lawson. Complete minimal surfaces in S3. Ann. of Math., 92:335-374,
1970.

P. Li. Lecture Notes on Geometric Analysis. Research Institue of Mathematics,

Global Analysis Research Center, Seoul Nation University, Korea, 1993.

W. Meeks. The topology and geometry of embedded surfaces of constant mean

curvature. J. Differential Geom., 27:539-552, 1988.
R. Melrose. The Atiyah-Patodi-Singer Index Theorem. A K Peters, 1993.

R. Mazzeo and F. Pacard. Constant mean curvarure surfaces with delaunay ends.

Comm. Anal. Geom., 9:169-237, 2001.

R. Mazzeo, F. Pacard, and D. Pollack. Connected sums of constant mean curva-

ture surfaces in euclidean 3-space. To appear in J. Reine Angew. Math.

R. Mazzeo, F. Pacard, D. Pollack, and J. Ratzkin. The conformal theory of

alexandrov embedded cmc surfaces in R3. In preparation.



[MPUY5]

[MPUYG6]

[MR91]

[PS89]

[PW84]

[Spi75]

[Wen86]

[Wo094]

73

R. Mazzeo, D. Pollack, and K. Uhlenbeck. Connected sum constructions for
constant scalar curvature metrics. Top. Methods Nonlinear Anal., 6:207-233,

1995.

R. Mazzeo, D. Pollack, and K. Uhlenbeck. Moduli spaces of singular yamabe
metrics. J. Amer. Math. Soc., 9:303-344, 1996.

S. Montiel and A. Ros. Schrodinger operators associated to a holomorphic map. In
Global Differential Geometry and Global Analysis, pages 148 174. Springer Lect.
Notes Math., 1991.

U. Pinkhall and I. Sterling. On the classification of constant mean curvature tori.

Ann. of Math., 130:407-451, 1989.

M. Protter and H. Weinberger. Mazimum Principles in Differential Equations.

Springer-Verlag, 1984.

M. Spivak. A Comprehensive Introduction to Differential Geometry. Publish or
Perish, Inc., 1975.

H. Wente. Counterexample to a conjecture of h. hopf. Pacific J. Math., 121:193
243, 1986.

J.C. Wood. Harmonic maps into symmetric spaces and integrable systems. In
A. P. Fordy and J. C. Wood, editors, Harmonic Maps and Integrable Systems,
pages 29 55. Vieweg, Braunschweig/Weisbaden, 1994.



