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1. 2-categories

A 2-category consists of objects, drawn as

a

together with 1-morphisms, drawn as

a b

f

as well as 2-morphisms, drawn as

a b

f

g

�



The 1-morphisms can be composed:

a b c

f g
7!

a c

g � f

The 2-morphisms can be composed both vertically,

a b

f

g

h

�

 
7! a b

f

h

 � �

and horizontally,

a b c

f
1

g
1

f
2

g
2

�  7! a b

f

g

 ⇤ � .



These composition operations must satisfy various coherence
equations.

Examples of 2-categories:

1. Top: objects are topologial spaces, 1-morphisms are
continuous maps, 2-morphisms are homotopies.

2. Cat: objects are categories, 1-morphisms are functors,
2-morphisms are natural transformations.

3. Alg: objects are algebras, 1-morphisms are bimodules,
2-morphisms are bimodule homomorphisms.

4. LinCat: objects are C-linear categories, 1-morphisms are
profunctors, 2-morphisms are natural transformations.

5. ... (any structure that has morphisms between the
morphisms!)



2. Three-dimensional TQFTs

Definition. The oriented 1-2-3 bordism 2-category Bord

or

123 is
defined as follows:

I An object is a closed oriented 1-manifold A, for example:

I A 1-morphism A ⌃ B is a bordism from A to B (a compact
oriented 2-manifold with @⌃ ⇠= A

`
B), for example:

A

B
⌃



I A 2-morphism

A

B

⌃ > ⌃0>

M
is a 3-dimensional bordism

from ⌃ to ⌃0, for example:

⌃ = f�1(0) f�1(0.3) f�1(0.6) ⌃0 = f�1(1)

We can visualize M as a ’movie’ with the help of a Morse
function f : M ! [0, 1] so that the fibers f�1(t) interpolate
from ⌃ to ⌃0.



Composition of 1- and 2-morphisms is given by gluing the
bordisms together, for example:

A

B

C

⌃

⌃0

7!

A

C

⌃0 � ⌃

There is another composition operation — disjoint union of
bordisms. This makes Bordor

123 into a ‘symmetric monoidal
2-category’.

Definition. An oriented 123 topological quantum field theory

is a symmetric monoidal 2-functor

Z : Bord

or

123 ! LinCat.



3. Presentation theorem

Theorem. [BB, CD, CS-P, JV] The symmetric monoidal
2-category Bordor

123 has the following presentation:

I Generating objects:

(a circle)

I Generating 1-morphisms:

cap cup pants copants

I Generating 2-morphisms:

...P.T.O...



Invertible 2-morphisms:
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Noninvertible 2-morphisms:

⌘

⌘op

✏

✏op

⌫

⌫op

µ

µop



I Relations between the invertible generators, eg.

II III II

III

✓�2 II

III

Compare with SL
2

(Z)| {z }
�(torus)

= hs, t | (st)3 = s2, s4 = 1i.



I Relations between the non-invertible generators, eg.

⌘ ✏
= id

⌘ ✏
= id

Proof. Uses Cerf theory methods from Chris Schommer-Pries’s
thesis. ⌅
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4. Modular tensor categories

Defn. A modular tensor category is a C-linear semisimple
ribbon category whose braiding is nondegenerate.

‘Ribbon’ means that there is a tensor product and nontrivial
braiding isomorphisms V ⌦ W ! W ⌦ V , so the objects behave
like braided ribbons when drawn in string diagrams:

drawn as

Examples: Representations of loop groups, representations of
quantum groups.
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Toy example: let G be a finite group. Let ⇤G be the loop

groupoid of G:

I An object of ⇤G is an element g 2 G.

I For every h 2 G, there is an arrow g
h! hgh�1.

For example, here is a picture of ⇤S
3

:10 SIMON WILLERTON

(12)

(13) (23)(132)

(123)

2

22

C

CC3C

S3

C3

e

Figure 3. The loop groupoid ⇤S3 or equivalently the action
groupoid GS3(S

c
3) for S3 with the conjugation action (where S3

denotes the symmetric group on three letters). The automorphism
groups have been marked on.

As the name suggests this is supposed to be a model for “loops on G”, actually
it is a model for loops on BG, as shown below. This should appear reasonable from
the second description in terms of the functor category as it is asserting that there is
a homotopy equivalence B Fun(Z, G) � Maps(S1, BG) and it is a standard fact that
BZ is homotopy equivalent to a circle. This homotopy equivalence was established
by Neil Strickland [13], but we will need an explicit form of the map here.

1.3.2. The Parmesan Theorem. For simplicity of notation I will denote the n–
simplex in ⇤G

gn . . . g1�g�1
1 . . . g�1

n
gn� · · · g1� � by [gn| . . . |g1]�.

We now get to the key construction. Denote by LBG the free loop space on BG,
in other words LBG := Maps(S1, BG), and define the Parmesan map Par: B⇤G !
LBG by

Par([gn, tn| . . . |g1, t1]�)(t)

= [ gn, tn | . . . | gi+1, ti+1 | (gi . . . g1)�(gi . . . g1)
�1, t | gi, ti | . . . | g1, t1 ]

for ti � t � ti+1.

This is illustrated graphically in Figure 4, which is where it gets its name from.

�
g1

g2

g1�

g2g1�

� �

g1

g2

g1�

g2g1�

� �

g1

g1

g2

g2

g2g1�

g1�

Figure 4. The parmesan construction mapping a point in a two-
simplex of B⇤G to a loop in BG. For reasons of space, here g�
denotes g�g�1.

Note that it was precisely to get this simple formula that I used these coordinates
on the simplices. The key result about this map is the following.

Theorem 2. If G is a finite groupoid and ⇤G is its loop groupoid then the Parmesan

map Par: B⇤G ! LBG is a homotopy equivalence.

Rep (⇤G) forms a modular category.
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The tensor product on Rep (⇤G) is

(V ⌦ W )g =
M

ab=g

Va ⌦ Wb

while the braiding � : V ⌦ W ! W ⌦ V is given on homogenous
elements by

va ⌦ wb 7! wb ⌦ V (a
b�1

! )(va).

which is drawn as

.



By interpreting knot diagrams as knots in the modular category
Rep ⇤G, we get an invariant of knots Z based on representation
theory of finite groups.

For instance, given a representation V supported on a
conjugacy class A in G, the trefoil

K =

computes as

Z(K) =
X

a,b2A
aba=bab

[V ⇤(b�1

X

ijk

a�1

! )]kj [V (a
b!)]ki[V

⇤(a�1

ba�1b�1

! )]ji

For instance, for G = S
3

, and V the sign representation
supported on the class of (12), this gives 6.
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5. Classification theorem

Theorem. [BB, CD, CS-P, JV] The 2-groupoid of oriented
1-2-3 topological quantum field theories is equivalent to the
2-groupoid of anomaly-free modular tensor categories.

Many ideas here in fact date back to the ‘early days’ of TQFT
in the 1990’s. But a key aspect of our approach is a new
‘internal string diagrams’ calculus to check the relations.
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Lemma. In any oriented 123 TQFT Z : Bord

or

123

! LinCat,
the generators must act as follows:

in (3):

comp

�
A

(g�h)�f
(B ⌦ C) ⌦ D

�

Z(�)B�C�D
�

A
(g�h)�f

(B ⌦ C) ⌦ D
Z(�)B�C�D B ⌦ (C ⌦ D)

�

comp

�1 �
P = B, Q = C ⌦ D

�
�

A
(g�h)�f

(B ⌦ C) ⌦ D
Z(�)B�C�D B ⌦ (C ⌦ D)

�

�
�

B � (C ⌦ D) id B � (C ⌦ D)
�

(4)

This final element has the graphical interpretation given by the right-hand side
of (1), so we have successfully verified that equation.

We now consider the action of Z(�). Its action on the space of string diagrams
is as follows:

�
P,Q Hom

�
A, Z( )(P � Q)

�
� Hom(P � Q, Z( )(B)

�
/ ⇠

comp

HomC

�
A, Z( )Z( )(B)

�

Z(�)B HomC

�
A, Z( )(B)

�
= HomC

�
A, B

�
(5)

This has the following e�ect on our chosen string diagram:

�
P = X, Q = Y

� �
A

f
X ⌦ Y

�
�

�
X � Y

g�h
I � B

�

comp

�
A

(g�h)�f
I ⌦ B

�

Z(�)B
�

A
(g�h)�f

I ⌦ B
Z(�)B B

�
(6)

This verifies the action of Z(�) on internal string diagrams. The action of Z(�) can
be verified similarly.

In the statement of this theorem, we have been fully general in the description
of the possible string diagrams on which Z(�), Z(�) and Z(�) can act. However,
these actions can be deduced from the following actions on a smaller class of string
diagrams, involving no nontrivial internal morphisms:

Z(�)
(7)

3

A

A

Z(�)

A

A

A

A

Z(�)

A

A

(8)

For example, the general action of Z(�) can be recovered as follows, by composing
with an identity cylinder:

A

B C D

X Y

f

g h

=

A

B C D

f

g
h

Z(�)

A

B C D

f

g
h

=

A

B C D

f

g
h

(9)
The general actions of Z(�) and Z(�) can be recovered in a similar way from
equation (8). We will exploit this feature on occasion for some of the other
generators, and only give their actions on simple string diagrams which are su�cient
to recover the fully-general action.

We now study the actions of � and � on internal string diagrams.

Theorem 2. For a 123 TQFT Z, the generators � and � act in the following way
on internal string diagrams:

A

B C

f Z(�)

A

B C

f

(10)

A

A

Z(�)

A

A

� (11)
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4

Proof. The action of Z(�) has the following form:

HomC

�
A, Z( )(B � C)

�

Z(�)B�C HomC

�
A, Z( )Z( )(B � C)

�

comp

�1

HomC

�
A, Z( )(C � B)

�
(12)

The e�ect on our input string diagram is as follows:

�
A

f
B ⌦ C

�
Z(�)B�C

�
A

f
B ⌦ C

Z(�)B�C C ⌦ B
�

(13)

This establishes the action of Z(�). The action of Z(�) is immediate.

1.1.1 The merging generators �, �, µ and �

These generators are more complicated to deal with than the monoidal structure
generators considered above, as for these generators the isomorphism � is not the
identity.

Theorem 3. For a 123 TQFT Z, the merging generators �, �, µ and � act in the
following ways on internal string diagrams:

1
Z(�)

1

f

g

A

B

Z(µ) f

g

A

B

(14)

A

A

B

B

Z(�)

A B

A B

A

B

X Y
f

g

Z(�)

A

B

f

g

(15)

Proof. The action of Z(�) consists of the following composite:

HomVectk

�
k, k

�

Z(�)

HomVectk

�
k, Z( )Z( )(k)

�

comp

�1 �
P HomVectk

�
k, Z( )(P )

�
� HomC

�
P, Z( )(k)

�

� �
P HomC

�
Z( )(k), P

�
� HomC

�
P, Z( )(k)

�
(16)

5



A ⌦ A⇤ 1. Applying � on the left leg, we get

A A�

Z(�)

A

�

A�

=

A

�

A�

Applying � on the right leg, we get

A A�

Z(�)

A

�

A�

=

A

�

A�

By (??), these two ways of applying � are equal in Bordor

123

, and the statement
follows.

1.3 Actions of cleaving generators

We now examine the actions of the cleaving generators on internal string diagrams,
under the image of a 123 TQFT. Our strategy is to propose arbitrary linear maps
for the actions of these generators on spaces of internal string diagrams, and then
see what restrictions we can obtain on these maps by imposing equations which we
know must hold. Initially, we will find that their actions can be determined up to
a constant p. In Proposition 18 we will determine that p = p+ = p�, where p+ and
p� are the ‘anomaly constants’ in a modular category.

Because of our internal string diagram notation, the action of these cleaving
noninvertible generators under a 123 TQFT is richer than the action of their
merging partner generators. This asymmetry arises from the fact that the merging
generators play a fundamental role in defining the notation in the first place, in
equations (??–??).

Theorem 10. For a 123 TQFT Z, the cleaving generators µop and �op act in the
following way on internal string diagrams involving only the tensor unit, where p is
a nonzero constant yet to be determined:

Z(µop)
p (35)

Z(�op) 1

p
(36)

For other labellings of the boundary circles of the cylinder by simple objects, Z̃(µop)
is zero.
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Proof. Suppose we label the boundary circles for the µ action with simple objects
not all isomorphic to I. Then by the internal string diagram formalism, the target of
Z̃(µop) is a zero-dimensional vector space, and so the actual equals zero identically.

Given this, it is clear that the following candidate actions are fully general:

Z(µop)
p (37)

s
Z(�op)

q s (38)

In the action (37) the cobordisms are left blank to denote the identity string diagram
in each connected component. Full generality of these candidates follows from
Lemma ??, which tells us that ...

Applying one of the equations witnessing the adjunction � , we see that the
following composite must be the identity:

I

Z̃(µop)
p

I

Z̃(�op)
p q

I

(39)

As a result, we obtain q = 1/p.

Theorem 11. For a 123 TQFT Z, the cleaving generator �op acts in the following
way on internal string diagrams:

Z(�op) 1

p
(40)

Proof. We begin by noting that �op is completely defined by its action on a 2-sphere,

13

is di�eomorphic to the identity:

�op µop �, �⇤
(44)

This holds because XXX. Applying the internal string diagram TQFT Z̃ to this
composite gives the following result, acting on a string diagram given by the identity
on the simple object Si:

Si

Si

Z̃(�op) X

j

cj

Si

Si

i Z̃(µop) cip

di

Si

Si

Z̃(�),
Z̃(�⇤) cip

di

Si

Si

(45)

We therefore conclude that ci = di/p.

Theorem 12. For a 123 TQFT Z, the cleaving generator �op acts in the following
way on internal string diagrams:

A

A�

B

C

f Z(�op)

�
�����������

�����������

p

dA

A

A

B

C

f if A = A�

0 if Hom(A, A�) = 0

(46)

Proof. We recall the following decomposition of �op, expressing it entirely in terms
of �op and invertible generators whose actions we have already studied:

�op

F

µop

�, �̂
(47)
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Lemma 15. For a 123 TQFT Z, the di�eomorphisms II and III act in the following
ways on internal string diagrams:

A B

C D

Z̃(II)

A B

�

C

�

D

A

A

B

B

Z(III) 1

p

AB

BA

Proof. The decomposition of II from Proposition ?? shows that it acts as follows:

A B

C D

Z̃(F�1

1

)

A B

C D

Z̃(�)

A B

C

�

D

�
Z̃(F

1

)

A B

C D

�

�

(49)

Similarly, the decomposition of III from Theorem ?? is equivalent to the following
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Here, p =
P

i ✓id2

i . (In the finite group model, p = |G|).



6. Sample calculations
Let’s use the internal string diagram calculus to compute some
invariants of 3-manifolds!

Let’s start with S3. One can build it by creating and then
killing a 2-sphere:

Using the internal string diagram calculus, we compute:

So, Z(S3) = 1

p !
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�� �op

�

1

Using the internal string diagram calculus, we compute:
�� �op

�

Z(�)7! Z(�op
)7! 1

p

1

So, Z(S3) = 1

p !



Now suppose MK is a 3-manifold obtained by surgery on a
framed knot K ⇢ S3. For instance, K might be the trefoil knot.

We can build up MK using the generators as follows:

So, Z(MK) = 1

p2

P
i diZ(K, Vi). This shows that our approach

is equivalent to the traditional surgery approach.
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Topological quantum field theory can turn up some beautiful
equations, since there are often di↵erent ways to compute an
invariant.

We have just seen that if G is a finite group, and K is the
trefoil knot, then

Z(MK) =
1

|G|2
X

reps Vi of ⇤G

dim(Vi) Z(K, Vi).

Recall that earlier we computed Z(K, Vi) as a certain sum over
the matrix elements of the representation Vi.

There is a ‘dual’ way to determine Z(MK) in terms of the
homotopy group of MK :

Z(MK) =
1

|G| |Hom (⇡
1

(MK), G)|.

The fact that these two numbers are equal is rather interesting!
For TQFT’s based on loop groups and quantum groups, these
kinds of equations can be very striking.
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Summary

I We give a full, finite presentation of the symmetric
monoidal 2-category Bord

or

123

of oriented cobordisms.

I Using a new calculus of internal string diagrams, we are
able to demonstrate the equivalence between oriented 123
TQFTs and anomaly-free modular tensor categories in a
clean and e�cient way.

I In particular, we show that the category assigned to the
circle is actually rigid, resolving a long-standing issue. This
uses the 2-categorical structure (the noninvertible
adjunctions) in an important way.

I Once a 3-manifold is presented in terms of the generators,
computing its invariant is straightforward using internal
string diagrams.
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