Invariants of 3-manifolds via
generators and relations of the

1-2-3 bordism 2-category

Bruce Bartlett!

with: Jamie Vicary?, Chris Douglas®, Chris
Schommer-Pries*

I Mathematics Division, University of Stellenbosch
2 Department of Computer Science, Oxford
3 Mathematical Institute, Oxford
4 Max Planck Institute for Mathematics

Workshop on Geometric Analysis, AIMS, 3 Dec 2012



Outline

S otk W=

2-categories

Three-dimensional topological quantum field theories
Presentation theorem

Modular tensor categories

Classification theorem

Sample calculations



1. 2-categories
A 2-category consists of objects, drawn as
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together with 7-morphisms, drawn as
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as well as 2-morphisms, drawn as
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The 1-morphisms can be composed:
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These composition operations must satisfy various coherence
equations.

Examples of 2-categories:
1. Top: objects are topologial spaces, 1-morphisms are
continuous maps, 2-morphisms are homotopies.

2. Cat: objects are categories, 1-morphisms are functors,
2-morphisms are natural transformations.

3. Alg: objects are algebras, 1-morphisms are bimodules,
2-morphisms are bimodule homomorphisms.

4. LinCat: objects are C-linear categories, 1-morphisms are
profunctors, 2-morphisms are natural transformations.

. (any structure that has morphisms between the

Ut

morphisms!)



2. Three-dimensional TQFT's

Definition. The oriented 1-2-3 bordism 2-category Bord(%g is
defined as follows:

» An object is a closed oriented 1-manifold A, for example:

OO

» A l-morphism A =, B is a bordism from A to B (a compact
oriented 2-manifold with 9% = A[] B), for example:
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» A 2-morphism Z<:>>Z/ is a 3-dimensional bordism
A

from ¥ to ¥/, for example:

=70 f703)  fN06) =N

We can visualize M as a 'movie’ with the help of a Morse
function f: M — [0,1] so that the fibers f~!(¢) interpolate
from X to X',



Composition of 1- and 2-morphisms is given by gluing the
bordisms together, for example:

ICE AN
B — Yo¥X
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There is another composition operation — disjoint union of
bordisms. This makes Bordjg into a ‘symmetric monoidal
2-category’.

Definition. An oriented 123 topological quantum field theory
is a symmetric monoidal 2-functor

Z: Bordi,3 — LinCat.




3. Presentation theorem

Theorem. [BB, CD, CS-P, JV] The symmetric monoidal
2-category Bord{53 has the following presentation:

> Generating objects:
< (a circle)

» Generating 1-morphisms:
= Nz
cap cup pants copants

» Generating 2-morphisms:
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Noninvertible 2-morphisms:
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» Relations between the invertible generators, eg.
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» Relations between the non-invertible generators, eg.
T2
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» Relations between the non-invertible generators, eg.
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Proof. Uses Cerf theory methods from Chris Schommer-Pries’s

thesis. |



4. Modular tensor categories

Defn. A modular tensor category is a C-linear semisimple
ribbon category whose braiding is nondegenerate.



4. Modular tensor categories
Defn. A modular tensor category is a C-linear semisimple
ribbon category whose braiding is nondegenerate.
‘Ribbon’ means that there is a tensor product and nontrivial

braiding isomorphisms V@ W — W ® V', so the objects behave
like braided ribbons when drawn in string diagrams:
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4. Modular tensor categories

Defn. A modular tensor category is a C-linear semisimple
ribbon category whose braiding is nondegenerate.

‘Ribbon’ means that there is a tensor product and nontrivial
braiding isomorphisms V@ W — W ® V', so the objects behave
like braided ribbons when drawn in string diagrams:

Vew 1% \ W
o
\L drawn as
Wev w \ v

Examples: Representations of loop groups, representations of
quantum groups.



Toy example: let G be a finite group. Let AG be the loop
groupoid of G:

» An object of AG is an element g € G.
» For every h € G, there is an arrow g LS hgh™1.

For example, here is a picture of ASs:

C, C,
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Toy example: let G be a finite group. Let AG be the loop
groupoid of G:

» An object of AG is an element g € G.
» For every h € GG, there is an arrow g LS hgh™ .

For example, here is a picture of ASs:

C, C,
) Q)
s, (123) (12)
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(132) (13) ==(23)

U O

C, C, C,

Rep (AG) forms a modular category.



The tensor product on Rep (AG) is
VeW),=P Vea W,
ab=g

while the braiding ¢ : V@ W — W ® V is given on homogenous
elements by

—1
Vg @ wp — wp @V (a b—>)(va).

which is drawn as

a \\aba] X



By interpreting knot diagrams as knots in the modular category
Rep AG, we get an invariant of knots Z based on representation
theory of finite groups.



By interpreting knot diagrams as knots in the modular category
Rep AG, we get an invariant of knots Z based on representation
theory of finite groups.

For instance, given a representation V' supported on a
conjugacy class A in G, the trefoil

oY%

2K = 3 S Sk Vie Bkt 2
a,be A ik
aba=bab

computes as

For instance, for G = S3, and V the sign representation
supported on the class of (12), this gives 6.



5. Classification theorem

Theorem. [BB, CD, CS-P, JV] The 2-groupoid of oriented
1-2-3 topological quantum field theories is equivalent to the
2-groupoid of anomaly-free modular tensor categories.



5. Classification theorem

Theorem. [BB, CD, CS-P, JV] The 2-groupoid of oriented
1-2-3 topological quantum field theories is equivalent to the
2-groupoid of anomaly-free modular tensor categories.

Many ideas here in fact date back to the ‘early days’ of TQFT
in the 1990’s. But a key aspect of our approach is a new
‘internal string diagrams’ calculus to check the relations.



Lemma. In any oriented 123 TQFT Z : Bord{5; — LinCat,
the generators must act as follows:
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if A=A

| | I
| = ¥

0 if Hom(A, A") =0

Here, p =Y, 0;d?. (In the finite group model, p = |G]).



6. Sample calculations

Let’s use the internal string diagram calculus to compute some
invariants of 3-manifolds!



6. Sample calculations

Let’s use the internal string diagram calculus to compute some
invariants of 3-manifolds!

Let’s start with S2. One can build it by creating and then

killing a 2-sphere:
v vOP

Using the internal string diagram calculus, we compute:

v [ 1
1 O g L
p

So, Z(S%) = %!



Now suppose Mg is a 3-manifold obtained by surgery on a
framed knot K C S3. For instance, K might be the trefoil knot.



Now suppose Mg is a 3-manifold obtained by surgery on a
framed knot K C S3. For instance, K might be the trefoil knot.

We can build up Mk using the generators as follows:

I Use braiding 3

)

So, Z(Mk) Z d;Z(K,V;). This shows that our approach
is equlvalent to the tradltlonal surgery approach.



Topological quantum field theory can turn up some beautiful
equations, since there are often different ways to compute an
invariant.



Topological quantum field theory can turn up some beautiful
equations, since there are often different ways to compute an
invariant.

We have just seen that if G is a finite group, and K is the
trefoil knot, then

1
Z(Mg) === Y, dim(V;) Z(K, V).
’G| reps V; of AG

Recall that earlier we computed Z(K,V;) as a certain sum over
the matrix elements of the representation V;.
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We have just seen that if G is a finite group, and K is the
trefoil knot, then

1
Z(Mg) === Y, dim(V;) Z(K, V).
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There is a ‘dual’ way to determine Z(Mf) in terms of the
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Z(Mx) = | !Hom (m1 (M), G)|.
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Topological quantum field theory can turn up some beautiful
equations, since there are often different ways to compute an
invariant.

We have just seen that if G is a finite group, and K is the
trefoil knot, then

1
Z(Mg) === Y, dim(V;) Z(K, V).
’G| reps V; of AG

Recall that earlier we computed Z(K,V;) as a certain sum over
the matrix elements of the representation V;.

There is a ‘dual’ way to determine Z(Mf) in terms of the
homotopy group of Mk:

Z(Mx) = | [Hom (m1 (M), G)|.

]G
The fact that these two numbers are equal is rather interesting!
For TQFT’s based on loop groups and quantum groups, these
kinds of equations can be very striking.
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monoidal 2-category Bord{5; of oriented cobordisms.



Summary

» We give a full, finite presentation of the symmetric
monoidal 2-category Bord{5; of oriented cobordisms.

» Using a new calculus of internal string diagrams, we are
able to demonstrate the equivalence between oriented 123
TQFTs and anomaly-free modular tensor categories in a
clean and efficient way.



Summary

» We give a full, finite presentation of the symmetric
monoidal 2-category Bord{5; of oriented cobordisms.

» Using a new calculus of internal string diagrams, we are
able to demonstrate the equivalence between oriented 123
TQFTs and anomaly-free modular tensor categories in a
clean and efficient way.

» In particular, we show that the category assigned to the
circle is actually rigid, resolving a long-standing issue. This
uses the 2-categorical structure (the noninvertible
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Summary

» We give a full, finite presentation of the symmetric
monoidal 2-category Bord{5; of oriented cobordisms.

» Using a new calculus of internal string diagrams, we are
able to demonstrate the equivalence between oriented 123
TQFTs and anomaly-free modular tensor categories in a
clean and efficient way.

» In particular, we show that the category assigned to the
circle is actually rigid, resolving a long-standing issue. This
uses the 2-categorical structure (the noninvertible
adjunctions) in an important way.

» Once a 3-manifold is presented in terms of the generators,
computing its invariant is straightforward using internal
string diagrams.



