
A crash course in Riemannian geometry

Jesse Ratzkin

December 3, 2012



Outline

Basic definitions

Curvature

Submmanifolds and extrinsic curvature

Relating extrinsic, intrinsic, and ambient curvature

Examples



Basic definitions

Let M be an n-dimensional smooth manifold.

Definition
A Riemannian metric g on M is a smoothly varying, rank two,
positive definite, symmetric, covariant tensor field on M.
This means that, as a function, g evaluated at p ∈ M takes in
two vectors X ,Y ∈ TpM and produces a number. The further
properties mean the following:

I That g is a tensor means
g(f1X1 + f2X2,Y ) = f1g(X1,Y ) + f2g(X2,Y ) for all functions
f1, f2 and vectorfields X1,X2,Y , and that a similar linearity
holds over the second variable as well.

I That g is symmetric means g(X ,Y ) = g(Y ,X ) for all
vectors X ,Y ∈ TpM.

I That g is positive definite means g(X ,X ) > 0 for all
nonzero vectors X ∈ TpM.



Recall that, near any p ∈ M, we can find smooth coordinates
for a neighborhood U ⊂ M, by finding a diffeomorphism
U 7→ B ⊂ Rn, where B is the unit ball, which sends p to 0. In
these coordinates, we can identify g on U with a
smoothly-varying, n × n, positive definite, symmetric matrix.
Because g is like a usual inner product from linear algebra,
we’ll often write g(X ,Y ) = 〈X ,Y 〉 and g(X ,X ) = ‖X‖2.



Having chosen coordinates {x1, . . . , xn} we write the entries in
the matrix associated to g as gij . We also write the inverse of
this matrix as g ij , and use g to raise and lower indices of
tensors. For instance, if f is a smooth function, it has a natural
differential

df = ∂1fdx1 + ∂2fdx2 + · · ·+ ∂nfdxn =
n∑

i=1

∂i fdx i .

With the Riemannian metric g, we can ”raise the index” on df to
get a vector field, which we call the gradient of f ; it has the form

grad(f ) = g ij∂j f∂i .

(Notice the implicit sum over i and j .)



It is also possible to write down the divergence of a vector field
and the Laplacian of a function:

div(X ) =
∑
i,j

1√
det g

∂i
√

det gX j

and

∆u = div(grad(u)) =
1√

det g
∂i

(√
det gg ij∂ju

)
.



We can extend the notion of a Riemannian metric to that of a
pseudo-Riemannian metric, which drops the condition that g is
positive definite. In particular, we say g is a Lorentzian metric
if, for each p ∈ M the metric g has 1 negative eigenvalue and
n − 1 positive eigenvalues. In this case, we say a vector
X ∈ TpM is time-like if 〈X ,X 〉 < 0 and space-like if 〈X ,X 〉 > 0.
It turns out that most of what we do below holds in the Lorentz
case as well, with a few additional minus signs.



The Riemannian metric g allows us to measure the lengths of
parameterized curves γ : (a,b)→ M, by the formula

length(γ) =

∫ b

a

√
〈γ′, γ′〉dt .

This in turn gives us a distance function on M (by minimizing
lengths of curves), and also a way to measure volumes, areas,
etc.



To further analyze the metric (and other) properties the
Riemannian metric g gives the underlying manifold M, we will
develope some tools. First we need to be able to differentiate
vectorfields, and tensor fields. We do this using the Levi-Civita
connection ∇, defined by

∇∂i∂j = Γk
ij ∂k , Γk

ij =
1
2

gkl(∂igjl + ∂jgil − ∂lgij). (1)

Any connection, and in particular the Levi-Civita connection,
will satisfy the following rules:

∇fX Y = f∇X Y , ∇X (fY ) = f∇X Y + (X (f ))Y .

Thus we see that, if X = X i∂i and Y = Y j∂j then

∇X Y = [X iY jΓk
ij + X (Y k )]∂k .



There is a very natural way to extend ∇ to all tensor fields, and
in particular ∇X f = X (f ) is the usual directional derivative for all
smooth functions f . For instance, if T is a rank two covariant
tensor, then ∇T is the rank three covariant tensor given by

∇T (X ,Y ,Z ) = X (T (Y ,Z ))− T (∇X Y ,Z )− T (Y ,∇X Z ). (2)

The Levi-Civita connection is the unique compatible,
torsion-free connection for g. This means

∇g = 0⇔ ∇Z 〈X ,Y 〉 = 〈∇Z X ,Y 〉+ 〈Y ,∇X Z 〉

and
∇X Y −∇Y X = [X ,Y ].



The analouge of straight lines are the geodesic curves. These
are curves which have a parameterization γ : (a,b)→ M which
satisfy

∇γ̇ γ̇ = 0⇔ γ̈k + Γk
ij γ̇

i γ̇ j = 0. (3)

It follows from ODE theory that, given any basepoint p ∈ M and
initial tangent vector V ∈ TpM, there is a unique geodesic γ
which satisfies

γ(0) = p, γ̇(0) = V .



A standard computation shows that geodesics are critical
curves for the length functional, and then a bit more work
shows that geodesics are in fact locally length minimizing. It is
also often useful to choose coordinates based on geodesics.
That is, we choose a base point p, and then an orthonormal
(with respect to g) basis {e1, . . . ,en} for TpM, and then let x i be
the geodesic with initial point p, initial veolocity ei and length
|x i |. These are called normal coordinates centered at p, and
in these coordinates we have

gij = δij +O(|x |2)⇒ Γk
ij (p) = 0. (4)

Effectively, this says that the any Riemannian metric looks like
the usual Euclidean metric, to first order, in normal coordinates.



Outline

Basic definitions

Curvature

Submmanifolds and extrinsic curvature

Relating extrinsic, intrinsic, and ambient curvature

Examples



Intrinsic curvature tensors

Next we define curvature operator

R(X ,Y )Z = ∇X∇Y Z −∇Y∇X Z −∇[x ,y ]Z (5)

and the Riemann curvature tensor

Rm(X ,Y ,Z ,W ) = 〈∇X∇Y Z −∇Y∇X Z −∇[X ,Y ]Z ,W 〉. (6)

It serves to be careful of the signs here, because some authors
will define Rm with the opposite sign convention.



We also define the sectional curvature K of a two-plane
spanned by X and Y :

K (X ,Y ) =
Rm(X ,Y ,Y ,X )

‖X‖2‖Y‖2 − 〈X ,Y 〉2
. (7)

One can check that this definition of K only depends on the
two-dimensional plane spanned by X and Y .



In local coordinates,

Rmijkl = [∂jΓ
m
ik − ∂iΓ

m
jk + Γp

ik Γm
jp − Γp

jk Γm
ip ]glm. (8)

We have the algebraic Bianchi identities:

Rmijkl = Rmklij , Rmijkl = −Rmjikl , (9)

and
Rmijkl + Rmjkil + Rmkijl = 0. (10)

We also have the differenital Bianchi identity:

∇i Rmjklm +∇j Rmkilm +∇k Rmijlm = 0. (11)

A Riemannian metric g is locally isometric to the Euclidean
metric if and only if Rm vanishes identically. Also, the tensor
Rm is uniquely determined by all its sectional curvatures K .



In many cases, Rm is too unwieldy to work with. So we form
various traces. The first is the Ricci tensor:

Rcij = gkl Rmikjl , (12)

which is another rank two, covariant, symmetric tensor field.
The second is the scalar curvature

S = tr(Rc) = g ij Rcij . (13)

In local coordinates these have the expressions

Rcij = ∂k Γk
ij − ∂iΓ

k
kj + Γp

ij Γ
k
kp − Γp

kjΓ
k
ip (14)

and
S = g ij [∂k Γk

ij − ∂iΓ
k
kj + Γp

ij Γ
k
kp − Γp

kjΓ
k
ip]. (15)



If we take the trace of the differential Bianchi identity (11) over j
and l , we get

2(div Rc)k = ∇kS ⇔ div Rc =
1
2
∇S, (16)

which is the contracted Bianchi identity.
Now suppose Rc = f (x)g for some function f , which implies
S = nf and ∇S = n∇f . However, div Rc = ∇f , and so the
contracted Bianchi identity now reads

∇f = div Rc =
1
2
∇S =

n
2
∇f ⇒ (n − 2)∇f = 0.

We immediately conclude the following theorem.

Theorem
Let n > 2 and suppose Rc = f (x)g for some smooth function f .
Then f must be constant on connected components of M.



Geometric interpretation of curvature

To see the geometric effect of curvature, we begin by recalling
that geodesics are locally length-minimizing curves. Thus, if
γ(t) is a geodesic and X is a vector field along γ which
vanishes at its endpoints, we have

0 =
d
ds

∣∣∣∣
s=0

length(Φs(γ)),

where Φs is the one-parameter family of diffeomorphisms
generated by X . In other words, geodesics are the critical
points of the length functional, subject to the constraint of fixing
the endpoints of the curve.



We see curvature when we examine the stability of the length
functional:

d2

ds2

∣∣∣∣
s=0

length(Φs(γ)) =

∫ b

a
‖∇γ̇(X⊥)‖2 − Rm(X⊥, γ̇, γ̇,X⊥)dt ,

where X⊥ is the component of X perpendicular to γ̇. In
particular, if X is the (normal) velocity field of a one-parameter
family of geodesics, we have the Jacobi equation:

∇γ̇∇γ̇X + R(X , γ̇)γ̇ = 0. (17)

Thus we see that geodesics tend to spread apart in the
presence of negative curvature, and they focus together in
positive curvature.



If we let {x1, x2, . . . , xn} be normal coordinates centered at
p ∈ M, and write our Rm in these coordinates, the (8) becomes

Rm = −1
2

(∂i∂kgjl − ∂i∂lgjk − ∂j∂kgil + ∂j∂lgik ).

However, it will be more informative to write out an expansion
for gij using the Jacobi equation (17).



Fix two vectors V ,W ∈ TpM and let γs(t) be the geodesic with
inital position p and initial velocity V + sW ; this is a
one-parameter family of geodesics, parameterized by s. Thus
we have

X =
∂

∂s
γs(t), ∇γ̇s∇γ̇sX + R(γ̇s,X )γ̇s = 0.

Now let f (t) = ‖X (γ0(t))‖2, and expand f in Taylor series
centered at t = 0 to see

f (t) = 〈W ,W 〉t2 − 8
4!

Rm(V ,W ,V ,W )

+
20
5!
〈∇V (R(V ,W )V ),W 〉+ · · · .



In turn, this implies

gij = δij +
1
3

Rmiklj xkx l +
1
6
∇m Rmiklj xkx lxm +O(|x |4).(18)

= δij −
1
3

Rmikjl xkx l − 1
6
∇n Rmikjl xkx lxm +O(|x |4)

Notice here that Rm is only evaluated at p, the center of the
coordinate system.
We have already seen that, in normal coordinates, any
Riemannian metric is locally Euclidean to first order. Now we
see that the second order correction term is given by curvature.



We can develope a similar expansion for volume. Use (18) to
see

det(g) = 1− 1
3

Rcij x ix j − 1
6

(∇k Rcij)x ix jxk +O(|x |4). (19)

(At the heart of this computation is the fact that the derivative of
a determinant is a trace.)
We related this to volume by recalling that the local expression
for the Riemannian volume element is

dVg =
√

det(g)dx1 ∧ dx2 ∧ · · · ∧ dxn.



We can simplify our expression for dVg a little bit, by writing

dVg = µ(θ, r)dr ∧ dσ = rn−1
(

1− r2

6
Rc(θ, θ) +O(r3)

)
dr ∧ dσ,

where θ ∈ Sn−1 is a unit vector in Rn and dσ is the usual
volume element on the unit sphere Sn−1. As above, we only
evaluate Rc at p, the center of the coordinate system.
Integrating this last expression from 0 to r , we have

Vg(Br ) = ωnrn
(

1− 1
6(n + 2)

S(p)r2 +O(r3)

)
(20)

where ωn is the volume of the n-dimensional Euclidean unit ball.
Thus we see that the volume of a small geodesic ball is the
same as in Euclidean space to first order, and the scalar
curvature gives us the second order correction term.
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Submanifolds and the second fundamental form

We consider a submanifold Σ immersed in M which means
there is a a full-rank differentiable map from Σ to M.
The immersion Σ 7→ M induces a metric on Σ by pulling back
the Riemannian metric on M, and and we write the associated
Levi-Civita connection on Σ as ∇Σ. For vector fields X ,Y on Σ
we have

∇Σ
X Y = (∇X Y )T ,

where Z T is the component of Z tangent to Σ.



We have identified the tangential component of ∇X Y , and we
call the normal component

(∇X Y )⊥ = A(X ,Y )

the second fundamental form. One can show that A is a
symmetric, rank-two covariant tensor on Σ (even though neither
connections ∇ or ∇Σ are tensorial!) .
It is important to notice that A depends on the way Σ is
immersed in M. In particular it is possible to immerse Σ in M in
several ways such that the induced metrics are the same, but
the second fundamental forms are very different.



The simplest example of this phenomenon is the fact that a flat
plane in R3 is locally isometric to a right circular cylinder.
However, the second fundamental form for a flat plane is
identically zero, whereas it is never zero for a cylinder.
We refer to A, and quantities related to it, as extrinsic
curvature, because they depend on how Σ sits in M, rather
than the intrinsic properties of its induced metric.



Let Σ 7→ M be an immersed submanifold, and let p,q ∈ Σ.
Notice that we now have two ways to measure the distance
between p and q: in Σ and M. Because of the inclusion, we
have distM(p,q) ≤ distΣ(p,q), and this inequality is usually
strict. If we always have distΣ(p,q) = distM(p,q) then the
geodesics in Σ must also be geodesics in M. In this case, it
turns out that A(X ,Y ) = 0 for all vector fields X ,Y on Σ, and
we call Σ totally geodesic.
For instance, flat planes are totally geodesic in R3, and great
spheres (the intersection of any three-dimensional linear space
through 0 with S3) are totally geodesic in S3.



An example from Lorenz geometry

Everything we have done so far refers to Riemannian metrics,
but in the Lorentzian case there is another interpretation of the
scalar curvature function. To see this, we need to recall the
Einstein field equations for a Lorentz manifold with n spacial
dimensions:

Rc−1
2

Sg = n(n − 1)ωnT , (21)

where T is the stress-energy tensor of the physical system and
(as above) ωn is the volume of the Euclidean unit ball.



Now let Σ be an n-dimensional Riemannian manifold,
embedded as a totally geodesic, spacelike slice in the
(n + 1)-dimensional Lorentz manifold M, oriented by the unit
normal vector N. We can think of Σ as a space-like slice of M.
Then (21) tells us that the energy seen by an observer moving
perpendicular to Σ is

T (N,N) =
S

2n(n − 1)ωn
.

Here we have used the Gauss equation (see below) to combine
the Ricci and scalar curvature terms.
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Extrinsic vs. intrinsic curvature

There are several formulas relating the extrinsic and intrinsic
curvatures of Σ and the intrinsic curvature of the ambient
manifold M. The first of these is we’ve already seen, and it’s
called the Gauss formula:

∇X Y = ∇Σ
X Y + A(X ,Y ). (22)

The second one is also named after Gauss. It’s called the
Gauss equation, and has the form

Rm(X ,Y ,Z ,W ) = RmΣ(X ,Y ,Z ,W ) (23)
−〈A(X ,W ),A(Y ,Z )〉+ 〈A(X ,Z ),A(Y ,W )〉.



Let X and Y be vector fields tangent to Σ and let N be a vector
field normal to Σ. Now if we differentiate 〈N,Y 〉 along X we see
the Weingarten equation:

〈∇X N,Y 〉 = −〈N,A(X ,Y )〉. (24)

Finally we have the Codazzi equation

Rm(X ,Y ,Z ,W ) = −〈∇A(X ,Y ,Z ),W 〉 (25)
+〈∇A(Y ,X ,Z ),W 〉.



At this point it will be convenient to specialize to hypersurfaces,
so we take dim(Σ) = n− 1 = dim(M)− 1. In this case there the
normal space (TpΣ)⊥ is 1-dimensional, and we can (locally)
choose a unit normal vector N. In this case A(X ,Y ) must be a
scalar multiple of N, and we write

A(X ,Y ) = −B(X ,Y )N.

Notice that if we reverse the sign of N we also reverse the sign
of B. By the Weingarten equation (24) we have

B(X ,Y ) = 〈∇X N,Y 〉,

and so B is essentially the gradient map of the normal vector N.



The scalar-valued two-tensor h is now a symmetric bilinear form
on each tangent space TpΣ. As such, it has real eigenvalues

κ1(p), κ2(p), . . . , κn−1(p)

at each point. We call each κi a principle curvature of Σ, and
say p ∈ Σ is an umbilic point if κi(p) = κj(p).



We can form various functions of the principle curvatures, in
particular the mean curvature

H =
1

n − 1
tr(B) =

κ1 + · · ·+ κn−1

n − 1

and the Gauss curvature

K = det(B) = κ1 · κ2 · · ·κn−1.

The mean curvature depends on the way Σ is immersed in M,
but (remarkably!) K only depends on the Riemannian metric
induced on Σ. This result is the famous ”Theorem Egregium” of
Gauss.
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Examples

There are some examples relating extrinsic and intrinsic
curvature which you know quite well. For instance, we’ve
already mentioned that flat planes in R3 are totally geodesic,
and so they have no extrinsic curvature. A sphere S2

r or radius
r in R3 does have extrinsic curvature. Orient S2

r with the inward
unit normal, and then for all X ,Y ∈ TpS2

r we have

B(X ,Y ) =
1
r
〈X ,Y 〉, H =

1
r
, K =

1
r2 .

Notice that every point on a sphere is umbilic.



We consider a cylinder C 7→ R3, embedded by
(t , θ) 7→ (r cos θ, r sin θ, t) oriented by the normal
N = (− cos θ,− sin θ,0). Then we have

B(∂t , ∂t ) = 0, B(∂θ, ∂θ) =
1
r
, B(∂t , ∂θ) = 0,

and
H =

2
r
, K = 0.



We have just seen that spheres in Euclidean space have
constant mean curvature, and also that Riemannian metrics are
locally Euclidean to first order, so it makes sense that the mean
curvature of a geodesic sphere is close to a constant. Let
Σr ⊂ M be a small geodesic sphere centered at p, and
parameterize Σr by θ ∈ Sn−1. Then we have

HΣr (θ) =
1
r
− r

3(n − 1)
Rc(θ, θ) +O(r2),

where Rc is evaluate only at the center p.



For this last example, we take the ambient manifold M to be
Minkowski space Rn,1, i.e. Rn+1 with the metric

g = −dt2 + (dx1)2 + · · ·+ (dxn)2.

Recall that an immersed hypersurface Σ ⊂ Rn,1 is space-like if
its induced metric is positive definite, which, in this case, implies

Σ = {(t , x) : t = u(x), ‖∇u‖ < 1}.

We can choose a time-forward oriented normal N, so that

〈N,N〉 = −1, N(p) ⊥ TpΣ, N t > 0.



One particular example of such a surface is the usual
hyperbolic space Hn, which sits inside Rn,1 as the locus

Hn = {(t , x) : t2 − ‖x‖2 = 1, t > 0}.

We can rewrite the defining equation as t =
√

1 + ‖x‖2 = u(x),
and so the normal vector is

N =
1√

1− ‖∇u‖2
(1,∇u) = (

√
1 + ‖x‖2, x).



Differentiating, we see

∇jN = ∂jN =

(
xj√

1 + ‖x‖2
,ej

)
, ∇tN = ∂tN = 0,

and so
Bij = δij

and all the principle curvatures are 1. From here, the Gauss
equation implies all the sectional curvatures of Hn are −1.
In general, a hypersurface Σ ⊂ Rn,1, all of whose principle
curvatures are positive, will have negative sectional curvature.
On the other hand, a hypersurface Σ ⊂ Rn+1, all of whose
principle curvatures are positive, will have all positive sectional
curvatures.
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