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Plan of Lecture

The lecture will have four parts:

Part 1: ADM energy and linear momentum.

Part 2: The Riemannian positive energy theorem.

Part 3: Asymptotic conditions and a density theorem.

Part 4: The spacetime positive mass theorem.



Initial Data

Suppose S is a spacetime satisfying the Einstein equations

Ric(g)− 1

2
R g = T .

We have seen that the spacetime metric evolves from initial data
(M, g , k) where g is a Riemannian metric and k a symmetric (0, 2)
tensor.



The Constraint Equations
Using the Einstein equations together with the Gauss and Codazzi
equations, the constraint equations may be written

µ =
1

2
(RM + Trg (k)2 − ‖k‖2)

Ji =
n∑

j=1

∇jπij

for i = 1, . . . , n where πij = kij − Trg (k)gij .

In case there is no matter present, the vacuum constraint
equations become

RM + Trg (k)2 − ‖k‖2 = 0
n∑

j=1

∇jπij = 0

for i = 1, . . . , n where RM is the scalar curvature of M.
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Energy Conditions

For spacetimes with matter, the stress-energy tensor is normally
required to satisfy the dominant energy condition which says
that the energy-momentum density vector of the matter fields is
non-spacelike for any observer. For an initial data set this is the
inequality µ ≥ ‖J‖.

In the time symmetric case (k = 0) the dominant energy condition
is equivalent to the inequality RM ≥ 0. In case the maximal case
Trg (k) = 0 the dominant energy condition implies RM ≥ 0
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Asymptotic Flatness
The most natural boundary condition for the Einstein equations is
the condition of asymptotic flatness. This boundary condition
describes isolated systems which are the analogues of finite mass
distributions in Newtonian gravity. The requirement is that the
initial manifold M outside a compact set be diffeomorphic to the
exterior of a ball in R3 and that there be coordinates x in which g
and k have appropriate falloff

gij = δij + O2(|x |2−n), kij = O1(|x |1−n).
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Minkowski and Schwarzschild Solutions

The following are two basic examples of asymptotically flat
spacetimes:

1) The Minkowski spacetime is Rn+1 with the flat metric
g = −dx2

0 +
∑n

i=1 dx2
i . It is the spacetime of special relativity.

2) The Schwarzschild spacetime is determined by initial data with
k = 0 and

gij = (1 +
E

2|x |n−2
)

4
n−2 δij

for |x | > 0. It is a vacuum solution describing a static black hole
with mass E . It is the analogue of the exterior field in Newtonian
gravity induced by a point mass.
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ADM Energy and Linear Momentum
For general asymptotically flat initial data sets there is a notion of
total energy-momentum which was defined by Arnowitt, Deser,
and Misner. There is no energy density for the gravitational field
so these quantities are computed in terms of the asymptotic
behavior of g and k . For these definitions we fix asymptotically flat
coordinates x .

E = 1
2(n−1)ωn−1

lim
r→∞

∫
|x |=r

n∑
i ,j=1

(gij ,i − gii ,j)ν
j
0 dσ0

Pi = 1
(n−1)ωn−1

lim
r→∞

∫
|x |=r

n∑
j=1

πijν
j
0 dσ0, i = 1, 2, . . . , n

These limits exist under quite general asymptotic decay conditions.
For the constant time slices in the Schwarzschild metric we have
E = m. Generally (E ,P) can be thought of as a vector in the
asymptotic Minkowski space, and for a more general slice in these
spacetimes we have m =

√
E 2 − |P|2.



ADM Energy and Linear Momentum
For general asymptotically flat initial data sets there is a notion of
total energy-momentum which was defined by Arnowitt, Deser,
and Misner. There is no energy density for the gravitational field
so these quantities are computed in terms of the asymptotic
behavior of g and k . For these definitions we fix asymptotically flat
coordinates x .

E = 1
2(n−1)ωn−1

lim
r→∞

∫
|x |=r

n∑
i ,j=1

(gij ,i − gii ,j)ν
j
0 dσ0

Pi = 1
(n−1)ωn−1

lim
r→∞

∫
|x |=r

n∑
j=1

πijν
j
0 dσ0, i = 1, 2, . . . , n

These limits exist under quite general asymptotic decay conditions.
For the constant time slices in the Schwarzschild metric we have
E = m. Generally (E ,P) can be thought of as a vector in the
asymptotic Minkowski space, and for a more general slice in these
spacetimes we have m =

√
E 2 − |P|2.



Statement of Theorem

In this talk we will describe the proof of the following theorem due
to (EHLS) M. Eichmair, L. Huang, D. Lee, and the speaker
(arXiv:1110.2087).

Theorem (Spacetime positive mass theorem)

Let 3 ≤ n < 8, and let (M, g , k) be an n-dimensional
asymptotically flat initial data set satisfying the dominant energy
condition. Then

E ≥ |P|,

where (E ,P) is the ADM energy-momentum vector of (M, g , k).



Previous Results

Our theorem is an improvement of earlier results.

• R ≥ 0 implies E ≥ 0 by S & Yau for 3 ≤ n < 8. This includes
the maximal (and Riemannian) case.

• Dominant energy condition implies E ≥ 0. Done by S & Yau for
n=3, and same method extended recently by Eichmair for
3 < n < 8.

• For spin manifolds of any dimension E ≥ |P| follows from
argument of E. Witten.



Part 2: The Riemannian Positive Energy Theorem

The mean curvature proof of the positive energy theorem in the
Riemannian case is based on the study of stable minimal
hypersurfaces. Recall that the stability condition for a minimal
hypersurface may be written∫

Σ
[‖∇ϕ‖2 − 1

2
(RM − RΣ + ‖A‖2)ϕ2] dv ≥ 0.

for all smooth ϕ with compact support on Σ.



Stability and Scalar Curvature I

For n = 3, if Σ is compact we may choose ϕ = 1 and we obtain∫
Σ

RΣ dv ≥ 1

2

∫
Σ

(RM + ‖A‖2) dv .

By the Gauss-Bonnet theorem this implies that the Euler
characteristic of Σ is positive if Σ is orientable and RM > 0.

In higher dimensions the stability argument implies that a stable
hypersurface in a manifold of positive scalar curvature admits a
metric of positive scalar curvature (conformal to the induced
metric). To see this we let u > 0 be a first eigenfunction of the
Jacobi operator L. It follows that

L(u) = ∆u +
1

2
(RM − RΣ + ‖A‖2)u ≤ 0
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Stability and Scalar Curvature II

Thus if RM > 0 we have

∆u − 1

2
RΣu < 0.

It follows that v = uα with α = n−3
2(n−2) satisfies

∆v − n − 3

4(n − 2)
RΣv < 0.

The operator on the left is the conformal Laplacian on Σ and it
follows from the conformal transformation of scalar curvature that
the metric v 4/(n−3)g has positive scalar curvature.



Simplifying the asymptotics

Assume that M is asymptotically flat with R ≥ 0. In order to show
that E ≥ 0, we first prove a density theorem which shows that,
given any ε > 0, there is a scalar flat metric ḡ which has
conformally flat asymptotics meaning that near infinity

ḡij = u
4

n−2 δij

and such that Ē ≥ E − ε.

This means that the metric is equal to the standard slice of the
Schwarzschild metric to leading order at infinity. This is because u
is a harmonic function asymptotic to 1 so we have

u(x) = 1 +
E

2|x |n−2
+ O(|x |1−n).
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Barrier Construction

Therefore in suitable coordinates near infinity we have

gij = (1 +
E

2|x |n−2
)

4
n−2 δij + O(|x |1−n)

where E is the energy. If E < 0 we get the following picture

We may use this condition to construct a stable minimal
hypersurface asymptotic to a plane.
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Dimension three

In case n = 3 the proof is completed by observing that the
constant function 1 is a limit of functions of compact support in
the Dirichlet seminorm, and so we can justify it as a variation, and
so we have from stability ∫

Σ
RΣ da > 0.

On the other hand, because of the asymptotically planar condition
the Gauss-Bonnet theorem implies∫

Σ
RΣ da = 2π(χ(Σ)− 1).

Since Σ is a noncompact surface we have χ(Σ) ≤ 1, a
contradiction.



Strong Stability

For n ≥ 4 it is not sufficient to have such a stable hypersurface.
Instead it is necessary to choose a special such hypersurface which
is strongly stable in the sense that the second variation of volume
is nonnegative for variations which are translations near infinity
(not just of compact support). This is achieved by doing an extra
minimization over boundary heights. This can be done because of
the barriers and is essential for n ≥ 4.

For n = 3 and Σ asymptotically planar, it follows that stability
implies strong stability, but this is not true in higher dimensions.



Completion of proof

Using the strong stability we can find a conformal factor v > 0 as
in the compact case with

∆v − n − 3

4(n − 2)
v = 0

and with the asymptotic behavior

v(x) = 1 + b|x |3−n + O(|x |2−n)

with b < 0. It follows that Σ with the metric v 4/(n−3)g is
asymptotically flat with zero scalar curvature and with negative
mass. This contradicts the positive energy theorem in dimension
n − 1 completing the proof inductively.



Part 3: Asymptotic Conditions and a Density Theorem

We now move to the general case. There is a replacement for the
Schwarzschild asymptotics used in the Riemannian case discovered
by the speaker earlier. This is called harmonic asymptotics and it
means that near infinity

g = u
4

n−2 δ, π = u
2

n−2 (LX δ − div(X )δ)

where u > 0 and X is a vector field, and LX δ the Lie derivation of
the euclidean metric with respect to X .

It was shown by J. Corvino and the speaker that any vacuum initial
data set can be approximated by one with harmonic asymptotics in
a norm for which E and P are continuous. This density theorem
was extended from vacuum to the dominant energy condition in
EHLS.
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Asymptotics for Energy and Linear Momentum

In harmonic asymptotics we have

u(x) = 1 + a|x |2−n + O2+α(|x |1−n)

Xi (x) = bi |x |2−n + O2+α(|x |1−n)

for some α > 0.

A computation shows a = E
2 , bi = −n−1

n−2 Pi for i = 1, . . . , n.
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A Density Theorem

Let (Mn, g , π) be an asymptotically flat initial data set. Assume
that the dominant energy condition µ ≥ |J|g holds. For every
ε > 0 there exists asymptotically flat initial data (M, ḡ , π̄) of the
same type with harmonic asymptotics, where (ḡ , π̄) approximates
(g , π) in an appropriate weighted Sobolev space, and such that the
strict dominant energy condition

µ̄ > |J̄|ḡ

holds, and

|E − Ē | < ε and |P − P̄| < ε.



Part 4: The Spacetime Positive Mass Theorem

We assume we are in harmonic asymptotics and we show that if
E < |P| then we have a picture reminiscent of the Riemannian case

This is based on the calculation in harmonic asymptotics of the
expansion of the hypersurfaces xn = Λ where we have chosen
coordinates for which P points in the positive xn direction

H − trΣ(k) = (n − 1)(|P| − E )Λ|x |−n + O(|x |−n).
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The Three Dimensional Case
From the trapping condition on the slab we are able to construct a
hypersurface Σ asymptotic to a plane with H − Tr(k) = 0 and an
appropriate stability condition which is identical to that for stable
hypersurfaces. In case n = 3 the proof is completed by observing
that the constant function 1 is a limit of functions of compact
support in the Dirichlet seminorm, and so we can justify it as a
variation, and so we have from stability∫

Σ
RΣ da > 0.

On the other hand, because of the asymptotically planar condition
the Gauss-Bonnet theorem implies∫
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Since Σ is a noncompact surface we have χ(Σ) ≤ 1, a
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The Higher Dimensional Case

For n ≥ 4 an additional difficulty appears since we can no longer
justify the function 1 as a variation; that is, we need to construct a
strongly stable MOTS. This was accomplished by minimization in
the Riemannian case. An interesting and subtle feature of the
argument is that we are able to accomplish this even though the
equation is not variational.

Once we find a strongly stable asymptotically planar MOTS Σ the
argument proceeds as in the Riemannian case. If we have E < |P|,
we construct Σ and use the strong stability condition to find an
asymptotically flat metric on Σ with R = 0 and E < 0. This
contradicts the Riemannian postive energy theorem in dimension
n − 1.
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Height Picking Heuristics

Let Σρ,h be a stable MOTS with boundary at height h on the
boundary of the cylinder of radius ρ centered on the xn-axis. We
observe that in the Riemannian case the condition

d2

d2h
|Σρ,h| ≥ 0

is equivalent to (first variation formula)

d

dh
F (h) ≥ 0 where F (h) =

∫
∂Σρ,h

〈∂n, η〉 dσ

where η is the outer unit conormal vector along the boundary.

The barrier condition implies that F (−Λ) < 0 while F (Λ) > 0, and
so it is expected that F has positive derivative at some point
h ∈ (−Λ,Λ). In the general case we replace the volume
minimization by this condition. The difficulty is that the Σρ,h are
not unique and we do not expect F to be continuous.
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Height Picking

It turns out that the family of hypersurfaces Σρ,h (fixed ρ) form a
foliation with gaps, and the function F is continuous except at a
countable set of jump discontinuities, and that the jumps are
always down

lim
h↑h0

F (h) ≥ F (h0) ≥ lim
h↓h0

F (h)

with at least one strict inequality.

It can then be shown that there is hρ ∈ (−Λ,Λ) such that Σρ,hρ

has a Jacobi field X (for the expansion) which agrees with ∂n on
the boundary and such that the boundary term F increases when a
deformation is made along X . It is then possible to take a limit of
Σρ,σρ and to show that the limit is strongly stable. The proof can
then be completed as described above.
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