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1 Introduction

In this series of three lectures we describe some connections between the theory
of minimal submanifolds and mean curvature with Riemannian Geometry and
General Relativity. Our goal will be to put the known results in context, and
to outline problems which remain open. We begin with a discussion of the first
and second variation formulae for volume. We place particular emphasis on
the notion of stability for minimal submanifolds because it is primarily through
stability and the Jacobi operator that the ambient curvature influences the
behavior of minimal submanifolds. By definition a minimal submanifold is stable
if the second variation of volume is nonnegative for all compactly supported
deformations. We summarize the known analytic estimates and compactness
theorems for stable hypersurfaces, and then proceed to discuss connections with
scalar curvature and general relativity.

We describe the constraint equations and asymptotic flatness for initial data
sets for Einstein’s equations. We then discuss the ADM mass and state the
positive mass theorem. We discuss the Schwarzschild spacetime, and formulate
the Penrose inequality. We then describe the Huisken/Ilmanen and Bray work
on the Riemannian Penrose inequality. We emphasize throughout the close
connection of these results with the mean curvature theory; indeed they are
really sharp quantitative statements about the area of minimal surfaces in three
dimensional manifolds with nonnegative scalar curvature.

In the final part of this paper we discuss issues connected with area minimiz-
ing and stable submanifolds in higher codimensions. We describe the theory of
calibrations, and place particular emphasis on the holomorphic and special la-
grangian calibrations. We introduce the lagrangian Plateau problem and outline
its connection with constructions of special lagrangian and minimal lagrangian
submanifolds of Kähler-Einstein manifolds.

We thank Weiyang Qiu who took notes during the lectures and prepared a
first draft of this paper.
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2 Background and Notation

Let (Mn+1, g) be a Riemannian manifold, and let D be an affine connection. D
is called the Levi-Civita connection of g if

(1) DXg = 0, for any vector field X;

(2) D satisfies the torsion free condition: DXY − DYX = [X,Y ], for any
vector fields X and Y .

It is a standard result that given a metric g, there exists a unique Levi-Civita
connection.

Using the Riemannian metric g, we can define the length of a curve, and the
Riemannian distance function for a pair of points x and y

d(x, y) := inf{L(γ) : γ is a rectifiable curve connecting x and y}.

Geodesics are defined to be the critical curves for length functional. Locally
they are length minimizing, but in the large they tend to be unstable critical
points in many cases.

The Riemann curvature tensor may be considered a (0, 4) tensor Rijkl =
〈R(ei, ej)ek, el〉 where R is the curvature tensor of the Levi-Civita connection
D and {e1, . . . , en+1} is a basis for TxM . We define the Ricci tensor to be the
trace of the curvature tensor, Rij =

∑
k,l g

klRikjl, and the scalar curvature R
to be the trace of Ricci tensor R =

∑
i,j g

ijRij .
Now we study hypersurfaces in Mn+1. Let Σn be a hypersurface in M . We

define the induced Riemannian connection ∇ on Σ by

∇XY := (DXY )T .

where (DXY )T is the projection of DXY onto the tangent space of Σ. It is easy
to check that ∇ is an affine connection and is indeed the Levi-Civita connection
for the induced metric on Σ.

Let ν be a chosen unit normal vector field for Σ. We define the scalar valued
second fundamental form h as

h(X,Y ) := 〈DXY, ν〉,

for tangent vector fields X and Y on Σ. We can show that h is in fact a
symmetric (0, 2) tensor.

The mean curvature H is defined to be the trace of second fundamental
form, i.e

H :=
∑
i,j

gijhij ,

where hij = h(ei, ej).

Definition 2.1. A hypersurface is called minimal if the mean curvature is iden-
tically zero, i.e. H = 0.
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The following fundamental equations relate the intrinsic geometry (defined
by g) and the extrinsic geometry (defined by h) for a hypersurface. Let Σn ⊂
Mn+1 be a hypersurface and e1, . . . , en be a orthonormal basis on Σ.

Proposition 2.2 (Gauss Equation). The Riemann curvature tensor of the in-
duced metric on Σ is given by

RΣ
ijkl = RMijkl + hikhjl − hilhjk,

for 1 ≤ i, j, k, l ≤ n.

Proposition 2.3 (Codazzi Equation). The following compatibility conditions
hold

∇eihjk −∇ejhik = RMijk(n+1),

for 1 ≤ i, j, k, l ≤ n.

The basic philosophy of this paper is to study the geometric properties of
the ambient manifold M using minimal hypersurfaces. In particular, it will be
important to understand how curvature properties of M influence the behavior
of the minimal submanifolds in M .

Notice that the theory of minimal surfaces in Rn+1 may be viewed as the
”local theory”. This is because the complete minimal submanifolds in Rn+1

arise by rescaling a potential ”blow-up” sequence in a manifold Mn+1, and then
the global behavior of this submanifold reflects local properties of the original
submanifolds.

A final remark here is that in applications, the minimal submanifolds we
study will typically arise from a minimizing procedure, and hence will have a
minimizing or stability property. We proceed to discuss the variational theory
in more detail.

3 First and Second Variation

In this section we record the first and second variation formulae. Let Σk ⊂Mn

be a submanifold. Let X be a vector field in M , and Ft be the flow generated
by X. A standard computation (see [L]) gives the first and second variation
formulae:

Lemma 3.1 (First Variation).

δΣ(X) :=
d

dt
V ol(Ft(Σ))t=0 =

∫
Σ

divΣ(X)dµΣ

where divΣ(X) :=
∑
i,j g

ij〈DeiX, ej〉 = −〈X,H〉+div(XT ). Moreover if X = 0
on ∂Σ then

δΣ(X) = −
∫

Σ

〈X,H〉dµΣ.
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A submanifold with vanishing first variation for all compactly supported
vector fields X is said to be stationary, and we see from the first variation
formula that a smooth submanifold Σ is stationary if and only if it is minimal.

Lemma 3.2 (Second Variation).

d2

dt2
V ol(Ft(Σ))|t=0 =

∫
Σ

{
k∑
i=1

|D⊥eiX|
2 + divΣ(DXX)

+
k∑
i=1

RM (ei, X, ei, X)

+
n∑
i=1

〈DeiX, ei〉2 −
k∑

i,j=1

〈DeiX, ej〉〈DejX, ei〉}dµΣ.

If Σ is a stationary hypersurface, then the second variation formula above
has a simpler form. Assume the the normal bundle of Σ is trivial and let ν be
a unit normal vector field. Define a vector field X = ϕ(x)ν where ϕ(x) is a
smooth function on Σ such that ϕ = 0 on ∂Σ. If we assume that Σ is minimal,
then the second variation formula becomes:

Lemma 3.3 (Second variation for hypersurface). If X = ϕν, then

δ2Σ(X) = −
∫

Σ

ϕLϕdµΣ,

where Lϕ := 4ϕ+ (‖h‖2 +Ric(ν, ν))ϕ.

A minimal submanifold Σ is called stable if the second variation is non-
negative, i.e. δ2Σ(X) ≥ 0 for any vector field X with compact support on Σ. In
the hypersurface case, stability is equivalent to the condition that λ1(−L,Ω) ≥ 0
for any compact domain Ω in Σ, where λ1 is the first Dirichlet eigenvalue.

4 Curvature Estimates and Compactness Theo-
rems

In this section we state(without proof) some results concerning curvature esti-
mate for minimal stable hypersurfaces. Let Σn be a minimal stable hypersurface
in Mn+1 and let h be the second fundamental form. The following estimate is
proven in [S1].

Theorem 4.1 (Schoen). If n = 2 then ‖h(x)‖ ≤ c(M,d(x, ∂Σ)). If M is R3,
then ‖h(x)‖ ≤ c · d(x, ∂Σ)−2 for an absolute constant c.

In the cases n = 3, 4, 5 the curvature estimate holds with a constant depend-
ing also on the volume of Σ (see [SSY]).
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Theorem 4.2 (Schoen-Simon-Yau). If n = 3, 4, 5 and Σ is stable immersion,
then

‖h(x)‖ ≤ c(M, |Σ|, d(x, ∂Σ)),

where |Σ| is the volume of Σ. If M is Rn+1, then ‖h(x)‖ ≤ c · d(x, ∂Σ)−2 for
an absolute constant c. If n = 6 and Σ is a proper embedding, then the same
estimate holds.

Curvature estimates of this type imply strong compactness theorems on large
classes of stable hypersurfaces. The first theorem implies that the limit of
immersed stable two dimensional minimal surfaces in a fixed three manifold
is a stable minimal lamination (provided we stay a fixed distance from the
boundaries). Because singularities are generally present even in area minimizing
hypersurfaces for n ≥ 7, we do not expect the same estimate to hold in general
dimensions. The following compactness theorem holds in all dimensions (see
[SS]).

Theorem 4.3 (Schoen-Simon). For arbitrary n, let

G := {Σ : Σ proper embedded stable minimal hypersurface in M with |Σ| ≤ C}.

Then any element in the closure of G has singular set of Hausdorff dimension
no greater than n− 7.

It is an unsolved question whether Theorem 4.1 holds for n = 3, 4, 5, 6. It
would be very interesting to have such an estimate. It is also unknown whether
there is a version of Theorem 4.3 without the volume bound. Very recently
Neshan Wickramasekera [W] in his Stanford PhD thesis has given a partial
extension of Theorem 4.3 in the case that the hypersurfaces are immersed rather
than embedded.

5 Geometry and Second Variation

The simplest example of the philosophy which is involved in the use of minimal
submanifold theory to study curvature is the following theorem.

Theorem 5.1. If RicM > 0, then there is no compact stable minimal hyper-
surface in M .

Proof. Assume Σ is a compact stable minimal hypersurface in M . Let ϕ ≡ 1 in
Lemma 3.3. The stability of Σ gives us that∫

Σ

[‖h‖2 +Ric(ν, ν)]dµΣ ≤ 0,

which contradicts the fact that RicM > 0.
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If we combine this with the existence results (see [F]) which represent integral
homology classes with area minimizing submanifolds, we get as a special case
the vanishing of the n-th Betti number, bn(Mn+1) = 0. This result is dual
to Bochner’s theorem on the vanishing of harmonic 1-forms under the positive
Ricci curvature assumption.

Now we will study the case where only the scalar curvature is positive. In this
setting the minimal hypersurface theory becomes much more powerful. Assume
RM ≥ 0, and apply the Gauss Equation to express the intrinsic scalar curvature
of Σ

RΣ
ijij = RMijij + hiihjj − h2

ij .

Summing for 1 ≤ i, j ≤ n we get

RΣ =
n∑

i,j=1

RMijij − |h|2 = RM − 2Ric(ν, ν)− |h|2.

Therefore,

|h|2 +Ric(ν, ν) =
1
2
|h|2 +

1
2
RM − 1

2
RΣ

To illustrate the usefulness of this expression, consider the case n = 2 and let
ϕ ≡ 1. The stability assumption then implies∫

Σ

RΣdµ > 0,

which by the Gauss-Bonnet formula gives

χ(Σ) > 0.

This gives us the following result (see [SY1]).

Theorem 5.2. Let (M3, g) be a Riemannian manifold with positive scalar cur-
vature RM > 0. Then any compact stable minimal surface in M is topologically
a sphere.

For arbitrary dimension, the corresponding result is that the induced met-
ric on Σ is conformally equivalent to a metric of positive scalar curvature (see
[SY2]). This makes it possible to inductively study the topological structure of
manifolds of positive scalar curvature. There has been extensive work in this
direction (see [GL1], [GL2], [SY2], [SY3], [St]) which uses both the stable hy-
persurface approach and the dual approach using harmonic spinors. One of the
basic unresolved questions in this theory is whether a compact K(π, 1) manifold
of dimension four or more can carry a metric of positive scalar curvature. There
is a more refined theory which has to do with the Yamabe invariants of compact
manifolds (see [S2], [LB], [P] for a general discussion and some results).

There is a rather direct relationship between the scalar curvature theory and
problems about the Einstein equations of General Relativity. We now describe
this connection.
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6 General Relativity

A spacetime in General Relativity is a Lorentz four dimensional manifold (N4, ḡ),
where ḡ has signature type (−,+,+,+). The evolution of the gravitational field
ḡ is then determined by the Einstein Equations

R̄µν −
1
2
R̄ḡµν = 8πTµν ,

where R̄µν is the Ricci tensor, R̄ is the scalar curvature, and Tµν is the stress-
energy tensor of any matter fields which are present.

6.1 Dominant Energy Condition

An observer moves tangent to a timelike vector e0, and if e0, e1, e2, e3 is a Lorentz
frame, then the observed energy-momentum density is represented by the vector∑
T0µeµ. The condition that this vector is forward pointing and timelike for

every observer is the dominant energy condition:

T00 ≥

√√√√ 3∑
i=1

T 2
0i.

Since the Einstein equations are an evolution equation of hyperbolic type, a
spacetime is determined by initial data given on a three dimensional spacelike
hypersurface in N . It is readily observed from the Gauss equations that a totally
geodesic hypersurface in a Ricci flat manifold has vanishing scalar curvature;
thus we expect such initial data to satisfy scalar curvature conditions. Using
the Gauss and Codazzi equations together with the Einstein equations we first
rewrite the dominant energy condition. Let M3 be a space-like hypersurface, g
be the induced metric and p be the second fundamental form. We then see that
µ = T00 is given by

µ :=
1

16π
[RM − ‖p‖2 + (Tr(p))2],

and J =
∑3
i=1 T0iei is

J :=
1

8π
[div(p)−∇Tr(p)]

where the covariant derivatives are taken in the induced geometry on M . Thus
the dominant energy condition becomes:

µ ≥ ‖J‖. (1)

An important special case is p = 0, and in this case we see that (1) is equivalent
to the condition that M has nonnegative scalar curvature R(g) ≥ 0. In this
paper we usually restrict our attention to this case, which we refer to as the
Riemannian case.
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6.2 Asymptotic Flatness

The condition that a spacetime be an isolated gravitating system with all other
matter/gravity at infinite distance is called asymptotic flatness. An initial data
set (M3, g, p) is said to be asymptotically flat if there is a compact set K ⊂M
such that M3 \K is diffeomorphic to R3 \ B1(where B1 is the unit ball in R3)
and such that under this diffeomorphism, the metric and second fundamental
form of M3 \K can be written as

gij = δij +O(|x|−1), pij = O(|x|−2).

One can define the total ADM mass (and linear momentum) for an asymptoti-
cally flat initial data set (see for example [HE]). We first consider an important
example of an asymptotically flat manifold.

6.3 Schwarzschild Initial Data

The Schwarzschild manifold is (R3 \ {0}, s), where s is a metric given by sij =
(1 +m/2r)4δij and m is a positive constant and is by definition the total mass
of the manifold. This manifold has zero scalar curvature everywhere and hence
defines initial data for the vacuum Einstein equations (see [HE] for a discussion
of this spacetime). Physically the Schwarzschild corresponds to the gravitational
field exterior to a rotationally symmetric black hole of mass m. For simplicity,
in our general discussion of asymptotic flatness, we can think of asymptotically
flat manifolds as being asymptotic to a Schwarzschild manifold, i.e. we can
write the asymptotic condition on g as

gij = (1 +
m

2r
)4δij +O(

1
r2

).

That this is no loss of genrality in discussing the ADM mass is shown in [?]. We
can then simply define the ADM mass of the manifold to be m. (More generally,
the ADM mass is defined as a certain boundary integral over large coordinate
spheres).

7 Positive Mass Theorem

In this section we give a brief discussion of the Positive Mass Theorem both in
the Riemannian case and the general case.

7.1 Positive Mass Theorem(Riemannian Case)

With the terminology we have set up, we may state the Positive Mass Theorem
(Riemannian case) which was first proven by Schoen and Yau [SY4] using mini-
mal surface theory, and later by Witten [W], [PT] using the theory of the Dirac
operator:
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Theorem 7.1 (Positive Mass Theorem(Riemannian Case)). Let (M3, g) be a
complete, smooth asymptotically flat manifold with nonnegative scalar curvature
and total mass m. Then

m ≥ 0,

with equality if and only if (M3, g) is isometric to R3 with the standard Euclidean
metric.

Now we outline the idea of the minimal surface proof of this theorem:
Step 1. We may normalize the asymptotic data so that g is conformal to the

Euclidean metric near infinity. More precisely gij = u4δij near ∞ where u is a
function such that

4u ≤ 0, u = 1 +
m

2|x|
+O(|x|−2).

Step 2. Assuming m < 0, then {(x1, x2, x3) ∈ R3 : |x3| ≤ C} is a mean
convex region for large C. This is a direct calculation using the asymptotic
assumption on g. It follows that there exists a stable minimal surface Σ asymp-
totic to a plane x3 = a for some a ∈ (−C,C). This follows from solving the
Plateau problem with boundary a large circle in the x1x2 plane, and using the
mean convexity obtained in the previous step to show that we may let the radius
of this circle go to infinity and find a limit of these area minimizing surfaces
which is a stable minimal surface which is asymptotic to a horizontal plane.

Step 3. We show that this is inconsistent with the stability of Σ and the
non-negativity of the scalar curvature; in fact, stability of Σ gives (we have to
justify choosing ϕ = 1)∫

Σ

(2−1‖h‖2 + 2−1RM )da ≤
∫

Σ

KΣda, (2)

where KΣ is the Gauss curvature of the surface Σ. Then because of the fact
that Σ is asymptotic to a plane, the Gauss-Bonnet formula gives

2−1

∫
Σ

KΣda = 2πχ(Σ)− 2π ≤ 0.

On the other hand by a conformal argument we may assume the scalar curvature
of M is positive, i.e. RM > 0. Then (2) implies that

2−1

∫
Σ

KΣda > 0,

a contradiction.

7.2 Positive Mass Theorem(General Case)

We discuss briefly an unpublished proof due to the author of the general case
of the Positive Mass Theorem. This proof follows along the same lines as the
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Riemannian case. The original proof [SY5] is more complicated, but the de-
velopment there has other useful applications particularly to the existence of
apparent horizons assuming largeness conditions on the initial data ([SY6], )

Trapped Surfaces and the horizon equation: Let S be a 2 dimensional surface
in an initial data set M3 with induced metric g and second fundamental form
p. Let e0, e1, e2 and e3 be a Lorentz frame. Let ν be the outward unit normal
vector field to S in M . Then ν ± e0 are orthogonal null vectors. We say that S
is trapped for ν ± e0 if

HS ± TrS(p) < 0.

Then the apparent horizon equation for S is the marginally trapped condition

HS ± TrS(p) = 0. (3)

The general positive mass theorem says that the total energy-momentum vector
(E,P1, P2, P3) is a forward pointing time-like vector, i.e.

E ≥

√√√√ 3∑
i=1

P 2
i ,

where E is the total energy and P = (P1, P2, P3) is the total linear momentum
(defined precisely below). We outline an analogous proof as for the Riemannian
case.

Step 1. Without loss of generality we may assume the following asymptotic
condition for g and p:

gij = (1 +
E

2|x|
)4δij +O(|x|−2)

pij = L(2‖P‖ · |x|−1 ∂

∂x3
) +O(|x|−3),

where P is the total linear momentum vector given by

Pi =
1

8π

∮
S∞

[(Pijνj − (TrP )νi]dA,

and E is the total energy given by

E =
1

16π

∮
S∞

(gij,j − gjj,i)νidA,

and L is an operator defined by

LX := LXg − 2−1div(X).

Step 2. Assume for the sake of contradiction that E < |P |. Then, by a
calculation based on the asymptotics above, we have H + Tr(p) < 0 on the
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boundary of the region |x3| < C for C large. Therefore this region is trapped,
and there exists an apparent horizon Σ which is asymptotic to a plane x3 = a
and with HΣ = −Tr(p). (The existence here is complicated by the fact that
the horizon equation is not a variational equation.)

Step 3. The solution which is constructed in the previous step satisfies the
condition that its linearized operator has nonnegative first eigenvalue on com-
pact sets, and an analagous stability-type argument produces a contradiction.

8 The Penrose Inequality(Riemannian Case)

We will call an outermost minimal sphere in an asymptotically flat manifold
M3 with nonnegatvie scalar curvature a horizon. We see that the Schwarzschild
manifold has one horizon and an explicit calculation shows that the surface area
A of the horizon satisfies:

m =

√
A

16π
.

In general, the existence theory for minimal surfaces implies that there exists
a finite collection of outermost minimal spheres so that if we remove the re-
gions interior to them, then the manifold becomes diffeomorphis to R3 with a
finite number of disjoint balls removed. Thus we may assume that our initial
data set M is topologically the exterior of balls, and that the boundary spheres
are minimal. We may furthermore assume that there are no compact minimal
surfaces in the interior of M (the existence of one would produce another out-
ermost minimal sphere). Now the Penrose inequality asserts that the total area
of these outermost minimal spheres is bounded above by the horizon area for a
Schwarzschild metric with the same total mass.

Theorem 8.1 (Penrose Inequality). Let (M3, g) be a complete, smooth asymp-
totically flat manifold with nonnegative scalar curvature and total mass m whose
outermost minimal spheres have total surface area A. Then

m ≥
√

A

16π
,

with equality if and only if (M3, g) is isometric to the Schwarzschild metric
(R3 \ {0}, s) of mass m outside their respective horizons.

The Penrose Inequality was first conjectured by Penrose [Pen] in 1973 and
was proven in a slight weaker form by Huisken and Ilmanen [HI] in 1997 using
inverse mean curvature flow and in full by Bray [B] in 1998 using a totally
different method. (Gibbons, Tod, Bartnik, Herzlich and Bray had obtained
earlier partial results). We note that the general case of the Penrose Inequality
(for arbitrary initial data sets) is still open.

8.1 The Geroch and Jang/Wald Approach

We first describe the Hawking mass which for certain surfaces in M gives a
reasonable definition of the gravitational mass enclosed by that surface.
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Definition 8.2 (Hawking Mass). Let Σ2 ⊂ M3. The Hawking mass of Σ ,
mH(Σ) is defined to be

mH(Σ) :=

√
Area(Σ)

16π
(1− 1

16π

∫
Σ

H2da).

In the Schwarzschild manifold, it is easily seen that the Hawking mass of
any sphere Sr is equal to the mass m, and for general asymptotically flat M

lim
r→∞

mH(Sr) = m

where Sr denotes a coordinate sphere of large radius. A calculation (see [BS])
shows that if g is rotationally symmetric and the scalar curvature RM ≥ 0, then
mH(Sr) is an increasing function of r.

Geroch [G] showed that if M3 has nonnegative scalar curvature, then the
Hawking mass of Σ is nondecreasing when the surface Σ flows outward at a
speed equal to the inverse of the mean curvature. More precisely assume Σt is
a family of connected surfaces evolving by the equation

∂x

∂t
=

1
H
ν(x), (4)

where H is the mean curvature of Σt and ν is the unit vector which is opposite to
the mean curvature direction. Geroch then derived the important monotonicity
property

d

dt
mH(Σt) ≥ 0.

Using this monotonicity result, Jang and Wald [JW] gave a formal proof of
the Penrose inequality in case there is a single outermost minimal sphere. Their
formal argument supposes that Σ0 is an outermost minimal sphere. Assume
that the inverse mean curvature flow equation (4) with initial data Σ0 has a
family of smooth solution Σt for 0 ≤ t <∞ such that for large t, the surface Σt
is asymptotic to a coordinate sphere with large radius. It then follows that

lim
t→∞

mH(Σt) = m.

On the other hand, Geroch monotonicity implies that

mH(Σ0) =

√
Area(Σ0)

16π
≤ mH(Σt).

Hence we get

m ≥
√

A

16π
which gives the Penrose inequality in the case when M has only one outermost
minimal sphere.

The main difficulty in making this formal argument rigorous is to prove
the existence and regularity of the inverse mean curvature flow. In general
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singularities occur in this flow, and these must be understood in order to have
a hope of giving a rigorous proof. Huisken and Ilmanen succeeded in rigorizing
this argument by constructing an appropriate weak solution of the inverse mean
curvature flow. We now give an outline of their argument.

9 The Huisken/Ilmanen Approach

To understand the difficulties which may arise, we first analyze some special
cases for the inverse mean curvature flow.

Example 1. The initial surface is a coordinate sphere in R3, i.e. Σ0 = Sr0
for some r0. Then we have

d

dt
(Area(Σt)) = Area(Σt).

So we have
Σt = Set/2r0 .

Thus in this example the flow exists and has the desired behavior. We next
consider two examples for which the flow becomes singular.

Example 2. The initial surface Σ0 is a “thin” torus of revolution. In this
case, the mean curvature vector points into the solid torus and Σt exists for a
short time, but at some finite time we will have minΣt H → 0 and 1/H goes
to infinity so the flow does not make sense after that. Indeed, there must be a
topology change if the large time flow is to resemble large spheres.

Example 3. The initial surface is the disjoint union of two spheres, i.e.
Σ0 = Sr1(P ) ∪ Sr2(Q). In this case, the classical flow Σt must develop self
intersections in a finite time.

From the examples above, we see that in order for a flow to exist for all t,
we must allow jumps and changes in topology.

9.1 The Level Set Approach

To construct a solution of the inverse mean curvature flow, Huisken and Ilmanen
rewrite the flow as an equation for the level sets of a function. Let u(x) be a
function such that Σt := {x : u(x) = t} is smooth for all t. By direct calculation
we see that if Σt is a solution to the inverse mean curvature flow, then

div(
∇u
|∇u|

) = |∇u| (5)

Remark 9.1. The level set formulation allows jumps in a natural way since if
u is constant on an open set Ω, then the level sets “jump” across Ω.

Definition 9.2. Σ2 ⊂ M3 is called outer minimizing if Area(Σ) ≤ Area(Σ1)
for any surface Σ1 enclosing Σ. Σ is called strictly outer minimizing if equality
holds if and only if Σ = Σ1.
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The following illustrates the connection between the inverse mean curvature
flow and the outer minimizing property.

Lemma 9.3. If u(x) is a solution to the inverse mean curvature flow equation
(5), then for any t > 0, the level set Σt is outer minimizing.

Proof. Let Σ be any surface enclosing Σt and Ω is the region between Σ and
Σt. Integration by parts gives∫

Ω

div(
∇u
|∇u|

)dv =
∫

Σ

ν · ∇u
|∇u|

da−Area(Σt).

On the other hand (5) implies that

div(
∇u
|∇u|

) = |∇u| ≥ 0.

Thus we conclude that
Area(Σt) ≤ Area(Σ).

(note: equality implies that u ≡ t on Ω).

The existence of outer minimizing sets follows from the Plateau theory.

Lemma 9.4. For any Σ ⊂ M , there exists a unique smallest strictly outer
minimizing surface Σ̂. We will call Σ̂ the strict minimizing hull of Σ.

Remark 9.5. Although Σ might be enclosed by more than one outer minimizing
surface, the strictly minimizing hull is the maximal such surface.

Assume u(x) is a global solution of the inverse mean curvature flow equation
(5). Let

Ωt := {x : u(x) < t}, Ω+
t := {x : u(x) ≤ t}.

Then Σt = ∂Ωt is outer minimizing and Σ+
t = ∂Ω+

t is strictly outer minimizing.
In fact Σ+

t is the strict minimizing hull of Σt. The surfaces Σt and Σ+
t differ

precisely at jumps, i.e. when u(x) = t on a set of positive measure.

9.2 Heuristic Description of the Huisken-Ilmanen Flow

A valid way to think of the Huisken/Ilmanen modified inverse mean curvature
flow is as follows: If Σ̂t = Σt, then continue with the classical inverse mean
curvature flow, but at any instant for which Σ̂t 6= Σt, jump to Σ̂t and continue
with the classical inverse mean curvature flow. The rigorous construction is
different from this, but it captures the main idea, and explains the examples
given above.

Example 2. The “thin” torus: After some time t0 before the mean curvature
goes to zero the surface Σt0 will cease to be outer minimizing. At this time
the surface Σt0 will jump to its strict minimizing hull which will be a sphere,
and from then on the flow will be smooth and asymptotic to large coordinate
spheres.

Example 3. The disjoint union of spheres: A similar phenomenon will occur,
and after time t0, Σt0 becomes a single sphere enclosing the two.
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Lemma 9.6 (Monotonicity of Hawking Mass). The Hawking mass mH(Σt) is
increasing for the Huisken-Ilmanen flow.

Proof. This is a rough sketch. It suffices to show that the Hawking mass in-
creases at the jumps. Assume Σ̂t 6= Σt, then we see Area(Σt) = Area(Σ̂),
Ĥ = H on Σt ∩ Σ̂t and Ĥ = 0 on Σ̂t \ Σt. Therefore∫

Σ̂

Ĥ2da ≤
∫

Σ

H2da.

This implies
mH(Σ̂t) ≥ mH(Σt).

A major problem with the Huisken-Ilmanen flow is how to rigorize the con-
struction, (e.g. the jump times are not known to be discrete). We give a hint
as to how that is done.

9.3 Elliptic Regularization

Consider the following perturbed version of the inverse mean curvature flow
equation (5)

div(
∇u√

|∇u|2 + ε2
) =

√
|∇u|2 + ε2. (6)

We notice that the perturbed equation (6) is a non-degenerate elliptic equation
and it has the following geometric meaning. If u(x) is a solution to the perturbed
equation (6), then

Gt(x) := graph(
u(x)
ε
− t

ε
) ⊂M × R

is a solution to the unperturbed equation (5).
We now sketch Huisken-Ilmanen’s proof of a version of the Penrose Inequal-

ity.

Step 1. There is a smooth solution uε of the perturbed equation (6) satisfying
uε = 0 on the initial outermost minimal sphere Σ0 and uε has suitable
behavior near infinity.

Step 2. The {uε} above satisfy local uniform Lipschitz bounds and hence a sub-
sequence converges to some function u uniformly.

Step 3. The limit function u is a Lipschitz weak solution of the unperturbed equa-
tion (5) in the sense that∫

Ω

(|∇u|+ u|∇u|)dµ ≤
∫

Ω

(|∇v|+ v|∇u|)dµ,

for any v such that v − u has compact support in Ω for any compact set
Ω in M . Moreover there can be no other Lipschitz weak solution whose
zero set is Σ0.
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Step 4. The surface Σt is connected and is C1,α for any t > 0, and Σt becomes
asymptotic to a coordinate sphere for t large. Therefore by Lemma 9.6,
mH(Σt) can be defined and is monotone increasing in t. Using a similar
argument as for the formal prrof of Jang/Wald, we can show that the
Riemannian Penrose Inequality holds assuming there is one outermost
minimal sphere. More generally the statement is as follows.

Theorem 9.7 (Huisken-Ilmanen). If M3 is a complete, asymptotically flat Rie-
mannian manifold with nonnegative scalar curvature, with total mass m and with
outermost minimal spheres Σ1, Σ2, . . . , Σk . Then

m ≥
√
Amax
16π

,

where
Amax := max{Area(Σ1), . . . , Area(Σk)}.

Moreover, equality holds if and only if the region of M outside Σ1, Σ2, . . . , Σk
is isometric to the exterior Schwarzschild metric(in particular, k = 1).

10 Bray’s Approach

After the Huisken/Ilmanen was written, H Bray [B] found a clever argument to
use the Positive Mass Theorem [SY4] to prove the full version of the Penrose
Inequality(Riemannian case). In this section we will discuss his approach.

We first may simplify the assumptions. By Schoen-Yau’s argument in the
proof of the Positive Mass Theorem [SY7] we can assume Rg ≡ 0 and

gij = u4δij

outside a compact set, where u is a function satisfies:{
4gu = 0,
u(x) = 1 + m

2|x| +O(|x|−2).

Bray defines a continuous family of conformal metrics {gt} on M3, where

gt = u4
t g0,

for some suitable function ut(x)(described later) and u0(x) ≡ 1. Given the
metric gt, define

Σ(t) := the outer minimal area enclosure of Σ0 in (M3, g),

where Σ0 is the union of the original outer-minimizing spheres in (M3, g0). The
time rate of change of ut is given by vt where vt satisfies

4g0vt = 0, outside Σt,
vt = 0, on Σ(t),
limx→∞ vt(x) = −e−t,

(7)
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and set vt ≡ 0 inside Σ(t). Then we set d
dt (ut) = vt, or,

ut(x) = 1 +
∫ t

0

vs(x)ds.

Theorem 10.1. With the notation above, there exists a solution ut(x) and Σt
for any t ≥ 0 such that ut(x) is Lipschitz in t, C1 in x globally and C∞ in x
outside Σ(t). Moreover Σ(t1) ∩ Σ(t2) = ∅ for t1 6= t2

The monotonicity associated with this flow is given as follows.

Proposition 10.2. The mass m(t) of (M3, gt) is nonincreasing.

Proof. Since the flow has an autonomous character, it suffices to showm′(0) ≤ 0.
Assume

ut(x) = a(t) +
b(t)
2|x|

+O(|x|−2). (8)

Note that gt = u4
t g0 is asymptotically flat with the expansion

gt = [(a(t) +
b(t)
2|x|

)4(1 +
m(0)
2|x|

)4]δij +O(|x|−2).

Computing, we get
m(t) = a(t)(b(t) +m(0)b(t)).

From the definition of vt in (7) we find

v0 = −1 +
C0

2|x|
+O(|x|−2), (9)

where C0 is the Newtonian capacity defined by

C0 = inf{ 1
2π

∫
M\Σ(0)

|∇ϕ|2 : ϕ = 0 on Σ(0) and ϕ = 1 at ∞}.

Now since u0 ≡ 1 and d
dt (ut) = vt, comparing (8) and (9), we see

a(0) = 1, ȧ(0) = −1,
b(0) = 0, ḃ(0) = C0.

Thus
m′(0) = C0 − 2m(0).

We now prove the following inequality which will complete the proof of mono-
tonicity.

Proposition 10.3. m(0) ≥ 2−1C0.
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Proof. This will come by applying the positive mass theorem. We double M
by reflection along Σ0 and extend v0 to the doubled manifold by odd reflection.
Define

g̃0 = (2−1(1− v0))4g0.

We can then show that the mass m̃ of g̃ is in fact m(0)− 2−1C0. The positive
mass theorem therefore gives

m̃ = m(0)− 2−1C0 ≥ 0

which is the desired conclusion.

We may now complete a sketch of Bray’s proof of the Penrose Inequality:
By Theorem 10.1, we see that Σt2 strictly encloses Σt1 for t2 > t1 ≥ 0. Also
we can prove that A(t) := total area of Σt is constant, i.e. A(t) ≡ A0 for any
t ≥ 0, and we have shown that the mass m(t) is nonincreasing for t ≥ 0. It is
shown by Bray that (M \ Σ(t), gt) converges to a Schwarzschild metric. This,
together with Proposition 10.2, implies that

m = m(0) ≥ lim
t→∞

m(t) = msch =

√
A

16π
.

which gives the Penrose Inequality.

11 Higher Codimensions

The minimal submanifold theory used up to now has been all in codimension
one. We now consider some applications of minimal submanifolds with higher
codimension. One of the main motivations for many of the phenomena in the
subject is the Bernstein Theorem:

Theorem 11.1 (Bernstein Theorem). Any entire minimal graph in R3 is a
plane.

While the original proof involved a PDE type argument the theorem has been
generalized in more geometric ways. Osserman [O] gave a generalization using
the fact that Gauss map is conformal, and replaced the graphical assumption
with the assumption that the Gauss image omit a sufficiently large set on the
two sphere. This theory was improved dramatically by Fujimoto [Fu]. A great
achievement for the codimension one theory was to prove the Bernstein theorem
for entire minimal graphs of dimension seven or less, and to find counterexamples
in higher dimensions (see [F] for an account of this). Schoen, Simon and Yau
[SSY] proved this result in dimensions up to 6 for complete stable minimal
hypersurfaces with a volume bound using curvature estimate.

It is natural to ask if there is an analogue of the Bernstein theorem for higher
codimension minimal submanifolds. The theory of Osserman concerning the
size of the omitted set for complete minimal surfaces was generalized to higher
codimension (see [CO]). As a first guess, one might expect that entire graphs
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could be holomorphic with respect to an orthogonal complex structure on Rn.
That this is not the case was shown by Osserman [O]. One may then ask what
is the suitable global hypothesis for a minimal surface in higher codimensions
to be holomophic. Only partial results of this type are known.

It turns out that in various higher dimensions and codimensions there are
classes of submanifolds which satisfy first order reductions of the minimal sub-
manifold equation and are automatically volume minimizing like the holomor-
phic submanifolds. We now give a general discussion of these calibrated sub-
manifolds.

12 Calibrations

To construct volume minimizing submanifolds, Harvey and Lawson in their
paper [HL] defined the concept of a calibration.

Definition 12.1. A k-form α on a Riemanian manifold (Mn, g) is called a
calibration if

1. dα = 0;

2. |α(πx)| ≤ 1, for any k-dimensional subspace πx in TxM and any x ∈M .

Definition 12.2. Let α be a calibrating k-form on M . A k-dimensional sub-
manifold Σk is said to be calibrated by α if α(TxΣ) = 1 for any x ∈ Σ. In other
words, Σ is calibrated by α if the restriction of α to Σ is the volume form on Σ.

The most important result about calibrated submanifolds is the following
minimizing property for calibrated submanifolds.

Proposition 12.3. Let α be a calibrating k-form on M and let Σk be a sub-
manifold calibrated by α. Then Σ is volume minimizing in its (relative) integral
homology class, i.e.

|Σ| = inf{|Σ1| : Σ1 is homologous toΣ, ∂Σ1 = ∂Σ}

where | · | denotes the volume.

Proof. Since Σ and Σ1 are homologous (with ∂Σ = ∂Σ1), we assume Σ− Σ1 =
∂C, where C is a (k + 1)− dimensional chain. Then Stokes’ Theorem gives∫

Σ−Σ1

α =
∫
∂C

α =
∫
C

dα = 0.

On the other hand since Σ is calibrated by α, we see that

|Σ| =
∫

Σ

α =
∫

Σ1

α ≤ |Σ1|,

where, in the last inequality, we used property (2) of the definition of calibrating
form.
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Complex submanifolds in R2m can be viewed as calibrated submanifolds. A
complex structure on R2m is a linear isomorphism J : R2m → R2m such that
J2 = −I, where I is the identity map. A complex structure J is said to be
compatible with the Euclidean metric if J is also an isometry, i.e. J(v) ·J(w) =
v ·w, where · is the Euclidean inner product of R2m. For a compatible complex
structure J , we define the Kähler form(or symplectic form) ω by ω(v, w) :=
J(v) · w. A 2k-dimensional subspace V 2k in R2m is called complex with respect
to J if it is invariant under J , i.e. J(V ) = V . A 2k-dimensional submanifold
Σ2k is called complex(or holomorphic) with respect to J if TxΣ is complex for
every x ∈ Σ.

The following Wirtinger Inequality(for proof, see [L]) implies that ωk/k! is
a calibrating form.

Lemma 12.4 (Wirtinger Inequality). Let ω be the Kähler form for a compatible
complex structure J in R2m. Define α := ωk/k!, where ωk = ω ∧ . . . ∧ ω. Then
|α(V )| ≤ 1 and α(V ) = 1 if and only if V is complex.

An immediate consequence of the Wirtinger Inequality is

Corollary 12.5. The form α defined in the above lemma is a calibrating form
which calibrates complex submanifolds. Therefore any complex submanifold is
volume minimizing in its relative homology class (i.e. for its boundary).

We now give the standard complex structure onR2m. Let x1, . . . xm, y1, . . . ym
be the standard coordinates in R2m. Define J by

J(
∂

∂xj
) :=

∂

∂yj
, J(

∂

∂yj
) := − ∂

∂xj
.

Therefore the Kähler form ω =
∑m
j=1 dxj ∧ dyj . Let zj = xj +

√
−1yj be the

standard complex coordinates.
Now consider a graph over the z1, . . . zk plane given by

zα = fα(z1, . . . zk), α = k + 1, . . . ,m.

It is easy to check that the graph is holomorphic if ∂fα
∂z̄j

= 0 for j = 1, . . . k.
From the above discussion we see that the graph of f is a volume minimizing
submanifold.

Corollary 12.5 says that every complex submanifold is volume minimizing;
however, there has been very little success is showing that volume minimizing
submanifolds are complex even in situations where one may expect them to be.
There are a few results in dimension two.

Theorem 12.6 (Siu-Yau [SiY]). Let M2m be a Kähler manifold with positive
bisectional curvature. Any stable minimal 2-sphere is either holomorphic or
anti-holomorphic.

Theorem 12.7 (Micallef [M]). In R4, any 2-dimensional complete stable min-
imal surfaces with quadratic area growth is holomorphic for some compatible
complex structure J . Also any 2-dimensional entire stable minimal graph in R4

is holomorphic for some compatible complex structure.
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Theorem 12.8 (Micallef [M]). In R2m, any 2-dimensional stable minimal sur-
face with genus zero and with finite total curvature is holomorphic.

Remark 12.9. Recently, Arezzo and Micallef [AM] gave examples for n large(near
20) of stable minimal Σ with genus one and finite total curvature which are not
holomorphic.

There is also the following existence result for holomorphic disks which is
important in symplectic geometry. The proof uses the ∂̄ operator directly, and
up to this time there is no proof which uses area minimization.

Definition 12.10. A submanifold Σk in R2k is called Lagrangian if ω|Σ = 0,
where ω is the Kähler form.

Theorem 12.11 (Gromov [Gr1]). Let Σk be a compact embedded Lagrangian
submanifold in R2k. Then there exists a holomorphic 2-disk D such that ∂D ⊂
Σ.

12.1 The Special Lagrangian Calibration

Another important calibrating form is the special lagrangian form, which was
originally defined in Harvey and Lawson’s paper [HL]. This form and the as-
sociated class of special lagrangian submanifolds can be defined generally on
a Calabi-Yau manifold. For simplicity we discuss here the flat case. In R2m

let z1, . . . , zm be the standard complex coordinates. Define a real m-form
α := Re(dz1 ∧ . . . ∧ dzm). Standard linear algebra shows that |α(V )| ≤ 1 for
any m-dimensional subspace V (see [HL] for a detailed proof). Thus we have
the following result.

Lemma 12.12. α := Re(dz1 ∧ . . . ∧ dzm) is a calibrating m-form in R2m.

Definition 12.13. An m-subspace V in R2m is called special Lagrangian if it
is calibrated by α.

We have the following characterization of special Lagrangian subspace. We
refer the reader to [HL] for a proof.

Theorem 12.14. Let α = Re(dz1 ∧ dz2 ∧ . . . ∧ dzm) and µ = Im(dz1 ∧ dz2 ∧
. . .∧dzm) in Cm. Then α is a calibrating m-form. Moreover, if P is an oriented
m-plane in TxC

m, the following statements are equivalent:

(a) P is special Lagrangian;

(b) µ(P ) = 0 and P is Lagrangian;

(c) There is a linear map A ∈ SU(m) such that A maps the x-plane (the
m-plane in Cm spanned by ∂

∂x1 ,. . . , ∂
∂xm ) onto P .

Remark 12.15. If P is any lagrangian subspace, then we see that |dz(P )| = 1.
Thus we can write dz(P ) = e

√
−1β for some angle β(called lagrangian angle)

which is well-defined mod 2π. Therefore we see that P is special Lagrangian if
and only if P is lagragian and β = 0.
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This leads us to the definition of special lagrangian submanifolds. These
bear certain formal analogies to the class of holomorphic submanifolds.

Definition 12.16. A submanifold Σm ⊂ R2m is called special lagragian if each
tangent plane of Σ is special lagrangian.

Note that there is an S1 family of calibrating forms in Cn associated with
the form dz. Let

αθ = Re(e
√
−1θdz1 ∧ dz2 ∧ . . . ∧ dzm), (10)

and
µθ = Im(e

√
−1θdz1 ∧ dz2 ∧ . . . ∧ dzm). (11)

As above, the form αθ is a calibrating form and there is an associated class of
submanifolds calibrated by αθ. We will refer to these as special lagrangian with
respect to αθ. One of the reasons we are interested in this S1 family of special
Lagrangian geometry is the following theorem (see [HL] or the discussion in the
next section).

Theorem 12.17. Let Σ be a smooth submanifold of real dimension m in R2m.
Then Σ is both minimal and lagrangian if and only if Σ is special lagrangian
with respect to αθ for some choice of θ.

13 Existence Theory for Special Lagrangian Sub-
manifolds

The existence of special lagrangian submanifolds is of great interest in both ge-
ometry and string theory. Theorem 12.17 reduces this problem to the existence
of minimal lagrangian submanifolds. To construct such submanifolds, one idea
is to minimize volume among lagrangian competitors. The auther’s joint work
with Jon Wolfson [SW2] explores this variational approach in detail and gives
an approach to the construction of a smooth minimal lagrangian submanifold
in each lagrangian homology class in a 4-dimension Kähler-Einstein manifold.
Here we provide some background and elementary properties related to this
approach.

13.1 Hamiltonian Stationary Submanifolds

To solve this lagrangian variational problem, we need to find suitable defor-
mation which preserve the lagrangian condition. Ambient symplectic defor-
mations (i.e. deformations of R2m which preserve the symplectic form ω =∑m
j=1 dxj ∧ dyj) are good candidates. One family of such deformations consists

of the hamiltonian deformations which arise from a smooth ambient function.
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Definition 13.1. Let h(x1, . . . xm, y1, . . . ym) be a smooth function on R2m with
compact support. The hamiltonian vector field associated to h is defined to be

Xh := J∇h =
m∑
j=1

{ ∂h
∂xj

∂

∂yj
− ∂h

∂yj

∂

∂xj
}

It is not difficult to check that the flow generated by any hamiltonian vector
field preserves the symplectic form. Therefore the image of any lagrangian
submanifold under a hamiltonian deformation is lagrangian.

Definition 13.2. A lagrangian submanifold Σ is called hamiltonian stationary
if the first variation of Σ under any compactly supported hamiltonian deforma-
tion is zero, i.e

δ|Σ|(Xh) = 0

for any smooth function h on R2m whose restriction to Σ has compact support.

The following proposition says that the mean curvature vector of any la-
grangian submanifold is a (multi-valued) hamiltonion vector field (see [HL] or
[SW1] for a proof).

Proposition 13.3. Let Σm ⊂ R2m be a Lagrangian submanifold. We then
have dz(TxΣ) = e

√
−1β for some angle β (the lagrangian angle) defined mod 2π.

Moreover, H = J∇Σβ where H is the mean curvature and ∇Σ is the induced
connection on Σ.

The above proposition implies that if we minimize volume among a class for
which the mean curvature is an allowable variation, then the solution will be
minimal lagrangian (hence special Lagrangian with respect to some αθ).

13.2 The Euler-Lagrange Equations

In this sections , we give two versions of the Euler-Lagrange equations for hamil-
tionian stationary submanifolds. The first is the following geometric version.

Proposition 13.4. Let Σm ⊂ R2m be a lagrangian submanifold which is hamil-
tonian stationary. Let H be the mean curvature vector. Define a one form σH
on Σ by σ = Hcω, where c denotes the interior product and ω is the standard
symplectic form on R2m. Then we have the following Euler-Lagrange equations

dσH = 0, δσH = 0.

Proof. From above we have that locally σH = dβ (this is equivalent to saying
H = J∇β). Thus we have dσH = 0 for any lagrangian submanifold. The first
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variation formula and the hamiltonian stationarity then give that

0 = δΣ(Xh)

= −
∫

Σ

Xh ·Hdµ

= −
∫

Σ

J∇h · J∇βdµ

= −
∫

Σ

∇h · ∇βdµ

Hence we see that4β = 0, i.e. β is a harmonic function on Σ. This is equivalent
to the condition δσH = 0.

Now we give the analytical version of the Euler-Lagrange equations. Stan-
dard lagrangian geometry implies that any lagrangian submanifold which is
graphical over a lagrangian plane, can be written as the graph of the gradient
of a potential function defined on the plane. More precisely, if Σ is a lagrangian
submanifold which is graphical over the x-plane, then there is a function u(x)
such that the graph may be defined by y = ∇u, i.e.

yi =
∂u

∂xi
,

for i = 1, . . . ,m.
If we in addition assume that Σ is also hamiltonian stationary, a standard

first variation computation gives the following Euler-Lagrange equation

m∑
j=1

∂

∂xj
(4g

∂u

∂xj
) = 0. (12)

Here the induced metric is given by gij = δij +
∑
k uikujk with subscripts de-

noting partial derivatives of u. This is a fourth order quasilinear scalar equation
for u which is of bi-harmonic type.

13.3 Examples

In this section we give some examples of hamiltonian stationary submanifolds.
Example 1. If m = 1, hamiltonian stationarity implies that the lagrangian

angle β is a linear function of s (the arclength parameter). Thus the hamiltonian
stationary curves in R2 are the lines and circles.

Example 2(Clifford Tori). Consider R2m as Cm, and define Σ = S1(r1)×
. . .×Sm(rm), where Si(ri) is the circle with radius ri in the i-th copy of C. These
are called the Clifford tori, and they are hamiltonian stationary. It is unknown
whether for m > 1 these minimize volume in their hamiltonian isotopy class.
For m = 1 this is true and is equivalent to the isoperimetric inequality for plane
regions.
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Example 3(Helein/Romon). If m = 2, then Helein and Romon [HR] showed
that there are infinite many distinct hamiltonian stationary tori in R4. Their
proof uses explicit representation formulae for hamiltonian stationary surfaces
in R4 which arise from the theory of integrable systems.

Example 4(Hamiltonian stationary cones). Let

S3 = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1}

be the unit 3-sphere in C2. Let π : S3 → S2 be the standard Hopf map defined
by

π((z1, z2)) =
z1

z2
∈ C ∪ {∞} = S2.

The fiber of this projection is a great circle, i.e. for p ∈ S2, π−1(p) = {e
√
−1θ(z1, z2) :

θ ∈ [0, 2π)} for any point (z1, z2) in π−1(p). For a point q ∈ S3 we will call the
great circle {e

√
−1θq : θ ∈ [0, 2π]} the Hopf fiber through q and simply denote it

as e
√
−1θq. Now let γ(t) ⊂ S3 be a curve satisfying:

1. γ is horizontal in the sense that γ′(t)⊥Tγ(t)(e
√
−1θγ(t)) (i.e. γ is perpen-

dicular to the Hopf fibers);

2. π(γ) is a circle in S2.

It is shown in [SW1] that there are infinitely many closed curves in S3

satisfying these two properties. These are precisely the curves γ in S3 with the
property that the corresponding cones in R4 over γ are hamiltonian stationary.

14 The Lagrangian Plateau Problem in R4

Let Γ be a smooth Jordan curve in R4. We would like to find a Lagrangian disk
bounded by γ which has the least area among all such disks.

First we need to ask whether γ bounds any lagrangian disk. One can easily
derive a necessary condition using Stokes’ Theorem. Let η =

∑2
i=1(xidyi −

yidxi). Clearly η is a primitive of the standard symplectic form ω. If Γ bounds
an oriented lagrangian surface Σ, then Stokes’ Theorem implies that

0 =
∫

Σ

ω =
∫

Γ

η.

Therefore, a necessary condition for a closed curve Γ to bound a lagrangian disk
is

∫
Γ
η = 0.

It turns out that this is also a sufficient condition. Quantitative results
obtained by Gromov[Gr2] and Allcock[A] show that if Γ is a closed curve in
R4 such that

∫
Γ
η = 0, then Γ bounds a (singular) lagrangian disk D with

area bounded in terms of the lenrth of Γ, i.e. Area(D) ≤ cLength(Γ)2, where
c is an absolute constant. (The situation is completely different if we allow
nonorientable surfaces. Qiu [Q1] proved that any closed curve in R4 bounds a
lagrangian Möbius band with similarly bounded area).

We state the following result (whose proof is contained in [SW2]) concerning
the existence and regularity of the Lagrangian Plateau Problem:
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Theorem 14.1. Let Γ be a Jordan curve in R4 such that
∫

Γ
η = 0. Then there

exists a map F : D → R4, where D is the unit disk in R2 such that F |∂D is a
1− 1 parametrization of Γ. Also F satisfies:

1. F is Lagrangian, i.e. F ∗ω = 0 and F has the least area among all La-
grangian disks bounded by Γ;

2. F is weakly conformal;

3. F is Lipschitz in D and continuous in D̄;

4. F is a smooth immersion except at a discrete set of points. Those singu-
larities are either branch points or points at which F (D) has a non-flat
tangent cone described in Example 4 above.

Remark 14.2. For the Plateau boundary condition, Σ = F (D) is hamiltonian
stationary, but will not be minimal since the mean curvature H does not vanish
along the boundary Γ and hence is not an allowable variation for the problem.
The condition that a curve in R4 bound a minimal lagrangian surface is much
more restrictive than the condition that it bound a lagrangian disk.

15 The Free Boundary Problem

As remarked above, the solution of Lagrangian Plateau Problem need not be
minimal. In order to produce minimal lagrangian surfaces, we need to consider
more flexible boundary conditions. We describe one of these here.

Let S be a complex (real two dimensional) surface in R4 and Γ be a nontrivial
(in the relative homotopy sense) curve on S. We call a surface Σ with boundary
∂Σ ⊂ S a solution to the free boundary problem with respect to (S,Γ) if

Area(Σ) = inf{Area(Σ1) : Σ1 lagrangian
such that ∂Σ1 ⊂ S and is homotopy to Γ}.

Lemma 15.1. Let S be a complex surface in R4 and Γ be a nontrivial (in the
relative homotopy sense) curve on S. A smooth solution Σ for the free boundary
problem with respect to (S,Γ) is minimal lagrangian.

Proof. Clearly since Σ is a solution to the free boundary problem with respect
to (S,Γ), the first variation gives that∫

Σ

〈X,H〉dµ = 0,

for any vector field X along Σ such that X is tangent to S along ∂Σ. Let X
be a hamiltonian vector field Xh. Since H = J∇β, where β is the lagrangian
angle, we see that ∫

Σ

〈∇h,∇β〉dµ = 0.
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Integrating by parts and using 4β = 0, we have∫
∂Σ

h
∂β

∂ν
ds = 0,

where ν is the conormal vector along ∂Σ. Since S is complex, h can be arbitray
on ∂Σ (i.e., any h defined on ∂Σ can be extended to an ambient function on R4

such that J∇h is tangent to S along ∂Σ). We see that

∂β

∂ν
= 0.

Hence ∇β is tangent to ∂Σ, and in particular tangent to S. Since S is complex,
H = J∇β is tangent to S so H is an allowable variation. Therefore the first
variation gives ∫

Σ

〈H,H〉dµ = 0,

and Σ is minimal.

Remark 15.2. The preceeding argument shows more generally that if Σ is a
compact lagrangian stationary submanifold, then we can conclude H = 0 using
the mean curvature as the variational vector field. in other words, it does not
use the minimizing property of Σ.

Remark 15.3. The boundary regularity for this free boundary problem has been
studied by Weiyang Qiu [Q2] in his Stanford PhD dissertation.
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